
Submitted to:
LSFA 2024

© D. Cerna, A.F. González Barragán, M. Ayala-Rincón, and T. Kutsia
This work is licensed under the
Creative Commons Attribution License.

Anti-unification on Absorption and Commutative Theories

David M. Cerna
Czech Academy of Sciences Institute of Computer Science

Prague, Czech Republic.
dcerna@cs.cas.cz

Andrés Felipe González Barragán
Universidade de Brasília

Brasília D.F., Brazil
andres.felipe@aluno.unb.br

Mauricio Ayala-Rincón
Universidade de Brasília

Brasília D.F., Brazil
ayala@unb.br

Temur Kutsia
Research Institute for Symbolic Computation

Johannes Kepler University Linz, Linz, Austria
kutsia@risc.jku.at

Anti-unification is a problem coined almost half a century ago by Plotkin and Reynolds to address
generalities among terms. Techniques to solve this problem are of practical interest for computing
commonalities and regularities in expressions, providing mechanisms to check data cloning and in-
tegrity, and code regularities offering opportunities for parallelization and prototyping of algorithms.
This paper presents an algorithm for the anti-unification problem modulo commutative and absorp-
tion theories. Absorption constants and function symbols behave as zero and product in arithmetic
theories or as “true” and disjunction in Boolean algebra. The technique is built over an algorithm
developed by the authors, given as a set of inference rules, that allows only absorption symbols. This
paper adapts absorption anti-unification rules and adds rules that treat commutative and absorption-
commutative symbols. The algorithm is proven sound, and its completeness is discussed.

1 Introduction

Anti-unification is the problem of expressing commonalities between terms in the most particular man-
ner. For instance, f (g(g(a)), f (a,b)) and f (g(g(a)), f (a,g(a))) can be generalized with terms as x,
f (x,y), f (g(x), f (z,y)), but the least general generalization is f (g(g(a)), f (a,y)) since it maximally
captures the commonalities of both terms, including subterm coincidences. Namely, a generalization of
terms s and t, is a term r such that there exist substitutions σ and ρ with rσ = s, and rρ = t.

Interest in anti-unification is increasing because of new theoretical developments and industrial appli-
cations in different areas. Among others, exciting recent applications include the detection of code regu-
larities for efficient parallel compilation [7], efficient searching of common patterns to detect equivalent
code in corpora of programs [8], and production of recommendations of code changes and adaptations
to prevent bugs and misconfigurations in large computational services [12].

The generalizations presented above are related to the syntactic case of the anti-unification prob-
lem. But operators may have algebraic properties. For instance, if the symbol f is commutative, the
terms f (f (a,c), f (b,d))) and f (f (a,d), f (b,c)) have two incomparable least general generalizations
r1 = f (f (a,x), f (b,y))) and r2 = f (f (d,x), f (c,y))). These generalizations are incomparable since each
of them is not an instance of the other: there exists neither σ with r1σ = r2 nor ρ with r2ρ = r1. Anti-
unification modulo equational theories (including operators with algebraic equations properties as com-
mutativity) are highly applicable and give rise to more complex problems than syntactic anti-unification.
Alpuente et al. investigated anti-unification modulo associativity (A), commutativity (C), and unital (U),
including the cases of theories with operators that hold combinations of these properties [1, 2, 3]. Inter-
esting aspects arise, as the fact that theories combining two unital symbols are nullary [10], which means

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

D. Cerna, A.F. González Barragán, M. Ayala-Rincón, and T. Kutsia 2

a set of minimal least general generalizations does not need to exist for some problems in this theory.
(The type of anti-unification problems, analogous to the type classification of unification problems as
defined in, e.g., [13], can be nullary, unary, finitary, or infinitary.) Also, and more practical, it was proved
that anti-unification in semirings is also nullary [9]. See [11] for a recent survey about anti-unification
and its applications.

In recent work [6], the authors presented a sound and complete algorithm that solves anti-unification
modulo absorption (a-)theories, theories with operators that satisfy the axioms { f (ε f ,x) ≈ ε f , f (x,ε f) ≈

ε f } (as happens with zero and multiplication, true and disjunction, etc.). In addition, the type of anti-
unification modulo absorption was proved infinitary.

Several algebras which own operators with absorption properties like semi-groups and monoids may
include commutative properties. Interesting examples of these algebras are the integers with multipli-
cation with zero as absorption constant; the integers with the greatest common divisor gcd with one as
the absorption constant; the powerset of a given set with the intersection ∩ with ∅ as absorption con-
stant; Boolean algebras with two binary operations, where each operation is commutative and has a zero
element. This justifies the interest in anti-unification over theories with C- and a-symbols.

Contribution. This paper discusses current progress in extending the anti-unification algorithm modulo
absorption theories given in [6], allowing the inclusion of commutative symbols. The proposed algorithm
deals with all possible combinations, that is, it allows theories with C-symbols, a-symbols, and aC-
symbols (i.e., symbols that satisfy both absorption and commutativity properties).

Organization. Section 2 presents the required background on anti-unification. Section 3 introduces the
set of inference rules giving the procedure to solve anti-unification problems modulo aC. The procedure
works over configurations that include unsolved problems, solved problems, a substitution, and a delayed
set. This section proves the termination and soundness of the algorithm. Section 4 discusses how the
delayed set computed in final configurations is used to build abstractions that are used with the final
substitution and the solved problem to construct the least general generalizations. This section also
drafts the analysis of the completeness of the algorithm. Finally, Section 5 shortly concludes and presents
possible future paths of research.

2 Preliminaries

Let V be a countable set of variables and F a set of function symbols, each associated with a fixed arity.
Additionally, we assume F contains a special constant ⋆, referred to as the wild card. The set of terms
derived from the sets mentioned above is denoted by T (F ,V), whose members are constructed using
the grammar t ∶∶= x ∣ f (t1, . . . ,tn), where x ∈ V and f ∈ F with arity n ≥ 0. When n = 0, f is called a
constant. Constant and function symbols, terms, and variables are denoted by lower-case letters of the
first, second, third, and fourth quarter of the alphabet, respectively (e.g., a,b, . . .; f ,g, . . .; r,s, . . .; w,x, . . .).
The set of variables occurring in a term t is denoted by var(t). The size of a term is defined inductively
as: size(x) = 1, and size(f (t1, . . . ,tn)) = 1+∑n

i=1 size(ti). The head of a term t is defined as head(x) = x
and head(f (t1, . . . ,tn)) = f , for n ≥ 0.

The set of positions of a term t, denoted as pos(t), is the set of sequences of positive integers, defined
as pos(x) = {λ}, pos(f (t1, . . . ,tn)) = {λ}∪⋃n

i=1{i.p ∣ p ∈ pos(ti)}, where λ denotes the empty string. The
prefix order ⊑ over positions is defined as usual. The subterm of s at position p ∈ pos(s), s∣p, is defined
recursively as s∣λ = s, and f (s1, . . . ,sn)∣i⋅q = si∣q, for 1 ≤ i ≤ n.

A substitution is a function σ ∶ V → T (F ,V) such that σ(x) ≠ x for only finitely many variables.

D. Cerna, A.F. González Barragán, M. Ayala-Rincón, and T. Kutsia 3

Substitutions are denoted by lower-case Greek letters. The domain of σ , denoted as dom(σ), is the set
of variables such that that σ(x)≠ x. Substitutions are extended to terms as usual. The range of σ , denoted
ran(σ), is the set of terms {σ(x) ∣ x ∈ dom(σ)}. The set of variables in ran(σ) is denoted as rvar(σ).
We refer to a ground term t if var(t) = ∅ and a ground substitution σ if for all t ∈ ran(σ), t is ground.
Postfix notation denotes the application of a substitution σ to the term t: tσ . The identity substitution,
denoted by id, is such that dom(id) =∅.

A substitution σ can be described as a finite sets of bindings as {x↦ xσ ∣ x ∈ dom(σ)}. The compo-
sition of substitutions ρ and σ , (ρ ○σ), is written σρ . Substitution application satisfies x(σρ) = (xσ)ρ

for each x ∈V . The restriction of a substitution σ to a set of variables V , denoted by σ ∣V , is a substitution
defined as σ ∣V (x) = σ(x) for all x ∈V and σ ∣V (x) = x otherwise.

Definition 2.1 (Equational theory [13]). An equational theory TE is a class of algebraic structures with a
set of equational axioms E over T (F ,V).

The relation {(s,t) ∈ T (F ,V)×T (F ,V) ∣ E ⊧ (s,t)} induced by a set of equalities E gives the set of
equalities satisfied by all structures in the theory of E. We will use the notation s ≈E t for (s,t) belonging
to this set. Also, we will identify TE with the set of axioms E. Groups, monoids, and semirings are
examples of equational theories.

The focus of this work is anti-unification modulo equational theories that may include commutative
symbols, for short C-symbols, with axioms for commutativity, { f (x,y) ≈ f (y,x)}, absorption symbols,
for short a-Symbols, with absorption axioms, { f (x,ε f) ≈ ε f , f (ε f ,x) ≈ ε f }, as well as symbols that are
both commutative and absorption, for short aC-symbols, with axioms { f (ε f ,x) ≈ ε f , f (x,y) ≈ f (y,x)}.
Symbols f and ε f are called related a-symbols. Theories with only a-symbols or only C-symbols or only
aC-symbols are called a-theories or C-theories or aC-theories, respectively. Theories that combine these
classes of symbols are distinguished by referring to the specific properties; for instance, an (a)(C)(aC)-
theory contains different symbols holding the three sets of axioms. When no confusion arises, we will
refer to such theories as aC-theories. Also, when no confusion arises, we will say that an aC-symbol is
a C-symbol or an a-symbol.

Including a-, C-, and aC-symbols requires some adaptations in the notions of positions and subterms.
For terms s and t, the set of C-relative equal positions of t and s or, for short, C-positions, denoted as
posC(s,t) is the set that contains exactly all pairs of positions (p,q), such that p ∈ pos(s) and q ∈ pos(t)
and ∣p∣ = ∣q∣, and for all p′ ⊏ p and q′ ⊏ q with ∣p′∣ = ∣q′∣, head(s∣p′) = head(t ∣q′), and if head(s∣p′) is
neither a C-symbol nor an aC-symbol (for short, C-symbol), then p′.i ⊑ p and q′.i ⊑ q, for (the same)
i = 1,2, but if head(s∣p′) is a C-symbol, then p′.i ⊑ p and q′. j ⊑ q, for (maybe distinct) 1 ≤ i, j ≤ 2.

Example 2.1. [C-relative equal positions] Let f and h be an aC-symbol and a syntactic unary symbol,
respectively. Consider the terms s = h(f (f (a,x),b)) and t = h(f (f (y,z), f (a,a))). Then

posC(s,t) = {
(λ ,λ),(1,1), (1.1,1.1), (1.1,1.2), (1.2,1.1), (1.2,1.2), (1.1.1,1.1.1), (1.1.1,1.1.2),
(1.1.1,1.2.1),(1.1.1,1.2.2),(1.1.2,1.1.1),(1.1.2,1.1.2),(1.1.2,1.2.1),(1.1.2,1.2.2)

}

A collapsable position and subterm of a term s, is any position p ∈ pos(s) and the associated subterm
s∣p, such that head(s∣p) = f , an a-symbol, and there exists p′ such that p ⊏ p′, and s∣p′ is a variable, say
x, and for all q with p ⊏ q ⊏ p′, head(s∣q) = f . Notice that instantiating x with ε f , the subterm at position
p collapses: s∣p{x↦ ε f } ≈a ε f .

Example 2.2. [Collapsable Positions and Subterm] Following Example 2.1, the collapsable positions
of s and t are the positions 1,1.1 ∈ pos(s), and 1,1.1 ∈ pos(t), respectively. Additionally, the associated
subterms are those in the collapsable positions; for example, t ∣1.1 = f (y,z) is one of them, since t ∣1.1{y↦
ε f } ≈a ε f . Observe that 1.2 is not a collapsable position of t.

D. Cerna, A.F. González Barragán, M. Ayala-Rincón, and T. Kutsia 4

For any (p,q) ∈ posC(s,t), such that {ε f , f} = {head(s∣p),head(t ∣q)}, (p,q) is said to be a pair of
absorption positions regarding the symbol f .

The set of absorption positions regarding symbol f is denoted as ap f (s,t).

Example 2.3 (Absorption Positions). Let s = g(g(ε f ,b),h(f (b,c))) and t = g(h(ε f),g(a, f (b,a))) be
terms, where g and f are a C-symbol and an aC-symbol, respectively, being f and ε f related a-symbols.
Then, ap f (s,t) = {(1.1,2.2),(2.1,1.1)}.

Definition 2.2 (E-generalization, ⪯E). The generalization relation of the theory induced by E holds for
terms r,s ∈ T (F ,V), written r ⪯E s, if there exists a substitution σ such that rσ ≈E s. In this case, we say
that r is more general than s modulo E. If r ⪯E s and r ⪯E t, we say that r is an E-generalization of s and
t. The set of all E-generalizations of s and t is denoted as GE(s,t).

Example 2.4 (aC-generalization, ⪯aC). Consider f an aC-symbol, then the term r = f (b, f (x,a)) is an
aC-generalization of the terms f (f (a,a),b) and ε f since r ⪯aC f (f (a,a),b), and r ⪯aC ε f .

Indeed, r{x↦ a} ≈aC f (f (a,a),b), and r{x↦ ε f } = f (b, f (ε f ,a)) ≈aC ε f .

Definition 2.3 (Minimal complete set of E-generalizations (mcsgE)). The minimal complete set of E-
generalizations of the terms s and t, denoted as mcsgE(s,t), is a subset of GE(s,t) satisfying:

1. For each r ∈ GE(s,t) there exists r′ ∈mcsgE(s,t) such that r ⪯E r′. (Completeness)

2. If r,r′ ∈mcsgE(s,t) and r ⪯E r′, then r = r′. (Minimality)

Example 2.5. Continuing Example 2.4. The minimal complete set of aC-generalizations of the terms
f (f (a,a),b) and ε f is given as

mcsgaC(f (f (a,a),b),ε f) = { f (f (x,a),b), f (f (x,x),b), f (f (a,a),x)}

Definition 2.4 (Anti-unification type). The anti-unification type of an equational theory induced by E
may have one of the following types:

• Unitary: mcsgE(s,t) exists for all s,t ∈ T (F ,V) and is always singleton.

• Finitary: mcsgE(s,t) exists and is finite for all s,t ∈ T (F ,V), and there exist s′,t′ ∈ T (F ,V) for
which 1 < ∣mcsgE(s

′,t′)∣ <∞.

• Infinitary: mcsgE(s,t) exists for all s,t ∈ T (F ,V), and mcsgE(s
′,t′) is infinite for some terms

s′,t′ ∈ T (F ,V).

• Nullary: for some s,t ∈ T (F ,V), mcsgE(s,t) does not exist.

3 A Sound Algorithm for (a)(C)(aC)-Anti-Unification

In this section, the algorithm AUNIF is described through the inferences rules in Table 1, which com-
putes generalizations for terms in a-, C-, and aC-theories and their combinations. AUNIF transforms
quadruples called configurations consisting of an unsolved (active), and a solved (store) set of labelled
pair of terms, and a substitution that expresses the anti-unifier under construction. The other component
is an abstraction set, here called delayed set, that as in the case of a-theories needs to be considered (cf.
[6]).

An anti-unification triple (AUT) is a triple of the form s ≜x t, where x ∈ V , called the label of the
AUT, and s,t ∈ T (F ,V). Given a set A of AUTs, labels(A) = {x ∣ s ≜x t ∈ A}. A set of AUTs is valid if
its labels are pairwise disjoint. We extend the notion of size to AUTs and sets of AUTs as the sum of

D. Cerna, A.F. González Barragán, M. Ayala-Rincón, and T. Kutsia 5

the sizes of the terms in the AUTs. The wild card plays an integral role in our algorithm for computing
generalizations when some absorption constant is expanded. In particular, an AUT is referred to as wild
if the wild card is either the left or right side. The algorithm aims to compute a set of terms generalizing
the input AUT and a set of solved AUTs from which we can compute how such terms generalize the
input AUT.

Definition 3.1 (Solved AUT). An AUT s ≜x t is solved over E if head(s) /= head(t), and for a- and
aC-theories, head(s) and head(t) are not related a-symbols, and s ≜x t is not wild.

In the next sections, the inference rules are applied over configurations defined below.

Definition 3.2 (Configuration). A configuration is a quadruple of the form ⟨A;S;D;θ⟩, where:

• A is a valid set of AUTs; (Active set)

• S is a valid set of solved AUTs; (Store)

• D is a valid set of wild AUTs; (Delayed set)

• θ is a substitution such that rvar(θ) = labels(A)∪ labels(S)∪ labels(D). (Anti-unifier)

In addition, the following conditions hold:

• labels(A), labels(S), labels(D), and dom(θ) are pairwise disjoint, and

• all terms occurring in a configuration are in their a-normal forms: an absorption constant does not
occur as the argument to its a-symbol.

The inferences rules in Table 1 can be used to compute generalizations for E-theories where E may
contain a-, C-, and aC-symbols. These rules will be referred to as follows: Decompose (

Dec
Ô⇒), Solve

(
Sol
Ô⇒), Commutative (

Com
Ô⇒), Expansions for Left Absorption, (

ExpLA1
Ô⇒and

ExpLA2
Ô⇒), Expansions for Right Ab-

sorption (
ExpRA1
Ô⇒and

ExpRA2
Ô⇒), Expansion Absorption in Both sides (

ExpBA1
Ô⇒) and (

ExpBA2
Ô⇒), and Merge (

Mer
Ô⇒).

The algorithm AUNIF exhaustively applies all possible inference rules to each configuration.
By C Ô⇒ C′ we denote the application of some inference rule of Table 1 to C resulting in C′. By

CÔ⇒
∗
C
′ we denote a finite sequence of inference rule applications starting at C and ending with C′. In

both cases we say C′ is derived from C. An initial configuration is a configuration of the form ⟨A;∅;∅; ι⟩,
where ι = {fA(x)↦ x ∣ x ∈ labels(A)} with fA ∶ V → (V ∖ labels(A)) being a bijection over variables. A
configuration C is referred to as final if no inference rule applies to C.

The set of final configurations derived from an initial configuration C is denoted by AUNIF(C).
The following lemma and theorem state that the algorithm AUNIF preserves configurations and is

terminating.

Lemma 3.1 (Configuration Preservation). If C is a configuration and CÔ⇒ C′, then C′ is a configuration.

Proof. According to the rules in Table 1, we can have the following two cases:

• A rule removes an AUT s ≜x t from the active set of C. Then either s ≜x t occurs in the store of
C
′, or the anti-unifier component of C′ is the composition of the anti-unifier component of C with
{x↦ r}, where var(r) are fresh variables labelling newly added AUTs in the active and delayed
sets of C′.

• A rule removes an AUT s ≜x t from the store of C. Then the store of C′ is a subset of the store of
C and the anti-unifier component of C′ is the composition of the anti-unifier component of C with
{x↦ y}, where y is a label of an AUT in the store of C such that x ≠ y.

D. Cerna, A.F. González Barragán, M. Ayala-Rincón, and T. Kutsia 6

(
Dec
Ô⇒)

⟨{ f (s1, . . . ,sn) ≜x f (t1, . . . ,tn)}⊍A;S;D;θ⟩

⟨{s1 ≜y1 t1, . . . ,sn ≜yn tn}∪A;S;D;θ{x↦ f (y1, . . . ,yn)}⟩

where f is an n-ary symbol, n ≥ 0, and y1, . . . ,yn are fresh variables.

(
Com
Ô⇒)

⟨{ f (s1,s2) ≜x f (t1,t2)}⊍A;S;D;θ⟩

⟨{s1 ≜y1 t2,s2 ≜y2 t1}∪A;S;D;θ{x↦ f (y1,y2)}⟩

for f a C- or aC-symbol and y1,y2 fresh variables.

(
Sol
Ô⇒)

⟨{s ≜x t}⊍A;S;D;θ⟩

⟨A;{s ≜x t}∪S;D;θ⟩

where head(s) ≠ head(t) and they are not related a-symbols.

(
Mer
Ô⇒)

⟨∅;{s1 ≜x t1,s2 ≜y t2}∪S;D;θ⟩

⟨∅;{s2 ≜y t2}∪S;D;θ{x↦ y}⟩
where s1 ≈E s2 and t1 ≈E t2.

In the following rules, f is an a-symbol and y1,y2 are fresh variables:

(
ExpLA1
Ô⇒)

⟨{ε f ≜x f (t1,t2)}⊍A;S;D;θ⟩

⟨{ε f ≜y1 t1}∪A;S;{⋆ ≜y2 t2}∪D;θ{x↦ f (y1,y2)}⟩

(
ExpLA2
Ô⇒)

⟨{ε f ≜x f (t1,t2)}⊍A;S;D;θ⟩

⟨{ε f ≜y2 t2}∪A;S;{⋆ ≜y1 t1}∪D;θ{x↦ f (y1,y2)}⟩

(
ExpRA1
Ô⇒)

⟨{ f (s1,s2) ≜x ε f }⊍A;S;D;θ⟩

⟨{s1 ≜y1 ε f }∪A;S;{s2 ≜y2 ⋆}∪D;θ{x↦ f (y1,y2)}⟩

(
ExpRA2
Ô⇒)

⟨{ f (s1,s2) ≜x ε f }⊍A;S;D;θ⟩

⟨{s2 ≜y2 ε f }∪A;S;{s1 ≜y1 ⋆}∪D;θ{x↦ f (y1,y2)}⟩

(
ExpBA1
Ô⇒)

⟨{ε f ≜x ε f }⊍A;S;D;θ⟩

⟨A;S;{ε f ≜y1 ⋆, ⋆ ≜y2 ε f }∪D;θ{x↦ f (y1,y2)}⟩

(
ExpBA2
Ô⇒)

⟨{ε f ≜x ε f }⊍A;S;D;θ⟩

⟨A;S;{⋆ ≜y1 ε f , ε f ≜y2 ⋆}∪D;θ{x↦ f (y1,y2))}⟩

Table 1: Inference rules for the AUNIF algorithm for (a)(C)(aC)-theories.

In both cases, the properties of a configuration are preserved.

Theorem 3.1 (Termination). AUNIF is terminating for any configuration C.

Proof. Let C = ⟨A;S;D;θ⟩. We define size(C) ∶= (size(A),size(S)) and compare these pairs lexicograph-
ically. This ordering is well-founded since the size of a set of AUTs is a natural number. Observe that
if CÔ⇒ C′ then size(C) > size(C′). Thus, every sequence of rule applications terminates. Furthermore,
any configuration can be transformed by rules from Table 1 into finitely many ways. Thus, by König’s
Lemma, AUNIF(C) is finite and finitely computable.

The next proof of soundness is valid for (a)(C)(aC)-theories.

Theorem 3.2 (Soundness). Let ⟨A0;S0;D0;θ0⟩Ô⇒
∗
⟨∅;Sn;Dn;θn⟩ be a derivation to a final configura-

tion. Then for all s ≜x t ∈ A0∪S0, xθn ∈ GE(s,t), for E any combination of C, a, and aC.

D. Cerna, A.F. González Barragán, M. Ayala-Rincón, and T. Kutsia 7

Proof. We proceed by induction over the derivation length.

Basecase. If the derivation has length 0, then it starts with a final configuration implying that A0 =∅ and

for all s ≜x t ∈ S0, since x ∉ dom(θ0), xθ0 = x ∈ GE(s,t).
Stepcase. Now consider our derivation having the following form:

⟨A0;S0;D0;θ0⟩Ô⇒ ⟨A1;S1;D1;θ1⟩Ô⇒
n
⟨∅;Sn+1;Dn+1;θn+1⟩ (1)

We assume for the induction hypothesis (IH) that for derivations of the form

⟨A1;S1;D1;θ1⟩Ô⇒
n
⟨∅;Sn+1;Dn+1;θn+1⟩,

the theorem holds and show that the theorem hold for derivations of the form presented in Equation 1.
We continue the proof considering any options for the transition from ⟨A0;S0;D0;θ0⟩ to ⟨A1;S1;D1;θ1⟩.

1. (Dec). Assume that the derivation is of the form:

⟨{ f (s1, . . . ,sm) ≜y f (t1, . . . ,tm)}⊍A′;S0;D0;θ0⟩
Dec
Ô⇒

⟨{s1 ≜x1 t1, . . . ,sm ≜xm tm}∪A′;S1;D1;θ1⟩Ô⇒
n
⟨∅;Sn+1;Dn+1;θn+1⟩

where θ1 = θ0{y↦ f (x1, . . . ,xm)}. By the Induction hypothesis, we know that for all 1 ≤ i ≤ m,
xiθn+1 ∈ GE(si,ti) implying that

f (x1, . . . ,xm)θn+1 ∈ GE(f (s1, . . . ,sm), f (t1, . . . ,tm)).

2. (Sol). Assume that the derivation is of the form:

⟨{s ≜y t}⊍A′;S0;D0;θ0⟩
Sol
Ô⇒ ⟨{A′;S1;D1;θ1}⟩Ô⇒

n
⟨∅;Sn+1;Dn+1;θn+1⟩,

where S1 = {s ≜y t}∪S0. By IH, θn+1 generalizes all the AUTs with labels in S1. Thus, yθn+1 ∈

GE(s,t).

3. (Com). Assume that the derivation is of the form:

⟨{ f (s1,s2) ≜y f (t1,t2)}⊍A′;S0;D0;θ0⟩
Com
Ô⇒

⟨{s1 ≜x1 t2,s2 ≜x2 t1}∪A′;S1;D1;θ1⟩Ô⇒
n
⟨∅;Sn+1;Dn+1;θn+1⟩

where θ1 = θ0{y↦ f (x1,x2)}. By the Induction hypothesis, we know that x1θn+1 ∈ GE(s1,t2) and
x2θn+1 ∈ GE(s2,t1), implying that

f (x1,x2)θn+1 ∈ GE(f (s1,s2), f (t1,t2)).

4. (Mer) Assume that the derivation is of the form:

⟨∅;{s1 ≜y t1,s2 ≜z t2}∪S′;D0;θ0⟩
Mer
Ô⇒

⟨∅;{s2 ≜z t2}∪S′;D1;θ1⟩Ô⇒
n
⟨∅;Sn+1;Dn+1;θn+1⟩.

Notice that θ1 = θ0{y↦ z}, where z is the label of the AUT {s2 ≜z t2} ∈ S0. By IH, zθn+1 ∈GE(s2,t2)
implying that yθn+1 = y{y↦ z}θn+1 ∈ GE(s1,t1), since s1 ≈E s2, t1 ≈E t2.

D. Cerna, A.F. González Barragán, M. Ayala-Rincón, and T. Kutsia 8

5. (ExpLA1). Assume that the derivation is of the form:

⟨{ε f ≜y f (s,t)}⊍A′;S0;D0;θ0⟩
ExpLA1
Ô⇒

⟨{ε f ≜x1 s}∪A′;S1;D1;θ1⟩Ô⇒
n
⟨∅;Sn+1;Dn+1;θn+1⟩

where D1 = {⋆ ≜x2 t}∪D0 and θ1 = θ0{y↦ f (x1,x2)}. By the IH, all the AUTs in {ε f ≜x1 s}∪A′ are
generalized by the substitution θn+1, thus, x1θn+1 ∈ GE(ε f ,s). Furthermore, since x2 ∈ labels(D)
then x2θn+1 = x2 and x2 ⪯E t. We can build the generalization yθn+1 = f (x1θn+1,x2θn+1). Observe
that f (x1θn+1,x2θn+1) = f (x1θn+1,x2) ∈ GE(f (ε f ,t), f (s,t)) and since f (ε f ,t) ≈E ε f , we get that
yθn+1 belongs to GE(ε f , f (s,t)).

6. The analysis of the rules (ExpLA2), (ExpRA1) and (ExpRA2) is analogous to the previous one.

7. (ExpBA1). Assume that the derivation is of the form:

⟨{ε f ≜y ε f }⊍A′;S0;D0;θ0⟩
ExpBA1
Ô⇒

⟨A′;S1;D1;θ1⟩Ô⇒
n
⟨∅;Sn+1;Dn+1;θn+1⟩

where D1 = {ε f ≜x1 ⋆,⋆ ≜x2 ε f }∪D0 and θ1 = θ0{y↦ f (x1,x2)}. Notice, xiθn+1 = xi and xi ⪯E ε f , for
i ∈ {1,2}. This implies that yθn+1 = f (x1θn+1,x2θn+1) = f (x1,x2) ∈ GE(ε f ,ε f). The case (ExpBA2)
is analogous.

Including C-symbols in a-theories gives rise to new generalizations not considered before in [6] as
shown in the Example below.

Example 3.1. Let ⟨{g(g(a,b),a) ≜x g(b,g(b,b))};∅;∅; ι⟩ be an initial configuration, where g is a C-
symbol. The rules (Dec) and (Com) can be applied, giving rise to three different derivations. The
first derivation, which starts with the rule (Dec), computes the generalization g(w1,w2). Rule (Dec)
generates the active set {g(a,b) ≜w1 b,a ≜w2 g(b,b)} and the anti-unifier {x↦ g(w1,w2)}. By exhaustive
application of the rule (Com), two other derivations are computed, coincidentally leading to the same
final configuration.

Derivation 2: ⟨{g(g(a,b),a) ≜x g(b,g(b,b))};∅;∅; ι⟩
Com
Ô⇒

⟨{g(a,b) ≜w g(b,b),a ≜z b};∅;∅;{x↦ g(w,z)}⟩
Dec
Ô⇒

⟨{a ≜y1 b,b ≜y2 b,a ≜z b};∅;∅;{x↦ g(g(y1,y2),z), . . .}⟩
Dec
Ô⇒

⟨{a ≜y1 b,a ≜z b};∅;∅;{x↦ g(g(y1,b),z), . . .}⟩
Sol ×2
Ô⇒

⟨∅;{a ≜y1 b,a ≜z b};∅;{x↦ g(g(y1,b),z), . . .}⟩
Mer
Ô⇒

⟨∅;{a ≜z b};∅;{x↦ g(g(z,b),z), . . .}⟩

Derivation 3: ⟨{g(g(a,b),a) ≜x g(b,g(b,b))};∅;∅; ι⟩
Com
Ô⇒

⟨{g(a,b) ≜w g(b,b),a ≜z b};∅;∅;{x↦ g(w,z)}⟩
Com
Ô⇒

D. Cerna, A.F. González Barragán, M. Ayala-Rincón, and T. Kutsia 9

⟨{a ≜y3 b,b ≜y4 b,a ≜z b};∅;∅;{x↦ g(g(y3,y4),z), . . .}⟩
Dec
Ô⇒

⟨{a ≜y3 b,a ≜z b};∅;∅;{x↦ g(g(y3,b),z), . . .}⟩
Sol ×2
Ô⇒

⟨∅;{a ≜y3 b,a ≜z b};∅;{x↦ g(g(y3,b),z), . . .}⟩
Mer
Ô⇒

⟨∅;{a ≜z b};∅;{x↦ g(g(z,b),z), . . .}⟩

Hence, the generalization computed through these derivations is given by g(g(z,b),z). This general-
ization is less general than the generalization g(w1,w2) computed in the first derivation.

4 Abstraction Computation and Completeness

In this section, we construct the abstraction set and substitutions from the store S and the delayed set D
as in [6]. This set builds less general generalizations after applying AUNIF when a-symbols are involved
in the AUTs and D ≠ ∅. If C-symbols are included, the set is defined using the relation induced by the
axioms of aC-symbols.

Definition 4.1 (Abstraction set). Let t be a term in a-normal form, and σ be a substitution whose range
is in a-normal form. For E equal to a or aC, the set defined below is the abstraction set of t with respect
to σ over E.

↑(t,σ) ∶= {r ∣ rσ ≈E t, r is in an a-normal form and var(r) ⊆ dom(σ)}.

In words, ↑(t,σ) is the set of all those E-generalizations of t, whose σ -instances equal t, and that
may contain only variables from dom(σ), for E equal to a or aC.

Example 4.1. Consider the term f (a,h(a)) with f an aC-symbol, h a syntactic symbol, and the substi-
tution σ = {x↦ a}. Then the abstraction set of f (a,h(a)) with respect to σ over aC is:

↑(f (a,h(a)),σ) = { f (a,h(a)), f (a,x), f (x,a), f (x,h(x)), f (h(x),x), f (x,h(a)), f (h(a),x)}.

Given a configuration ⟨A;S;D;θ⟩, the AUTs contained in D are of the form ⋆ ≜x t or t ≜x ⋆ for some
t. The labels occurring in D also happen in the images of θ . Here, we should interpret ⋆ as any term.
Essentially, the abstraction substitution defined below extends θ by replacing the labels of D with a
generalization of the non-wildcard term of the associated AUT and some arbitrary term. While this is
sufficient for constructing more specific generalizations, we consider restricting the variables occurring
in the introduced terms.

Definition 4.2 (Abstraction substitutions). Let C = ⟨A;S;D;θ⟩ be a configuration such that D ≠ ∅. A
substitution τ is called an abstraction substitution of C if dom(τ) = labels(D), and for each y ∈ dom(τ)
we have yτ ∈ ↑y(D,S), where

↑y(D,S) ∶= {
↑(t,{x↦ r ∣ l ≜x r ∈ S, for some l}) if ⋆ ≜y t ∈D,
↑(s,{x↦ l ∣ l ≜x r ∈ S, for some r}) if s ≜y ⋆ ∈D.

The set of abstraction substitutions of C is denoted by Ψ(D,S).

Corollary 4.1. Let ⟨A;S;D;θ⟩ be a configuration such that D ≠ ∅. Then for any y ∈ labels(D) and
τ ∈Ψ(T,S), var(yτ) ⊆ labels(S).

D. Cerna, A.F. González Barragán, M. Ayala-Rincón, and T. Kutsia 10

In contrast with [6], allowing C- and a-symbols gives rise to new generalizations. The abstraction set
enables the computation of all the possibilities for any interpretation of ⋆ in the expansion. The Example
below shows how to obtain a generalization from a final configuration and the abstraction set.

Example 4.2. Let g(ε f , f (a,a)) and g(ε f , f (g(a,a),a)) be terms modulo aC with g a C-symbol and f
aC-symbol. One of the possible derivations:

Derivation 1: ⟨{g(ε f , f (a,a)) ≜x g(ε f , f (g(a,a),a))};∅;∅; ι⟩
Com
Ô⇒

⟨{ε f ≜y1 f (g(a,a),a), f (a,a) ≜y2 ε f };∅;∅;{x↦ g(y1,y2)}⟩
ExpLA2
Ô⇒

⟨{ε f ≜w2 a, f (a,a) ≜y2 ε f };∅;{⋆ ≜w1 g(a,a)};{x↦ g(f (w1,w2),y2), . . .}⟩
ExpRA2
Ô⇒

⟨{ε f ≜w2 a,a ≜z2 ε f };∅;{⋆ ≜w1 g(a,a),a ≜z1 ⋆};{x↦ g(f (w1,w2), f (z1,z2)), . . .}⟩
Sol ×2
Ô⇒

⟨∅;{ε f ≜w2 a,a ≜z2 ε f };{⋆ ≜w1 g(a,a),a ≜z1 ⋆};{x↦ g(f (w1,w2), f (z1,z2)), . . .}⟩

For this final configuration, it is possible to find the abstraction set for related variables w1 and z1 in the
final delayed set, using the substitutions σ = {w2↦ ε f ,z2↦ a} and ρ = {w2↦ a,z2↦ ε f }.

↑w1
(D,S) = ↑(g(a,a),ρ) = {g(a,a),g(a,w2),g(w2,a),g(w2,w2)} and ↑z1

(D,S) = ↑(a,σ) = {a,z2}

Then, the generalization g(f (g(w2,a),w2), f (z2,z2)) of the initial terms is obtained by the substitu-
tion {w1↦ g(w2,a),z1↦ z2} ∈Ψ(D,S), where D and S are the final delayed and store sets respectively.

Lemma 4.1. Let ⟨A0;S0;D0;θ0⟩Ô⇒
∗
⟨∅;Sn;Dn;θn⟩ be a derivation. Then for all ⋆ ≜u t ∈Dn (resp. for

all s ≜u ⋆ ∈Dn) and τ ∈Ψ(Dn,Sn), there exists a term r such that uτ ∈ GaC(r,t) (resp. uτ ∈ GaC(r,s)).

Proof. Let η be a ground substitution with dom(η) = var(uτ). Then r = uτη .

Theorem 4.1. Let ⟨A0;S0;D0;θ0⟩Ô⇒
∗
⟨∅;Sn;Dn;θn⟩ be a derivation to a final configuration and s ≜x t ∈

A0∪S0. Then for all τ ∈Ψ(Dn,Sn), xθnτ ∈ GaC(s,t).

Proof. From Theorem 3.2, xθn ∈ GaC(s,t). Furthermore, every u ∈ labels(Dn) is unique, only occurs
once in xθn, and uθnτ = uτ . Notice that var(xθn) = labels(Sn) ∪ labels(Dn), since any variable in
labels(Sn) is generalization of the solved problems and from Lemma 4.1 any application of τ in a variable
in labels(Dn) is generalization of the relative subterms of s and t, this implies that xθnτ ∈ GaC(s,t).

Theorem 4.2 (Completeness). Let r ∈ GaC(s,t). Then for all configurations ⟨A;S;D;θ⟩ such that s ≜x

t ∈ A∪S there exist a final configuration ⟨∅;S′;D′;θ
′
⟩ ∈ AUNIF(⟨A;S;D;θ⟩) and τ ∈Ψ(D′,S′) such that

r ⪯aC xθ
′
τ .

Proof. (Draft) The proof is by structural induction over r.

Basecase
1. Let r be a variable. For any case for s and t, the algorithm produces a more particular generalization

xθ
′′

τ than r.

2. Let r be a constant (not absorption constant). Then s = t = r and from a configuration ⟨A;S;D;θ⟩

where s ≜x t ∈ A∪S, it is possible to reach a configuration ⟨A′;S;D;θ
′
⟩ using the

Dec
Ô⇒ rule such

that xθ
′
= s = t = r. Thus, for any final configuration ⟨∅;S′′;D′′;θ

′′
⟩ ∈ AUNIF(⟨A′;S′;D′;θ

′
⟩),

r ⪯aC xθ
′′

τ trivially follows.

D. Cerna, A.F. González Barragán, M. Ayala-Rincón, and T. Kutsia 11

Stepcase

1. r = g(r1, . . . ,rn), s = g(s1, . . . ,sn), and t = g(t1, . . . ,tn); and ri is a generalization of si ≜yi ti for
1 ≤ i ≤ n. From ⟨A;S;D;θ⟩ we can reach ⟨A′;S′;D′;θ

′
⟩, using the (Dec) rule, such that si ≜yi ti ∈ A′.

Observe, if for all 1 ≤ i < j ≤ n, var(ri)∩var(r j) = ∅, then the generalizations r∗1 , . . . ,r
∗
n , resulting

from the IH provide a more particular generalization g(r∗1 , . . . ,r
∗
n). Otherwise, Let V ⊆ var(r) such

that for z ∈V there exist 1 ≤ i < j ≤ n such that z ∈ var(ri)∩var(r j). For any z ∈V with z = r∣p, there
are three cases to consider when assembling solutions (see Figure 1):

(i) There exist (p,q1) ∈ posC(r,s) and (p,q2) ∈ posC(r,t), such that both the subterms s∣q1 , and
t ∣q2 cannot be equal to the same a-constant symbol, and are generalized by z. We will consider
final configurations ⟨∅;S∗;D∗;θ

∗
⟩ ∈ AUNIF(⟨{s∣q1 ≜x′ t ∣q2};∅;∅;ι⟩) and substitutions τ

∗
∈

Ψ(D∗,S∗). We will use substitutions θ
∗
τ
∗ to assemble generalizations obtained for multiple

occurrences of z in the different arguments of r.
(ii) If there does not exist (p,_) ∈ posC(r,s), but there exists (p,q) ∈ posC(r,t), then, for some

a-symbol f , there exists (q1,q2) ∈ ap f (s,t), such that q2 ⊏ q, where s∣q1 = ε f , head(t ∣q2) = f .
For p′ ⊏ p such that (p′,q2) ∈ posC(r,t), r∣p′ should be a collapsing subterm of r. Then
as in the case above, we consider the final configuration ⟨∅;S∗;D∗;θ

∗
⟩ ∈ AUNIF(⟨{ε f ≜x′

t ∣q};∅;∅;ι⟩) and τ
∗
∈Ψ(D∗,S∗) to align the instantiation of z in the multiple occurrences

into r to the assemble of the generalization. Since r∣p′ is a collapsing subterm, z may be a vari-
able collapsing this subterm (maybe in another position different from p). But the collapse
of r∣p′ will depend on the occurrences of other variables and how z should be instantiated in
other subproblems generated by the application of (Dec).
Symmetric treatment is applied to the case, where s and t interchange roles.

(iii) The third case happens when neither exists (p,_) ∈ posC(r,s) nor (p,_) ∈ posC(r,t). Let
p′ and p′′ the longest prefixes of p such that (p′,q1) ∈ posC(r,s) and (p′′,q2) ∈ posC(r,t).
Then r∣p′ and r∣p′′ should be collapsing subterms heading by a-function symbols, say f
and g. Thus, (p′,q1) ∈ ap f (r,s), and (p′′,q2) ∈ ap f (r,t). W.l.o.g., assuming that p′ ⊑ p′′,
we consider the final configuration ⟨∅;S∗;D∗;θ

∗
⟩ ∈ AUNIF(⟨{s∣q1 ≜x′ t ∣q′2};∅;∅; ι⟩), where

(q1,q′2) ∈ posC(s,t). As in the previous cases, a substitution τ
∗
∈Ψ(D∗,S∗) will be used to

align the instantiation of z in the multiple occurrences into r to assemble the generalization.
As in the previous case, z may be the variable collapsing any of the subterms r∣p′ and r∣p′′ (it
may have several occurrences in r∣p′), but, in general, the collapsing of both these subterms
will depend on other variables and how z should be instantiated in other subproblems.

By the IH, there exists a final configuration ⟨∅;S′′;D′′; θ
′′
⟩ ∈ AUNIF(⟨A′;S′;D′;θ

′
⟩) and τi ∈

Ψ(D′′,S′′) such that ri ⪯aC yiθ
′′

τi where 1 ≤ i ≤ n. Note, we can choose the same configura-
tion ⟨∅;S′′;D′′;θ

′′
⟩ for all AUTs si ≜yi ti as the algorithm produces all combinations of solutions

to the subproblems. Furthermore, we can choose ⟨∅;S′′;D′′;θ
′′
⟩ such that S∗ ⊆ S′′ and D∗ ⊆ D′′

modulo label renaming, where S∗ and D∗ are the set fo AUTs mentioned in the cases mentioned
above. Now, we define γi as the substitution such that riγi ≈aC yiθ

′′
τi. By the above construction,

we can safely assume for all z ∈ var(r1)∩var(r2) such that z has not been replaced by an absorp-
tion constant, that zγi ≈aC zθ

∗
τ
∗ as there exist AUTs corresponding to S∗ and D∗ in S′′ and D′′,

respectively.

Now let µ be a substitution and r′i (1 ≤ i ≤ n) be terms such that for all 1 ≤ i ≤ n, ri = r′i µ and
g(r′1, . . . ,r

′
n) ⪯aC g(y1θ

′′, . . . ,ynθ
′′
). If µ is the identity substitution, then we are done. Otherwise,

we can use µ to construct a τ ∈Ψ(D′′,S′′). Additionally, we need to consider the τi ∈Ψ(D′′,S′′)

D. Cerna, A.F. González Barragán, M. Ayala-Rincón, and T. Kutsia 12

Case (i)
r s t

p q1 q2
z

Case (ii)

p′

p

q1 q2

q

r s t

ε f

z

Case (iii)

p′

p′′

p

q1 q′2

q2

r s t

ε f

εg

z

Figure 1: Illustration of the three cases of (Dec) in Theorem 4.2

derived above for each ri, where 1 ≤ i ≤ n, and the corresponding substitutions γi. Thus, r′i µ ⪯aC
yiθ
′′

τi and r′i µγi ≈aC yiθ
′′

τi.

Now let µ
1
i and µ

2
i be substitutions such that µγi = (µ

1
i µ

2
i)∣dom(µγi) and r′i µ

1
i ≈aC yiθ

′′. This is
possible given the assumption that g(r′1, . . . ,r

′
n) ⪯aC g(y1θ

′′,⋯,ynθ
′′
). Note that r′i µ

1
i ≈aC yiθ

′′

implies that for every x ∈ dom(µ2
i) there exists a w ∈ dom(τi) such that wτi ≈aC xµ

2
i .

We now construct τ ∈Ψ(D′′,S′′) using the µ
2
i , that is for all 1 ≤ j ≤ n and x ∈ dom(µ2

j) there
exists a w ∈ dom(τ) such that wτ ≈aC xµ

2
j . It now follows that ri ⪯aC yiθ

′′
τ holds for all 1 ≤ i ≤ n

and thus we have shown that g(r1, . . . ,rn) ⪯aC g(y1,⋯,yn)θ
′′

τ .

2. r = f (r1,r2), where f is a C- or an aC-symbol and s = f (s1,s2) and t = f (t1,t2). The next two
cases need to be considered: (i) if r1 is a generalization of s1 ≜y1 t1 and r2 is a generalization of
s2 ≜y1 t2, then we are in a special case of item 1; (ii) if r1 is a generalization of s1 ≜y1 t2 and r2
is a generalization of s2 ≜y1 t1, then we apply (Com) to ⟨A;S;D;θ⟩ resulting in the configuration
⟨A′;S′;D′;θ

′
⟩ where {si ≜yi t3−i} ∈ A′, for i ∈ {1,2}. By IH, at least one of the solutions obtained in

D. Cerna, A.F. González Barragán, M. Ayala-Rincón, and T. Kutsia 13

this branch will be structurally smaller than r (see item 1).

3. r = f (r1,r2), where f is an a- or an aC-symbol and, w.l.o.g, s = ε f and t = f (s1,s2). Then from
⟨A;S;D;θ⟩ we can derive a configuration ⟨A′;S′;D′;θ

′
⟩ using the (ExpLA1) rule such that ⋆ ≜y2

s2 ∈D′ and ε f ≜y1 s1 ∈A′. Now let ⟨∅;S′′;D′′;θ
′′
⟩ ∈AUNIF(⟨A′;S′;D′;θ

′
⟩) be a final configuration.

By the induction hypothesis we know that r1 ⪯aC y1θ
′′

τ1 for some τ1 ∈Ψ(S′′,D′′). Let µ
′ be a

substitution such that r1µ
′
≈aC y1θ

′′
τ1 and V2 ⊆ var(r) such that V2 ∩ var(r1) = ∅. Using V2 we

define a bijective renaming ν such that for all z ∈V2, zν /∈ var(r1µ
′
)∪var(r1).

We will now consider the term rνµ
′
= f (r1µ

′,r2νµ
′
). Note that for all variables z ∈ var(r1)∩

var(r2ν), it must be the case that zµ
′
⪯aC zµ

∗ where r1µ
∗
≈aC s1 and r2µ

∗
≈aC s2. Thus, observe

that r2νµ
′
⪯aC s2.

Now let γ
′ be a substitution such that dom(γ ′) = var(r2νµ

′
), r2νµ

′
γ
′
≈aC s2, and r1µ

′
γ
′
≈aC s1.

Now consider V ′2 = {z ∣ z ∈ dom(γ ′)∧ z /∈ var(r1µ
′
)} and ν

′
= {z↦ l ∣ z ∈ V ′2 ∧ zγ

′
= l}. Note that

r2νµ
′
ν
′
⪯aC s2 and there exists t∗ ∈ ↑y2

(D′′,S′′) such that r2νµ
′
ν
′
≈aC t∗ by the definition of the

abstraction set. For terms in ↑y2
(D′′,S′′) we know how to build a τ2 ∈Ψ(D′′,S′′).

Now let µ
′
1 and µ

′
2 be substitutions such that r1µ

′
≈aC r′1µ

′
1µ
′
2 and for all z ∈ dom(µ ′2) there exists

y ∈ dom(τ1) such that zµ
′
2 ≈aC yτ1. Notice we can apply the same rewriting to r2νµ

′
ν
′ that is

r′2µ
′′
1 µ
′′
2 ≈aC r2νµ

′
ν
′. We are free to choose the dom(ν ′) such that it does not compose with

the range of µ
′. Thus for variables z ∈ var(r′1µ

′
1)∩ var(r′2µ

′′
1) such that z ∈ dom(µ ′′2), there exists

y ∈ dom(τ2) such that zµ
′′
2 ≈aC yτ2 and zµ

′
2 ≈aC yτ1. We can safely assume that the dom(τ2)∩

var(ran(τ1)) =∅, thus we can choose τ ∈Ψ(D′′,S′′) such that τ = τ1τ2 as the required substitution;
So, r ⪯aC f (y1,y2)θ

′′
τ .

4. r = f (r1,r2), where f is an a- or an aC-symbol and, s = ε f and t = ε f . Then from ⟨A;S;D;θ⟩

we can derive a configuration ⟨A′;S′;D′;θ
′
⟩ using, w.l.o.g, the (ExpBA1) rule such that ε f ≜y1

⋆,⋆ ≜y2 ε f ∈D′. Now let ⟨∅;S′′;D′′;θ
′′
⟩ ∈AUNIF(⟨A′;S′;D′;θ

′
⟩) be a final configuration. Because

y1,y2 ∈ labels(D′), y1θ
′
= y1 and y2θ

′
= y2. Thus, there exist s ∈ ↑y1

(D′′,S′′), t ∈ ↑y2
(D′′,S′′), a

renaming ν , and τ ∈ Ψ(D′′,S′′) such that r1ν ≈aC y1τ and r2ν ≈aC y2τ; this follows from the
abstraction set containing all terms a-equivalent to ε f under the substitution derived from S′′. The
substitution ν is required to rename variables in r by the appropriate variables in labels(S′′).
Notice that if r = f (r1,r2) is an aC-symbol, all the possible cases were covered in the abovemen-
tioned items.

Example 4.3. This Example illustrates cases 1(i) and 1(ii) in the stepcase of the completeness proof
sketch of Theorem 4.2.

Consider the AUT s ≜ t, where s = g(ε f , f (h(ε f),a)), and t = g(f (h(ε f),a),ε f) for g a syntactic
symbol, f an aC-symbol.

1. Let r be the generalization of s and t:

r = g(z
®
r1

, f (h(z),y)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r2

)

Let µ = {w1↦ z,w2↦ h(z),w3↦ y}. Then:

D. Cerna, A.F. González Barragán, M. Ayala-Rincón, and T. Kutsia 14

r = g(w1
¯
r′1

, f (w2,w3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r′2

)µ

Consider the variable z: z ∈ var(r1)∩ var(r2). Note that (1,1) ∈ posC(r,t), and z is a general-
ization of ε f = s∣1 and f (h(ε f),a) = t ∣1. Then, the case 1(i) applies. Take the final configura-
tion ⟨∅;{ε f ≜y′ a};{⋆ ≜z′ h(ε f)};{x′ ↦ f (z′,y′)}}⟩ ∈ AUNIF(⟨{ε f ≜x′ f (h(ε f),a)};∅;∅; ι⟩) and
τ
∗
= {z′ ↦ h(ε f)}. The store of this configuration will get the final configuration of the original

problem:

⟨∅;{ε f ≜v1 a,a ≜v2 ε f };{⋆ ≜u1 h(ε f),h(ε f) ≜u2 ⋆};θ⟩

Above, θ = {x↦ g(f (u1,v1), f (u2,v2)),y1↦ f (u1,v1),y2↦ f (u2,v2)}.
In particular, g(w1, f (w2,w3)) ⪯aC g(y1,y2)θ , and we have:

r′1µ ⪯aC y1θ {u1↦ h(ε f)}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

τ1

= f (h(ε f),v1)

r′2µ ⪯aC y2θ {u2↦ h(f (h(ε f),v1))}
´¹¹¸¹¹¹¶

τ2

= f (h(f (h(ε f),v1)),v2)

For γ1 = {z↦ f (h(ε f),v1)} and γ2 = {y↦ v2,z↦ f (h(ε f),v1)}, r′1µγ1 ≈aC y1θτ1 and r′2µγ2 ≈aC
y2θτ2. Hence, the substitution µ

1
1 µ

2
1 restricted to dom(µγ1) and µ

1
2 µ

2
2 restricted to dom(µγ2) are

such that:

µγ1 = ({w1↦ f (u,v1)}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¶

µ1
1

{u↦ h(ε f)}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

µ2
1

)∣dom(µγ1),

µγ2 = ({w2↦ v,w3↦ v2}
´¹¹¹¸¹¹¶

µ1
2

{v↦ h(f (h(ε f ,v1))}
´¹¹¸¹¹¶

µ2
2

)∣dom(µγ2).

Finally, we define τ = {u1↦ h(ε f),u2↦ h(f (h(ε f),v1))}. Thus,

g(z, f (h(z),y)) ⪯aC g(f (h(ε f),v1), f (h(f (h(ε f),v1)),v2)).

2. Let r be the generalization of s and t:

r = g(f (z,h(f (z,y)))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r1

, f (h(f (z,y)),y)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r2

)

Let µ = {w1↦ z,w2↦ h(f (z,y)),w3↦ h(f (z,y)),w4↦ y}. Then:

r = g(f (w1,w2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r′1

, f (w3,w4)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r′2

)µ

D. Cerna, A.F. González Barragán, M. Ayala-Rincón, and T. Kutsia 15

Consider the variable z: z ∈ var(r1)∩var(r2). Note that (1,1) ∈ ap f (s,t) and (1.1,1.2) ∈ posC(r,t),
and z is a generalization of ε f = s∣1 and a = t ∣1.2. Then, the case 1(ii) applies.

Take the final configuration ⟨∅;{ε f ≜x′ a};∅;ι⟩ ∈ AUNIF(⟨{ε f ≜x′ a};∅;∅; ι⟩) and τ
∗
= id. The

store of this configuration will get the final configuration of the original problem:

⟨∅;{ε f ≜v1 a,a ≜u2 ε f };{⋆ ≜u1 h(ε f),h(ε f) ≜v2 ⋆};θ⟩

Above, θ = {x↦ g(f (u1,v1), f (u2,v2)),y1↦ f (u1,v1),y2↦ f (u2,v2)}.

In particular, g(f (w1,w2), f (w3,w4)) ⪯aC g(y1,y2)θ , and we have:

r′1µ ⪯aC y1θ {v1↦ h(f (u1,v2))}
´¹¹¹¸¹¹¶

τ1

= f (u1,h(f (u1,v2)))

r′2µ ⪯aC y2θ {u2↦ h(f (u1,v2))}
´¹¹¸¹¹¶

τ2

= f (h(f (u1,v2)),v2)

For γ1 = γ2 = {z↦ u1,y↦ v2}, r′1µγ1 ≈aC y1θτ1 and r′2µγ2 ≈aC y2θτ2. Hence, the substitution µ
1
1 µ

2
1

restricted to dom(µγ1) and µ
1
2 µ

2
2 restricted to dom(µγ2) are such that:

µγ1 = ({w1↦ u1,w2↦ v1}
´¹¹¸¹¹¹¶

µ1
1

{v1↦ h(f (u1,v2))}
´¹¹¹¸¹¹¶

µ2
1

)∣dom(µγ1),

µγ2 = ({w3↦ u2,w4↦ v2}
´¹¹¸¹¹¹¶

µ1
2

{u2↦ h(f (u1,v2))}
´¹¹¸¹¹¶

µ2
2

)∣dom(µγ2).

Finally, we define τ = {v1↦ h(f (u1,v2)),u2↦ h(f (u1,v2))}. Thus,

g(f (z,h(f (z,y)), f (h(f (z,y)),y)) ⪯aC g(f (u1,h(f (u1,v2))), f (h(f (u1,v2)),v2)).

5 Conclusion

This work discusses current work to extend the previous algorithm by the authors for anti-unification
modulo a-theories (in [6]) to anti-unification modulo aC-theories. The proposed algorithm deals with
theories that may contain all combinations of a, C-, and aC-symbols.

The introduced algorithm is proved to be terminating and sound, and the paper drafts the crucial
considerations in the inductive analysis of its completeness.

Immediate future possible steps in this investigation are empowering the algorithm to deal with as-
sociativity and unity, properties of great interest by their applicability and theoretical complexity (as
mentioned in the introduction, theories with more than one unital operator are of anti-unification type
nullary [10]). Another research target of great interest is the development of formal verifications of anti-
unification algorithms as those developed for C- and AC-unification in the prototype verification system
PVS [4, 5].

D. Cerna, A.F. González Barragán, M. Ayala-Rincón, and T. Kutsia 16

Acknowledgments.

This work was supported by the Czech Science Foundation Grant No. 22-06414L; the Austrian Sci-
ence Fund (FWF) project P 35530; Cost Action CA20111 EuroProofNet; the Brazilian agency CNPq,
Grant Universal 409003/21-2, and RG 313290/21-0; and the Brazilian Federal District Research Foun-
dation FAPDF, Grant DE 00193-00001175/2021-11. The Brazilian Higher Education Council (CAPES)
supported our Brazilian-Austrian cooperation under CAPES PrInt financial code 001.

References

[1] María Alpuente, Santiago Escobar, Javier Espert & José Meseguer (2014): ACUOS: A System for Modu-
lar ACU Generalization with Subtyping and Inheritance. In: European Conference on Logics in Artificial
Intelligence JELIA, LNCS 8761, Springer, p. 573–581, doi:10.1007/978-3-319-11558-0_40.

[2] María Alpuente, Santiago Escobar, Javier Espert & José Meseguer (2019): ACUOS2: A High-Performance
System for Modular ACU Generalization with Subtyping and Inheritance. In: European Conference on
Logics in Artificial Intelligence, JELIA, LNCS 11468 LNAI, Springer, pp. 171–181, doi:10.1007/978-3-
030-19570-0_11.

[3] María Alpuente, Santiago Escobar, Javier Espert & José Meseguer (2022): Order-sorted equational general-
ization algorithm revisited. Ann. Math. Artif. Intell. 90(5), pp. 499–522, doi:10.1007/s10472-021-09771-1.

[4] Mauricio Ayala-Rincón, Washington de Carvalho Segundo, Maribel Fernández, Gabriel Ferreira Silva &
Daniele Nantes-Sobrinho (2021): Formalising nominal C-unification generalised with protected variables.
Math. Struct. Comput. Sci. 31(3), pp. 286–311, doi:10.1017/S0960129521000050.

[5] Mauricio Ayala-Rincón, Maribel Fernández, Gabriel Ferreira Silva & Daniele Nantes Sobrinho (2022): A
Certified Algorithm for AC-Unification. In: 7th International Conference on Formal Structures for Compu-
tation and Deduction, FSCD, LIPIcs 228, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 8:1–8:21,
doi:10.4230/LIPICS.FSCD.2022.8.

[6] Mauricio Ayala-Rincón, David M. Cerna, Andrés Felipe González Barragán & Temur Kutsia (2024): Equa-
tional Anti-Unification over Absorption Theories. In: Automated Reasoning - 12th International Joint Con-
ference, IJCAR 2024, Nancy, France, Proceedings, Lecture Notes in Computer Science 14740, Springer, pp.
317–337, doi:10.1007/978-3-031-63501-4_17.

[7] Adam D. Barwell, Christopher Brown & Kevin Hammond (2018): Finding parallel functional pearls: Auto-
matic parallel recursion scheme detection in Haskell functions via anti-unification. Future Gener. Comput.
Syst. 79, pp. 669–686, doi:10.1016/j.future.2017.07.024.

[8] David Cao, Rose Kunkel, Chandrakana Nandi, Max Willsey, Zachary Tatlock & Nadia Polikarpova (2023):
babble: Learning Better Abstractions with E-Graphs and Anti-unification. Proceedings of the ACM on
Programming Languages 7(POPL), pp. 396–424, doi:10.1145/3571207.

[9] David M. Cerna (2020): Anti-unification and the theory of semirings. Theor. Comput. Sci. 848, pp. 133–139,
doi:10.1016/j.tcs.2020.10.020.

[10] David M. Cerna & Temur Kutsia (2020): Unital Anti-Unification: Type and Algorithms. In: 5th Int.
Conference on Formal Structures for Computation and Deduction, FSCD, LIPIcs 167, pp. 26:1–26:20,
doi:10.4230/LIPICS.FSCD.2020.26.

[11] David M. Cerna & Temur Kutsia (2023): Anti-unification and Generalization: A Survey. In: Proceedings of
the 32nd Int. Joint Conference on Artificial Intelligence, IJCAI, pp. 6563–6573, doi:10.24963/ijcai.2023/736.

[12] Sonu Mehta, Ranjita Bhagwan, Rahul Kumar, Chetan Bansal, Chandra Shekhar Maddila, Balasubramanyan
Ashok, Sumit Asthana, Christian Bird & Aditya Kumar (2020): Rex: Preventing Bugs and Misconfiguration
in Large Services Using Correlated Change Analysis. In: 17th USENIX Symposium on Networked Systems

https://doi.org/10.1007/978-3-319-11558-0_40
https://doi.org/10.1007/978-3-030-19570-0_11
https://doi.org/10.1007/978-3-030-19570-0_11
https://doi.org/10.1007/s10472-021-09771-1
https://doi.org/10.1017/S0960129521000050
https://doi.org/10.4230/LIPICS.FSCD.2022.8
https://doi.org/10.1007/978-3-031-63501-4_17
https://doi.org/10.1016/j.future.2017.07.024
https://doi.org/10.1145/3571207
https://doi.org/10.1016/j.tcs.2020.10.020
https://doi.org/10.4230/LIPICS.FSCD.2020.26
https://doi.org/10.24963/ijcai.2023/736

D. Cerna, A.F. González Barragán, M. Ayala-Rincón, and T. Kutsia 17

Design and Implementation, NSDI 2020, USENIX Association, pp. 435–448. Available at https://www.
usenix.org/conference/nsdi20/presentation/mehta.

[13] Jörg H. Siekmann (1989): Unification Theory. J. Symb. Comput. 7(3/4), pp. 207–274, doi:10.1016/S0747-
7171(89)80012-4.

https://www.usenix.org/conference/nsdi20/presentation/mehta
https://www.usenix.org/conference/nsdi20/presentation/mehta
https://doi.org/10.1016/S0747-7171(89)80012-4
https://doi.org/10.1016/S0747-7171(89)80012-4

	Introduction
	Preliminaries
	A Sound Algorithm for (a)(C)(aC)-Anti-Unification
	Abstraction Computation and Completeness
	Conclusion

