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Abstract

A theory for Abstract Reduction Systems (ARS) in the proof assistant PVS (Prototype Verification System)
is described. Adequate specifications of basic definitions and notions such as reduction, confluence, normal
form are given and well-known results proved, which includes non trivial ones such as Noetherian Induction,
Newman’s Lemma and its generalizations, and Commutation Lemma among others. Although term rewrit-
ing proving technologies have been specified in several specification languages and proof assistants, to our
knowledge this has not been done in PVS. This makes relevant our ARS specification as the initial step in
the formulation of a complete theory for Term Rewriting Systems (TRS) in PVS.
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1 Introduction

Abstract Reduction Systems (ARS) and Term Rewriting Systems have been specified in several proof as-
sistants, e.g., RRL [9], ACL2 [16], Coq [8], Isabelle [15], Boyer-Moore [17], Otter [5] among others. Term
rewriting proving technologies have been shown adequate in several mathematics and computer science
fields including theorem proving as well as formal specification and design of computational processes and
technologies (i.e., standard and non-standard software and hardware). In particular, we have developed
a methodology for specifying reconfigurable hardware over FPGAs using the rewriting-logic programing
environment ELAN [2]. These rewriting based hardware specifications are synthesized to commercial re-
configurable hardware by applying the system FELIX [10] and their correctness is verified over the proof
assistant PVS after translating the rewriting specification to a corresponding logic theory with the system
SAEPTUM [3]. The last mentioned step should be improved by making available a full theory of rewriting
methods in PVS, that to our knowledge is not available in this proof assistant.

With this motivation, this paper introduces a PVS theory for dealing with properties of ARSs. Basic
ARS notions are adequately specified in such a way that non elementary proof techniques such as Noetherian
induction are straightforwardly applicable. To illustrate the adequateness of these specification well-known
results such as Newman’s, Yokouchi’s and commutation Lemma are verified. These specifications are built
over PVS theories for sets and relations. In particular Noetherianity is based on the notion of well-founded
relations and because of this, after introducing the notion of noetherian relation the principle of noetherian
induction should be verified.

The introduced ARS theory should be conceived as a first step in the development of a full TRS theory
in PVS. The files of this theory are available at www.mat .unb.br/~ayala/TCgroup.
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2 Brief Introduction to PVS

This section briefly describes the PVS prover used to specify the ARS theory. PVS consists of a specification
language integrated with support tools and a proof assistant, that provides an integrated environment for
the development and analysis of formal specifications. Only the relevant aspects of PVS are explained here.
For more details about the tool, refer to the PVS System Guide [19], the PVS Prover Guide [18] and the
PVS Language Reference [14] available at http://pvs.csl.sri.com.

The specification language of PVS is built on higher-order logic, which supports modularity by means
of parameterized theories, with a rich type-system, including the notions of subtypes and dependent types.
It provides a large set of built-in constructs for expressing a variety of notions. The PVS specifications is
organized as a collection of theories, from which the most relevants are collectively referred as the prelude
[13]. Each theory is composed essentially of declarations, which are used to introduce names for types,
constants, variables, axioms and formulas, and IMPORTINGs, which allow to import the visible names of
another theories. Notice that parameterized theories are very convenient since the use of parameters allows
more generic specifications, as we can see with the ars PVS theory below:

ars[T : TYPE] : THEORY
BEGIN

IMPORTING results_commutation[T],
modulo_equivalence[T],
results_normal_form[T],
newman_yokouchi [T]

end ars

T is treated as a fixed uninterpreted type. Consequently, when the ars theory is invoked by another the-
ory, T must be instantiated. For example, the theory of ars of set of term is just ars[term]. Notice that ars
imports the theories results_commutation[T], modulo_equivalence[T], resultsnormal form[T] and
newman_yokouchi [T].

A important step in PVS specifications is type-checking the theory, which checks for semantic errors,
such as undeclared names and ambiguous types. Type-checking may build new files or internal structures
such as TCCs (type-correctness conditions). These TCCs represent proof obligations that must be discharged
before the theory can be considered type-checked, and its proofs may be postponed indefinitely. Although,
the theory is considered complete when all TCCs and formulas upon which the proof is dependent have been
completed.

The PVS Prover provides a variety of commands to construct the proofs of the different theorems. It
is used interactively and it uses the sequent-style proof representation to display the current proof goal for
the proof in progress. The prover maintains a proof tree for the current theorem being proved being the
aim of the user to construct a proof tree that is complete, in the sense that all the leaves are recognized as
true. Each node of the tree is a proof goal that results from the application of a prover command (rule
or strategy) to its parent node. Each proof goal is a sequent consisting of two sequences of formulas called
the antecedents (numbered with negative integers) and the consequent (numbered with positive integers)
displayed as below:

[-1]1 &
[-2] A,



3 PVS Strategies Used in the Proofs

Below we describe some PVS prover commands that are commonly used in our specification, and we define
some strategies for minimize the size of the proofs. Many of these commands take arguments that control
its behavior which are not discussed here. For additional details see [18].

1. skolem: This command chooses fresh constant names (universally quantified consequent), and proving
“without loss of generality”, or unconstrained arbitrary constant when one is known to exist (existen-
tially quantified antecedent). In other words, skolem gives new constant names, e.g., for x it will give
x!1, x!2, ... when applied repeatedly.

2. skeep: This command is used to introduce Skolem constants by keeping the original names of the
quantified variables. See [12] and [20].

3. flatten: This command is used to break an antecedent formula that is a conjunction or a consequent
formula that is a disjunction into its components.

4. assert: This command is used to simplify the proof goal using decision procedures and rewriting.

5. inst: This command is used to instantiate a universally quantified antecedent or an existentially
quantified consequent formula.

6. case: This command generates two subgoal, one where the given boolean expression is assumed to be
true and the other where it is assumed to be false.

7. expand: This command expands and simplifies the definitions of the specified functions/predicates at
the occurrences.

8. lemma: This command is used to pull in a previously proved theorem into the current proof goal
instantiated as specified by the user.

Other useful rules can be found in [18], e.g., replace, prop, split and decompose-equality. PVS also
provides a simple language to combine sequences of commonly used proof steps into strategies [1]. These
strategies can then be used as prover commands. In many proofs, it is necessary to use the same sequence
of proof steps. Thus, to facilitate and to minimize the proofs we turned some commonly used sequences of
proof commands into strategies. Some of them are discussed below.

In some proofs, it was necessary to firstly, expand the definition of joinable; afterward, to introduces
skolem constants and finally, to apply disjunctive simplification (flatten). The strategy join-skolem
accomplishes this.

(defstep join-skolem (varl fnum)
(then (expand "joinable?" fnum) (skolem * varl) (flatten))
"Expanding joinable?, Skolemizing, and
Applying disjunctive simplification.")

Another useful strategy is expand-closure that expands the definition of closure relation according to
input closure which can be either rtc (Reflexive Transitive Closure) or ec (Equivalence Closure) or rc
(Reflexive Closure) or sc (Symmetric Closure). This strategy uses another one called expand-um which
expands the definitions of union and member.

(defstep expand-closure (closure fnum)
(if (equal closure ‘rtc)
(then (expand "RTC" fnum )
(expand "IUnion" fnum))
(if (equal closure ‘ec)
(then (expand "EC" fnum)
(expand "RTC" fnum)
(expand "IUnion" fnum))
(if (equal closure ‘rc)



(then (expand "RC" fnum)
(expand-um fnum))
(if (equal closure ‘sc)
(then (expand "SC" fnum)
(expand-um fnum))
(skip)))))
"Expanding the definition of "A.")

Few other commonly used sequences of proof steps were turned into strategies too.

4 Specifying ARS in PVS

We briefly present the standard definitions of ARS and some properties [4] and then we present their
specification in PVS.

An Abstract Reduction System (ARS) is a pair (A, —), where the reduction — is a binary relation on
the set A, i.e., =C A x A. In this paper we consider some arbitrary but fixed ARS (A, —). We treated, in
PVS, the set A as a fixed uninterpreted type T, and the reduction — as a binary relation R on T defined as
predicate PRED: TYPE = [[T,T] -> booll. So the relation R(x,y) means x reduces to y, and y is called a
reduct of x.

To specify some of the central notions of ARS such as confluence and termination, first, it is necessary
to adequately speficify several closure relations:

Abstract definition PVS specification

—%={(z,z) |z € A} identity

—itl=—io - (i 4+ 1)-fold composition, i > 1
—Ti=— U =0 reflexive closure (RC)

—Ti= U0 =" transitive closure (TC)
—*==1TU— reflexive transitive closure (RTC)
—=—1 converse

o= U symmetric closure (SC)

—Fi= ()" equivalence closure (EC)

RC, TC, RTC, SC, and EC were defined in the PVS theory relations_closure in the same way that Alfons
Geser does in the PVS theory for closure operators (PVS/1ib/sets lemmas/closure ops). We just changed
the names of the definitions and we proved some additional properties. For example, RTC is defined using
the iterate function which allows us to obtain inductive proofs on the length of derivations:

RTC(R) : reflexive_transitive = IUnion(LAMBDA n: iterate(R, n))
Then the additional properties are proved:

R_subset_RTC: LEMMA subset?(R, RTC(R))

iterate_RTC: LEMMA FORALL n: subset?(iterate(R, n), RTC(R))

4.1 Confluence

For all x,y,z € A a relation — is called

1. confluent iff y *— x —* z implies that y and z are joinable, i.e., iff there is a r € A such that
y =% r ez

2. Church-Rosser iff x <™ y implies that  and y are joinable.
3. semi-confluent iff y «— x —* z implies that y and z are joinable.

These and other notions such as local confluent, strongly confluent, diamond property, normal form,
normalizing and commutation are specified in the PVS theory ars_terminology as follow:



ars_terminology[T: TYPE]: THEORY
BEGIN

IMPORTING relations_closurel[T]

R, R1, R2: VAR PRED[[T, T]]
X, ¥, 2, r: VAR T

joinable?(R) (x,y): bool = EXISTS z: RTC(R) (x,z) & RTC(R) (y, z)

church_rosser?(R): bool = FORALL x, y: EC(R)(x,y) => joinable?(R) (x,y)
semi_confluent?(R): bool = FORALL x, y, z: R(x,y) & RTC(R) (x,z) =>
joinable?(R) (y,z)

confluent?(R): bool = FORALL x, y, z: RTC(R)(x,y) & RTC(R) (x,z) =>
joinable?(R) (y,z)

commute?(R1,R2): bool = FORALL x, y, z: RTC(R1) (x,y) & RTC(R2) (x,z) =>
EXISTS r: RTC(R2) (y,r) & RTC(R1) (z,r)

END ars_terminology

Some basic results involving confluence are specified and proved in the PVS theory results_confluence.
For example, the equivalence between Church-Rosser and confluence, and the commutative union lemma
which tells us that for commutative relations union preserves confluence are specified as:

CR_iff_Confluent: THEOREM church_rosser?(R) <=> confluent?(R)

Commutative_Union_Lemma: LEMMA confluent?(R1) & confluent?(R2) &
commute?(R1,R2) => confluent?(union(R1, R2))

4.2 Termination

A relation — is called terminating or noetherian iff there is no infinite descending chain a9 — a3 — ---. In
other words, — is noetherian iff «— is well-founded.

As it is well-known many results involving termination are proved by Noetherian induction, that is: let
P be some property of elements of A. Then to prove P(z) for all z € A, it suffices to prove P(z) under the
assumption that P(y) holds for all successors y € A of .

In the PVS theory noetherian below, we defined noetherian relation based on the notion of well-founded
relation (it simplify proofs) and we proved the principle of Noetherian induction. To prove this principle
we used the lemma wf_induction, with suitable substitutions, which expresses the principle of well-founded
induction and can be found in the PVS prelude theory [13] as well as the notions of well-founded relations.

noetherian([T: TYPE]: THEORY
BEGIN

IMPORTING ars_terminologyl[T],
sets_aux@well_foundedness[T]

P: VAR PREDI[T]
R: VAR PRED[[T, TI11]
X, y: VAR T

noetherian?(R): bool = well_founded?(converse(R))

noetherian_induction: LEMMA



(FORALL (R: noetherian, P):
(FORALL x:
(FORALL y: TC(R)(x, y) IMPLIES P(y))
IMPLIES P(x))
IMPLIES
(FORALL x: P(x)))

END noetherian

4.3 Modulo Equivalence

Considering a reduction relation R, together with an equivalence relation Eq we defined the notions of
reduction modulo equivalence [7] and we proved the generalization of Newman’s Lemma:

modulo_equivalence[T: TYPE] : THEORY
BEGIN

IMPORTING noetherian[T]

R, S: VAR PRED[[T, T]]
Eq: VAR equivalence

X, Y,

Z, W,

u, v: VAR T

joinable_m?(R, Eq) (x,y) : bool = EXISTS u,v: RTC(R) (x,u) &
Eq(u,v) & RTC(R) (y,v)

local_confluent_m?(R, Eq) : bool = FORALL x, y, z: R(x,y) & R(x,z) =>
joinable_m?(R, Eq) (y,z)

confluent_m?(R, Eq) : bool = FORALL x, y, z, w: RTC(R) (x,z) &
Eq(x,y) &
RTC(R) (y,w) =>
joinable_m?(R, Eq) (z,w)

locally_coherent?(R, Eq, S) : bool = symmetric?(S) &
FORALL x, y, z: R(x,y) &
S(x,z) => joinable_m?(R, Eq)(y,2z)

van_oostrom94: LEMMA diamond_property?(RTC(R) o Eq) => confluent_m?(R, Eq)

newman_lemma_general: THEOREM noetherian?(R) =>
(local_confluent_m?(R, Eq) &
locally_coherent?(R, Eq, Eq) <=>
confluent_m?(R, Eq))
END modulo_equivalence

5 PVS Theory Organization, Proof Examples and Proof Summary

5.1 PVS Theory Organization

Below we show the organization of the PVS theories which compound the ars theory and we give a brief
description of each one (see Figure 1).



1. relations_closure: This theory contains the definitions of closure of a relation and some properties.

2. ars_terminology: This theory contains some terminology of ARS such as unique normal form, re-
ducible and sucessor, and notions of confluence and commutation.

3. results_confluence: This theory contains some results about confluence such as strong confluent
implies semi-confluent.

4. results_commutation: This theory contains some results about commutation such as Commutation
lemma.

5. results normal form: This theory contains some results involving normal form such as a relation is
normalizing and confluent iff every element has a unique normal form.

6. noetherian: This theory contains the definition of convergent reduction and noetherian relation and
the Noetherian induction lemma.

7. newman_yokouchi: This theory contains the specification of Newman’s lemma and Yokouchi’s lemma.

8. modulo_equivalence: This theory contains the notions of reduction modulo equivalence and, for
example, the proof of the generalization of Newman’s Lemma.

results_commutation modulo_equivalence results_normal_form newman_yokouchi

noetherian results_confluence

ars_terminology

relations_closure

sets_lemmas

Figure 1: ars theory dependencies

5.2 Proof Examples

The PVS proofs are available as part of the ars theory at www.mat.unb.br/~ayala/TCgroup and detailed
explanations of the PVS proofs of Newmann’s and Yokouchi’s lemmas are available in [6].
To prove the commutation lemma:

Commutation_Lemma: THEOREM strong_commute?(R1,R2) => commute?(R1,R2)

we use the sequence of commands (skeep), (expand), (skolem), (lemma), (inst), and (assert). The com-
mand lemma is used to invoke the following lemma:



commute_and_iterate_two: LEMMA FORALL (n,m: nat): strong_commute?(R1,R2)
& iterate(Rl, n)(x,y) & iterate(R2, m)(x,z) =>
EXISTS r: RTC(R2)(y,r) & RTC(R1)(z,r)

This lemma is proved by induction on m by applying the command (induct "m"), and by invoking the
lemma commute_and_iterate_one which is proved by induction too.

Now, we present details of the proof of Newman’s lemma that since the inductive proof given by Huet in
[7] is considered a classical benchmark for proof in higher-order logic as discussed for instance in [5].

Newman’s lemma states that an abstract reduction system is confluent if it is local confluent and noethe-
rian and is specified in the ars theory as:

Newman_lemma: THEOREM noetherian?(R) => (confluent?(R) <=> local_confluent?(R))

When the PVS prover is invoked the proof tree starts off with a root node having no antecedent and the
theorem to be proved as the sole consequent:

{1} FORALL (R: PRED[[T, TI1]):
noetherian?(R) => (confluent?(R) <=> local_confluent?(R))

The universally quantified variable is skolemized and disjuntive simplification is applied using the com-
mand skeep, and then the command split yields (splitting the consequent formula) two subgoals: The first
subgoal is

{1} confluent?(R) IMPLIES local_confluent?(R)

This subgoal is proved immediately from the definitions of confluent?(R) and local_confluent?(R).
Firstly, by applying the disjuntive simplification (flatten), then the definitions of local_confluent? and
confluent? are expanded (expand*):

{-1} FORALL (x: T), (y: T), (z: T):
RTC(R) (x, y) & RTC(R) (x, z) => joinable?(R)(y, z)

{1} FORALL (x: T), (y: T), (z: T): R(x, y) & R(x, z) => joinable?(R)(y, z)

Next, applying (skeep) and invoking the lemma R_subset RTC which establish that R C RTC. Finally,
by applying the strategy (expand-sm), that expands the definitions of subset? and member, and doing the
convenient instantiation using the command (inst).

The second and truly interesting subgoal is

{1} local_confluent?(R) IMPLIES confluent?(R)

As it is well-known, this result is obtained by Noetherian induction using the predicate: P(x) =
Yy, z.y "« x —* z implies that y and z are joinable.

After applying the disjuntive simplification (flatten), we invoke the lemma noetherian_induction
instantiated with the predicate

(LAMBDA (a: T): (FORALL (b,c: T): RTC(R) (a,b) AND RTC(R) (a,c) IMPLIES joinable?(R)(b,c)))

Next, by applying the command (split) we obtain two subgoals. As we can see below, the first one is
obvious and its proof is obtained expanding confluent?, and applying the sequence of commands (skeep),
(inst), used with suitable substitutions, and (assert).



[-1] FORALL (x: T):
FORALL (b, c: T):
RTC(R) (x, b) AND RTC(R) (x, c) IMPLIES joinable?(R)(b, c)

[1] confluent?(R)
The second subgoal requires to prove P(z) under the assumption P(y) for all y such that z —T y:

[-1] 1local_confluent?(R)
[-2] noetherian?(R)

[1] FORALL (x: T):
(FORALL (y: T):
TC(R) (x, y) IMPLIES
(FORALL (b, c: T):
RTC(R) (y, b) AND RTC(R)(y, c) IMPLIES joinable?(R) (b, c¢)))
IMPLIES
(FORALL (b, c: T):
RTC(R) (x, b) AND RTC(R) (x, c) IMPLIES joinable?(R) (b, c))

By applying the sequence of commands skeep, expand-closure, and skolem we obtain

[-1]1 FORALL (y: T):
TC(R) (x, y) IMPLIES
(FORALL (b, c: T):
RTC(R) (y, b) AND RTC(R)(y, c) IMPLIES joinable?(R)(b, c))
[-2] iterate(R, i)(x, b)
{-3} iterate(R, j)(x, c)
[-4] 1local_confluent?(R)
[-5] noetherian?(R)

[1]  joinable?(R) (b, c)

Now, after some simplifications and manipulations we obtain the result. Below we present a small part
of proof tree.

(case-replace "i = 0" :hide? t)
(e
(hide-all-but (-2 -3 1))
(expand "joinable?")
(inst 1 "c")
(expand* "RTC" "IUnion")
(split)
(("1" (expand "iterate" -1) (replaces -1) (inst 1 "j"))
("2" (inst 1 "0") (expand "iterate" 1) (propax))))
(r2n
(case-replace "j = 0" :hide? t)

e
(assert)
(decompose-equality)
(decompose-equality)
(inst -2 "(x, b)")
(inst -1 "(x, c)")
(replaces -1)
(replaces -1)



(expand "o")

Above in the proof tree the commands (case-replace "i = 0" :hide? t) and (case-replace "j =
0" :hide? t) contemplate the casesx = borx = c.

Another example of results available in the theory and obtained by Noetherian induction is the Yokouchi
lemma which is specified as:

Yokouchi_lemma: THEOREM ( noetherian?(R) & confluent?(R) &
diamond_property?(S) & (FORALL x, y, z: (S(x,y) & R(x,z)) =>
(EXISTS (u: T): RTC(R)(y,u) & (RTC(R) o S o RTC(R))(z,u))) )
=> diamond_property?(RTC(R) o S o RTC(R))

5.3 Proof Summary

We present below a proof summary for all theories involved with ars that is obtained by using the PVS tool
ProofLite [11]. The PVS development consists of 65 lemmas specified in 790 lines (25094 bytes) and 7169
lines (481178 bytes) of proofs.

Proof summary for theory noetherian
R_is_Noet_iff TC_is................... proved - complete  [shostak] (0.58 s)
noetherian_induction.................. proved - complete  [shostak] (0.50 s)

Joinable_implies_Equiv................ proved - complete  [shostak] (0.06 s)
reduct_transitive............ ... ... ... proved - complete  [shostak] (0.06 s)
semi_and_iterate............ ... ... .... proved - complete  [shostak] (0.27 s)
Confl_implies_Semi.................... proved - complete  [shostak] (0.06 s)
Semi_implies_CR.............. .. ...t proved - complete  [shostak] (0.06 s)
CR_iff_Confluent...................... proved - complete  [shostak](0.20 s)
strong_and_iterate.................... proved - complete  [shostak] (0.20 s)
Str_Confl_implies_Semi_Confl.......... proved - complete  [shostak](0.10 s)
Strong_Confl_implies_Confl............ proved - complete  [shostak] (0.02 s)
DP_implies_StC.......... ... oiuinn... proved - complete  [shostak] (0.07 s)
R1_Confl_ iff R2 Confl................. proved - complete  [shostak](0.14 s)
Rl_equal R2.........oivinininininnnnnn.. proved - complete  [shostak](0.15 s)
R2_Str_Confl_implies_R1_Confl......... proved - complete  [shostak](0.08 s)
Confluence_Commute..............c..o... proved - complete  [shostak](0.11 s)
R1I_R2.RTC_.R1_R2......... ..., proved - complete  [shostak](0.32 s)
Commutative_Union_Lemma............... proved - complete  [shostak](0.14 s)

Proof summary for theory newman_yokouchi

Newman_lemma...........c..evuevuennennn proved - complete  [shostak] (0.70 s)
Yokouchi_lemma_axl.................... proved - complete  [shostak](0.90 s)
Yokouchi_lemma. ........ouvuemuennennn.. proved - complete  [shostak](1.12 s)

NF_doesnot_rewrite.................... proved - complete  [shostak](0.17 s)
NF_implies_RTC...........coiiiuenenn. proved - complete  [shostak] (0.05 s)
NFs_implies_Equal............c..ccouenn. proved - complete  [shostak](0.05 s)
Norm_and_Confl_implies UNF............ proved - complete  [shostak] (0.07 s)
Normalizing and _Confl................. proved - complete  [shostak](0.18 s)
Normal Confl_iff UNF.................. proved - complete  [shostak](0.11 s)
Noetherian_implies_normalizing........ proved - complete  [shostak](0.13 s)
Convergent UNF................... .. ... proved - complete  [shostak](0.02 s)
Noet_and_Confl iff UNF................ proved - complete  [shostak](0.02 s)
Convergent_iff_eqNF................... proved - complete  [shostak](0.23 s)



Proof summary for theory modulo_equivalence
van_oostrom94. ... ..t proved - complete  [shostak](0.19 s)
newman_lemma_general.................. proved - complete  [shostak](1.04 s)

Proof summary for theory results_commutation

Local_Comu_and_Noeth.................. proved - complete  [shostak] (0.69 s)
commute_and_iterate_one............... proved - complete  [shostak](0.21 s)
commute_and_iterate_two............... proved - complete  [shostak](0.25 s)
Comutation_Lemma...............couunnn proved - complete  [shostak] (0.05 s)

Grand Totals: 65 proofs, 65 attempted, 65 succeeded (12.92 s)

6 Conclusions and Future Work

The PVS theory ars specifies adequately basic notions of the theory of Abstract Reduction Systems. On
the one hand ars is built over the PVS theory for binary relations being the closures specified in terms of
“iteration” of the binary relations. In this way inductive proofs on the length of derivations are possible. On
the other hand, the notion of noetherianity is specified in terms of the notion of well-founded relations which
allows us to adequately formulate and verify the principle of noetherian induction necessary for proving
several properties of ARSs.

Our intention specifying the ars theory was not to exhaustively include proofs of all well-known results
of the theory of ARSs, but instead to give the essential mechanisms for expressing and mechanically proving
all these results. Adequability of our specification is made evident by the presentation of elegant proofs of
well-known results over ARSs such as the Newman’s and Yokouchi’s lemmas [6]. Also it should be stressed
here that although ars does not advance the state of the art in the formalization of mathematics since
specifications of Abstract Reductions Systems and even of Term Rewriting Systems are available since the
development of the Rewriting Rule Laboratory (RRL) in the 1980s [9], it is of practical interest since the
availability of rewriting proving technologies are essential in a modern proof assistants as PVS.

As current work ars is being extended to a more elaborated PVS theory for full Term Rewriting Systems
that is of interest to verify the correction of concrete rewriting based specifications of computational objects
as mentioned in the introduction. By this extension rewriting strategies and new tactic-based techniques
will be available in PVS in a natural manner.
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