
Intersection Type System with de Bruijn Indices

Daniel Lima Ventura1∗and Mauricio Ayala-Rincón1†and

Fairouz Kamareddine2

1Grupo de Teoria da Computação, Dep. de Matemática

Universidade de Braśılia, Braśılia D.F., Brasil
2 School of Mathematical and Computer Sciences

Heriot-Watt University, Edinburgh, Scotland

{ventura,ayala}@mat.unb.br, fairouz@macs.hw.ac.uk

February 15, 2008

Abstract

λ-calculus in de Bruijn notation is relevant because it avoids variable
names using instead indices which makes it more adequate computation-
ally; in fact, several calculi of explicit substitutions are written in de
Bruijn notation because it simplifies the formalization of the atomic op-
erations involved in β-reductions. Intersection types provide finitary type
polymorphism which is of principal interest. Moreover, intersection types
characterize normalizable λ-terms, that is a term is normalizable if and
only if it is typable. Versions of explicit substitutions calculi without
types and with simple type systems are well investigated in contrast to
versions with more elaborated type systems such as intersection types.
In this paper λ-calculus in de Bruijn notation with an intersection type
system is introduced and it is proved that this system satisfies the basic
property of subject reduction, that is λ-terms preserve theirs types under
β-reduction.

1 Introduction

λ-calculus à la de Bruijn [dB72] was introduced by the Dutch mathematician
N.G. de Bruijn in the context of the project Automath [NGdV94], one of the
leading projects on automated deduction which still influences modern proof as-
sistants [Kam03]. Instead of names, indices represent variables in this notation
assembling each α-class of terms in the λ-calculus with names in a unique term
in de Bruijn notation. Despite there is a common sense that de Bruijn nota-
tion is unreadable for humans, it is useful for machines and has been adopted
for several calculi of explicit substitutions (e.g. [dB78], [ACCL91], [KR95]) in
which operations related to β-reductions are atomized in order to create calculi
closer to actual implementations of the λ-calculus. Type free and simply typed
versions of the λ-calculus as well as of these calculi of explicit substitutions have

∗Corresponding author, currently supported by a PhD sandwich scholarship of the CNPq
at the Heriot-Watt University.

†Partially supported by the CNPq.

1

been investigated, but to the best of our knowledge there is no work on more
elaborated type systems for these calculi in de Bruijn notation.

In this paper a version of the λ-calculus in de Bruijn notation with an inter-
section types system is introduced. Intersection types were introduced to pro-
vide a characterization of strongly normalizing λ-terms [CDC78,CDC80,Pot80].
In programming, the intersection type discipline is of interest because λ-terms
not typable in the standard Curry type assignment system ([CF58]) or in exten-
sions allowing some polymorphism, present in programming languages such as
ML ([Mil78]), are typable with intersection types. For instance, λx.(x x) is ty-
pable, assigning two different types to x (x : σ → ϕ ∩ σ). The intersection type
system presented in [BCDC83] is closed under β-equality, which is another prop-
erty that simple type systems do not have. Although, the problem of typability
(Given a λ-term t, is there a context Γ and a type σ such that Γ ` t : σ?), which
is decidable in the Curry type assignment system, is undecidable in [BCDC83].
This is a consequence of the fact that all terms having normal form can be
characterized by their assignable types. In [CW04] Carlier and Wells presented
the exact correspondence between the inference mechanism for their intersection
type system and β-reduction. They introduce expansion variables to perform
Expansion, a operation used during type inference (see [CW04.2]).

The type system in this paper is based on the one given in [KN07]. The
version in de Bruijn notation is proved to preserve subject reduction, that is
the property of preserving types under β-reduction: whenever Γ ` t : σ and t
β-reduces into s, Γ ` s : σ.

Section 2 presents the λ-calculus in de Bruijn notation, giving some lemmas
about syntactic properties regarding update of free indices (free variables), sub-
stitution and β-reduction. In section 3 the intersection type system is introduced
and properties about shape of type and contexts (an ordered environment) are
presented, analogue to the ones given in [KN07]. Section 4 proves the property
of subject reduction, following the standard sketch proving a generation and
substitution lemmas. Finally, we conclude talking about future work.

2 The type free calculi

2.1 λ-calculus in de Bruijn notation

Definition 1 (Set ΛdB). The syntax of the λ-calculus in de Bruijn notation,

the λdB-calculus, is defined inductively by:

Terms M ::= n | (M M) |λ.M where n ∈ N
∗=Nr{0}

Definition 2. 1. We define FI(M), the set of free indices of M ∈ ΛdB, by:

FI(n) = {n}

FI(λ.M) = {n−1, ∀n ∈ FI(M), n > 1}

FI(M1 M2) = FI(M1) ∪ FI(M2)

2. A term M is called closed if FI(M) ≡ ∅.

3. The greatest value of a free index in M , denoted by sup(M), is defined by:

sup(M) =

0 if FI(M) ≡ ∅
n where n∈FI(M) and n ≥ i, ∀ i∈FI(M) otherwise

Lemma 1. 1. sup(M1 M2) = max(sup(M1), sup(M2)).

2. If sup(M)=0, then sup(λ.M)=0. Otherwise, sup(λ.M)=sup(M) − 1.

2

Proof. 1. If sup(M1 M2)=0, nothing to prove. Otherwise, sup(M1 M2)=n,
where n ≥ i, ∀ i ∈ FI(M1 M2) = FI(M1) ∪ FI(M2) and n ∈ FI(M1) or
n∈FI(M2). Suppose, w.l.o.g., that n∈FI(M1). Hence, n≥sup(M1) and
sup(M1)≥n, thus, n=sup(M1) and n≥sup(M2).

2. If sup(M) = 0, then FI(λ.M) = FI(M) = ∅, hence, sup(λ.M) = 0. Let
sup(M) = m > 0. Hence, m≥ i, ∀ i∈ FI(M) and m∈ FI(M). If m = 1,
then FI(M) = { 1}, thus, FI(λ.M) = ∅ and sup(λ.M) = 0. Otherwise,
FI(λ.M) = {n−1, ∀n ∈ FI(M), n > 1}. Thus, m−1 ∈ FI(λ.M) and
m − 1 ≥ i − 1, ∀ i−1∈FI(λ.M).

Terms like ((. . . ((M1 M2) M3) . . .) Mn) are written as (M1 M2 . . . Mn), as
usual. The β-contraction definition in this notation needs a mechanism which
detects and updates free indices of terms. It follows an operator similar to the
one presented in [ARK01].

Definition 3. Let M ∈ ΛdB and i ∈ N. The i-lift of M , denoted as M+i, is

defined inductively by:

1 . (M1 M2)
+i = (M+i

1 M+i
2) 3 . n+i =

{

n + 1 , if n > i
n , if n ≤ i.

2 . (λ.M1)
+i = λ.M

+(i+1)
1

The lift of a term M is its 0-lift, denoted by M+. Intuitively, the lift of M
corresponds to an increment by 1 of all free indices occurring in M . The next
lemma states general relations between the i-lift and the free indices of M .

Lemma 2. 1. If i ≥ sup(M), then M+i ≡ M .

2. FI(M+i) = {n |n∈FI(M), n ≤ i} ∪ {n+1 |n∈FI(M), n > i}.

3. If sup(M)>i, then sup(M+i) = sup(M)+1.

4. If sup(M)≤ i, then sup(M+i) = sup(M).

Proof. 1 and 2: By induction on the structure of M .
3: If sup(M) = m, then m ≥ n, ∀n ∈ FI(M) and m ∈ FI(M). Since m > i,
by lemma 2.2, m+1 ∈ FI(M+i) and ∀ j ∈ FI(M+i), either j = n or j = n+1,
where n∈FI(M). One has m+1 ≥ n+1 > n,∀n∈FI(M), thus, m+1 ≥ j,∀ j∈

FI(M+i).
4: From lemma 2.1, M+i≡M , thus, sup(M+i)=sup(M).

Using the i-lift, we are able to present the definition of the substitution used
by β-contractions, similarly to the one presented in [ARK01].

Definition 4. Let m, n ∈ N
∗. The β-substitution for free occurrences of n in

M ∈ ΛdB by term N , denoted as {n/N}M , is defined inductively by

1 . {n /N}(M1 M2) = ({n /N}M1 {n /N}M2) 3 . {n /N}m =

8

<

:

m − 1 , if m > n
N, if m = n
m , if m < n2 . {n /N}λ.M1 = λ.{n + 1 /N+}M1

Observe that in item 2 of Def. 4, the lift operator is used to avoid captures of
free indices in N . We present the β-contraction as defined in [ARK01].

Definition 5. β-contraction in λdB is defined by (λ.M N)→β {1 /N}M .

Notice that item 3 in Definition 4, for n = 1, is the mechanism which does
the substitution and updates the free indices in M as consequence of the lead
abstractor elimination.

3

Lemma 3. 1. If i /∈FI(M), then

FI({ i /N}M)={n |n∈FI(M), n<i} ∪ {n−1 |n∈FI(M), n>i}.

2. Otherwise,

FI({ i /N}M)=FI(N)∪{n |n∈FI(M), n<i}∪{n−1 |n∈FI(M), n>i}.

3. If i>sup(M), then { i /N}M ≡ M .

Proof. By induction on the structure of M .

In particular, if FI(M)={ i}, then {n |n∈FI(M), n<i} ≡ ∅ and {n−1 |n∈
FI(M), n>i} ≡ ∅, thus, FI({ i /N}M)=FI(N).

Corollary 1. If 1 ∈ FI(M), then FI({1 /N}M) = FI(λ.M N). Otherwise,

FI({ 1 /N}M)=FI(λ.M).

Lemma 4. Let M be a term such that sup(M)=m:

1. If i<m and i /∈FI(M), then sup({ i /N}M)=m−1.

2. If i>m, then sup({ i /N}M)=m.

3. Suppose i ∈ FI(M). If FI(M) = { i}, then sup({ i /N}M) = sup(N).
Otherwise, sup({ i /N}M)=max(sup(N), m−1).

Proof. 1. One has that m ≥ n, ∀n∈FI(M) and m∈FI(M). Since m>i, by
lemma 3.1, m−1∈ FI({ i /N}M) and ∀ j∈FI({ i /N}M), either j =n<i
or j =n−1, where n∈FI(M). Thus, m−1 ≥ n−1≥ i,∀n∈FI(M) such
that n > i, hence, m−1 ≥ j,∀ j∈FI({ i /N}M).

2. If i > m, then, by lemma 3.3, { i /N}M ≡ M , thus, sup({ i /N}M) =
sup(M).

3. By lemma 3.2 one has FI({ i /N}M) = FI(N) ∪ A, where A ≡ {n |n ∈
FI(M), n< i} ∪ {n−1 |n∈FI(M), n> i} . If FI(M)={ i}, then A ≡ ∅,
thus FI({ i /N}M)=FI(N). Otherwise, A is not empty and, similarly to
case 1, one has that m − 1 ≥ j, ∀ j∈A.

Lemma 5. sup({ 1/N}M) ≤ sup(λ.M N).

Proof. If 1 ∈ FI(M), then sup({ 1 /N}M) = sup(λ.M N). Otherwise, one
has two possibilities. If sup(M) = 0, then, by lemma 4.2, sup({ 1 /N}M) =
0 ≤ max(0, sup(N)) = sup(λ.M N). If sup(M) > 1, then, by lemma 4.1,
sup({ 1/N}M)=sup(M)−1 = sup(λ.M) ≤ max(sup(λ.M), sup(N)).

Definition 6. β-reduction in λdB is defined by:
(λ.M N)→β { 1 /N}M

(λ.M N)−→β { 1/N}M

M −→β N

λ.M −→β λ.N

M1−→β N1

(M1 M2)−→β (N1 M2)

M2−→β N2

(M1 M2)−→β (M1 N2)

Theorem 1. If M −→β N then FI(N) ⊆ FI(M) and sup(N) ≤ sup(M).

Proof. By induction on the derivation M −→β N .

• If M ≡ (λ.M1 M2), then N ≡ { 1 /M2}M1 and, by corollary 1,
FI({ 1 /N}M1) ⊆ FI(λ.M1 M2).

4

• Let M ≡ (M1 M2) and N ≡ (M1 N2), where M2 −→β N2, then, by
IH, FI(N2) ⊆ FI(M2). Thus, FI(N) = FI(M1) ∪ FI(N2) ⊆ FI(M1) ∪
FI(M2)=FI(M).

• Case M ≡ (M1 M2) and N ≡ (N1 M2), where M1 −→β N1, is similar.

• If M ≡ λ.M ′, then N ≡ λ.N ′, where M ′ −→β N ′. By IH, FI(N ′) ⊆
FI(M ′), hence, ∀n ∈ FI(N ′), n ∈ FI(M ′). Thus, ∀n−1 ∈ FI(λ.N ′),
n−1∈FI(λ.M ′).

3 The Type System

Definition 7. 1. Intersection types are defined by:

T ::= A |U→T U ::= ω |U u U |T

The types are quotiented by taking u to be commutative, associative, idem-

potent and to have ω as neutral.

2. Contexts are ordered lists of types U ∈ U, defined by: Γ ::= nil |U.Γ

Let Γ be some context and n∈N. Then Γ<n denotes the first n−1 types of

Γ. Similarly we define Γ>n, Γ≤n and Γ≥n. Note that, for Γ>n and Γ≥n

the final nil element is included. For n=0, Γ≤0.Γ=Γ<0.Γ=Γ. The i-th
element of Γ is denoted by Γi. The length of Γ is defined as |nil|=0 and,

if Γ is not nil, |Γ|=1+|Γ>1|. For any i>m= |Γ|, let Γ≥i =Γ>i =Γ>m and

Γ≤i =Γ<i =Γ≤m.

For a term M , we denote envM
ω the context Γ such that |Γ|=sup(M) and

Γ = ω.ω. · · · .ω.nil.

The extension of u for contexts is done by nil u Γ = Γ u nil = Γ and

(U1.Γ)u (U2.∆) = (U1uU2).(Γu∆). Hence, u is commutative, associative

and idempotent on contexts.

Some properties over contexts follow from the above definitions.

Lemma 6. Let Γ and ∆ be contexts, where neither Γ nor ∆ are nil:

1. If |Γ| ≥ sup(M), then Γ u envM
ω =Γ

2. Γ u ∆=(Γ1 u ∆1).(Γ>1 u ∆>1)

3. If i ≤ |Γ|, |∆|, then (Γ u ∆)i =Γi u ∆i.

4. (Γu ∆)<i =Γ<iu ∆<i and (Γu ∆)>i =Γ>iu ∆>i. The same for (Γu ∆)≤i

and (Γ u ∆)≥i.

5. |Γ u ∆|=max(|Γ|, |∆|).

Definition 8. The typing rules are given as follows:

5

1:〈T.nil ` T 〉
var

M :〈nil ` T 〉

λ.M :〈nil ` ω→T 〉
→′

i

n :〈Γ ` U〉

n+1:〈ω.Γ ` U〉
varn

M1 :〈Γ ` U →T 〉 M2 :〈Γ′ ` U〉

M1 M2 :〈Γ u Γ′ ` T 〉
→e

M :〈envM
ω ` ω〉

ω
M :〈Γ ` U1〉 M :〈Γ ` U2〉

M :〈Γ ` U1 u U2〉
ui

M :〈U.Γ ` T 〉

λ.M :〈Γ ` U →T 〉
→i

M :〈Γ ` U〉 〈Γ ` U〉 v 〈Γ′ ` U ′〉

M :〈Γ′ ` U ′〉
v

where the binary relation v is defined by the following rules:

Φ v Φ
ref

Φ1 v Φ2 Φ2 v Φ3

Φ1 v Φ3
tr

U1 u U2 v U1
ue

U1 v V1 U2 v V2

U1 u U2 v V1 u V2
u

U2 v U1 T1 v T2

U1→T1 v U2→T2
→

U1 v U2

Γ≤i.U1.Γ>i v Γ≤i.U2.Γ>i
vc

U1 v U2 Γ′ v Γ

〈Γ ` U1〉 v 〈Γ′ ` U2〉
v〈〉

Φ, Φ′, Φ1, . . . are used to denote U ∈ U, contexts Γ or typings 〈Γ ` U〉. Note

that in Φ v Φ′, Φ and Φ′ belong to the same sort.

Type judgements will be of the form M :〈Γ ` U〉, meaning term M has type
U provided Γ for FI(M). Briefly, M has type U in Γ.

The next lemmas states some properties about the shape of types and con-
texts, and their link with the subtyping relation defined by v.

Lemma 7. 1. If U ∈U, then U =ω or U =un
i=1Ti where n≥1 and ∀ 1≤ i≤n,

Ti∈T.

2. U v ω.

3. If ω v U , then U = ω.

Proof. See [KN07]

Observe that, from 2 : 〈ω.T.nil ` T 〉 and the v relation we have that 2 :
〈U.T.nil ` T 〉, for any U . This allows some sort of weakening in the type system,
which is not allowed in the type system given in [KN07]. This happens because
ω’s are needed in the context first positions to give the proper type for some
free index i. Although, in lemma 10 we prove this weakening is limited by the
term itself.

Lemma 8. Let V 6= ω.

1. If U v V , then U = uk
j=1Tj , V = up

i=1T
′
i where p, k ≥ 1, ∀1 ≤ j ≤ k,

1 ≤ i ≤ p, Tj , T
′
i ∈ T, and ∀ 1 ≤ i ≤ p, ∃1 ≤ j ≤ k such that Tj v T ′

i .

6

2. If U v V ′ u a, then U = U ′ u a and U ′ v V ′.

3. Let p, k ≥ 1. If uk
j=1(Uj → Tj) v up

i=1(U
′
i → T ′

i), then ∀ 1 ≤ i ≤ p,
∃1 ≤ j ≤ k such that U ′

i v Uj and Tj v T ′
i .

4. If U → T v V , then V = up
i=1(Ui → Ti) where p ≥ 1 and ∀ 1 ≤ i ≤ p,

Ui v U and T v Ti.

5. If uk
j=1(Uj →Tj) v V where k ≥ 1, then V = up

i=1(U
′
i →T ′

i) where p ≥ 1
and ∀ 1 ≤ i ≤ p, ∃1 ≤ j ≤ k such that U ′

i v Uj and Tj v T ′
i .

Proof. See [KN07]

Lemma 9. 1. If Γ v Γ′ and U v U ′, then U.Γ v U ′.Γ′.

2. Γ v Γ′ iff |Γ|= |Γ′|=m and, if m > 0 then ∀1≤ i≤m, Γi v Γ′
i.

3. If |Γ| = sup(M), then Γ v envM
ω .

4. If envM
ω v Γ, then Γ = envM

ω .

5. 〈Γ ` U〉 v 〈Γ′ ` U ′〉 iff Γ′ v Γ and U v U ′.

6. If Γ v Γ′ and ∆ v ∆′, then Γ u ∆ v Γ′ u ∆′.

Proof. 1. By induction on the derivation Γ v Γ′ we have that if Γ v Γ′, then
V.Γ v V.Γ′. Using tr we have the result.

2. Only if) By induction on the derivation Γ v Γ′. If) By induction on m
using 1.

3. By lemma 7.2 and 2.

4. By 2, |Γ|= sup(M) = m. If m = 0, them envM
ω = Γ = nil. Otherwise, for

every 1≤ i≤m, ω v Γi. Hence, by lemma 7.3, ∀1 ≤ i ≤ m, Γi = ω.

5. Only if) By induction on the derivation 〈Γ ` U〉 v 〈Γ′ ` U ′〉. If) By v〈〉.

6. This is a corollary of 2.

The following lemma shows the strict relation in a type judgement between
the length of a context Γ and the free indices of term M , where M :〈Γ ` U〉 for
some type U .

Lemma 10. 1. If M :〈Γ ` U〉, then |Γ|=sup(M).

2. For every Γ and M such that |Γ| = sup(M), we have M :〈Γ ` ω〉.

Proof. 1. By induction on the derivation M :〈Γ ` U〉.

2. By ω, M : 〈envM
ω ` ω〉. By lemma 9.3, Γ v envM

ω . Hence, by v〈〉 and v,
M :〈Γ ` ω〉.

Consequently, the weakening allowed in the system is limited by the maxi-
mum value of a free index occurring in a term.

The following lemma shows that another version of the var and ui rules,
axiom and intersection introduction respectively, are derivable from the typing
rules and subtyping relation, presented in definition 8.

7

Lemma 11. 1. The rule
M :〈Γ ` U1〉 M :〈∆ ` U2〉

M :〈Γ u ∆ ` U1 u U2〉
u′

i is derivable.

2. The rule
1:〈U.nil ` U〉

var′ is derivable.

Proof. 1. Let M : 〈Γ ` U1〉 and M : 〈∆ ` U2〉. By lemma 10.1, |Γ|= |∆|=m.
Thus, |Γ u ∆| = m and (Γ u ∆)i = Γi u ∆i, ∀1 ≤ i ≤ m. By rule
ue and lemma 9.2, Γ u ∆ v Γ and Γ u ∆ v ∆. Hence, by rules v〈〉

and v, M : 〈Γ u ∆ ` U1〉 and M : 〈Γ u ∆ ` U2〉. Thus, by rule ui,
M :〈Γ u ∆ ` U1 u U2〉.

2. By lemma 7.1:

- Either U = ω, then by rule ω the result holds.

- Or U = uk
i=1Ti where ∀1 ≤ i ≤ k, Ti ∈ T, then, by rule var, 1 :

〈Ti.nil ` Ti〉 and, by k−1 applications of rule u′
i, 1 :〈U.nil ` U〉.

4 The subject reduction property

4.1 Subject reduction for β

The subject reduction property is proved in the standard way, with a generation
and substitutions lemmas (lemmas 12 and 14, respectively) as the properties to
be proved at first.

Lemma 12 (Generation). 1. If n :〈Γ ` U〉, then Γn =V where V v U .

2. If λ.M : 〈Γ ` U〉 and sup(M)>0, then U =ω or U =uk
i=1(Vi →Ti) where

k≥1 and ∀1≤ i≤k, M :〈Vi.Γ ` Ti〉.

3. If λ.M :〈Γ ` U〉 and sup(M)=0, then Γ=nil, U =ω or U =uk
i=1(Vi→Ti)

where k≥1 and ∀1≤ i≤k, M :〈nil ` Ti〉.

Proof. 1. By induction on the derivation n :〈Γ ` U〉. By lemma 10.1, |Γ| = n.

• If
1:〈T.nil ` T 〉

, nothing to prove.

• If
n :〈env

n
ω ` ω〉

, nothing to prove.

• Let
n :〈Γ ` U〉

n+1:〈ω.Γ ` U〉
. One has that (ω.Γ)n+1 =Γn and, by IH, Γn =V

where V v U .

• Let
n :〈Γ ` U1〉 n :〈Γ ` U2〉

n :〈Γ ` U1 u U2〉
. By IH, Γn = V where V v U1 and

V v U2. Then, by rule u, V v U1 u U2.

• Let
n :〈Γ ` U〉 〈Γ ` U〉 v 〈Γ′ ` U ′〉

n :〈Γ′ ` U ′〉
. By IH, Γn =V where V v U .

By lemma 9.5, Γ′ v Γ and U v U ′. Thus, by lemma 9.2, Γ′
n =V ′ v V .

By rule tr, V ′ v U ′.

2. By induction on the derivation λ.M :〈Γ ` U〉.

• If
λ.M :〈envλ.M

ω ` ω〉
, nothing to prove.

8

• If
M :〈U.Γ ` T 〉

λ.M :〈Γ ` U →T 〉
, nothing to prove.

• Let
λ.M :〈Γ ` U1〉 λ.M :〈Γ ` U2〉

λ.M :〈Γ ` U1 u U2〉
. By IH, one has the following

cases:

- If U1 =U2 =ω, then U1 u U2 =ω.

- If U1 = ω, U2 = uk
i=1(Vi → Ti) where k ≥ 1 and ∀1 ≤ i ≤ k,

M :〈Vi.Γ ` Ti〉, then, U1 u U2 =U2

- If U2 = ω, U1 = uk
i=1(V

′
i → T ′

i) where k ≥ 1 and ∀1 ≤ i ≤ k,
M :〈V ′

i .Γ ` T ′
i 〉, then, U1 u U2 =U1

- If U1 = uk
i=1(Vi → Ti),U2 = uk+l

i=k+1(Vi → Ti), where k, l ≥ 1 and

∀1≤ i≤k + l, M :〈Vi.Γ ` Ti〉, then U1 u U2 =uk+l
i=1(Vi→Ti).

• Let
λ.M :〈Γ ` U〉 〈Γ ` U〉 v 〈Γ′ ` U ′〉

λ.M :〈Γ′ ` U ′〉
. By lemma 9.5, Γ′ v Γ and

U v U ′. By IH, one has the following:

- If U =ω, then, by lemma 7.3, U ′=ω.

- Otherwise, U = uk
i=1(Vi → Ti) where k ≥ 1 and ∀1 ≤ i ≤ k,

M : 〈Vi.Γ ` Ti〉. By lemma 7.1, either U ′ =ω, and then nothing
to prove, or, by lemma 8.5, U ′ = up

i=1(V
′
i → T ′

i) where p ≥ 1
and ∀ 1 ≤ i ≤ p, ∃1 ≤ ji ≤ k such that V ′

i v Vji
and Tji

v T ′
i .

By lemmas 9.1 and 9.5, 〈Vji
.Γ ` Tji

〉 v 〈V ′
i .Γ′ ` T ′

i 〉, for each
1≤ i≤p, then, M :〈V ′

i .Γ′ ` T ′
i 〉.

3. By lemma 1.2, sup(λ.M) = 0 and, by lemma 10.1, |Γ|= nil, thus, λ.M :
〈nil ` U〉. The proof is same as for 2, where →′

i is used on induction step,
instead of →i.

The following lemma is an auxiliary lemma for substitution lemma 14, stat-
ing a property relating type judgements and the index update mechanism.

Lemma 13. If M :〈Γ ` U〉 and 0 ≤ i < sup(M), then M+i :〈Γ≤i.ω.Γ>i ` U〉.

Proof. By induction on the derivation M :〈Γ ` U〉.

• Let
1:〈T.nil ` T 〉

. For i =0, 1+ = 2 and, by rule varn, 2:〈ω.T.nil ` T 〉.

• If
M :〈envM

ω ` ω〉
, nothing to prove.

• Let
n :〈Γ ` U〉

n+1:〈ω.Γ ` U〉
. If i = 0, then by rule varn n+2 : 〈ω.ω.Γ ` U〉.

Otherwise, note that n+i + 1 = n+1+(i+1) = n+2 . By IH one has
n+i :〈Γ≤i.ω.Γ>i ` U〉. By rule varn, n+2:〈ω.Γ≤i.ω.Γ>i ` U〉.

• Let
M :〈U.Γ ` T 〉

λ.M :〈Γ ` U →T 〉
. By lemma 1.2 one has sup(M) > i+1, hence, by

IH, M+(i+1) : 〈U.Γ≤i.ω.Γ>i ` T 〉. Hence, by rule →i and i-lift definition,
(λ.M)+i :〈Γ≤i.ω.Γ>i ` U →T 〉.

• Let
M1 :〈Γ ` U →T 〉 M2 :〈∆ ` U〉

M1 M2 :〈Γ u ∆ ` T 〉
. By lemma 1.1 one has sup(M1) > i

or sup(M2) > i. Suppose w.l.o.g. that i < sup(M1), sup(M2). By IH,

9

M+i
1 : 〈Γ≤i.ω.Γ>i ` U →T 〉 and M+i

2 : 〈∆≤i.ω.∆>i ` U〉. Thus, by →e

and observing that (Γ≤i.ω.Γ>i) u (∆≤i.ω.∆>i)=(Γ u ∆)≤i.ω.(Γ u ∆)>i,
(M1 M2)

+i :〈(Γ u ∆)≤i.ω.(Γ u ∆)>i ` T 〉.

• Let
M :〈Γ ` U1〉 M :〈Γ ` U2〉

M :〈Γ ` U1 u U2〉
. By IH, M+i :〈Γ≤i.ω.Γ>i ` U1〉 and M+i :

〈Γ≤i.ω.Γ>i ` U2〉. Thus, by rule ui, M+i :〈Γ≤i.ω.Γ>i ` U1 u U2〉.

• Let
M :〈Γ ` U〉 〈Γ ` U〉 v 〈Γ′ ` U ′〉

M :〈Γ′ ` U ′〉
. By IH, M+i :〈Γ≤i.ω.Γ>i ` U〉 and,

by lemma 9.5, Γ′ v Γ and U v U ′. Hence, by lemma 9.2, Γ′
≤i.ω.Γ′

>i v

Γ≤i.ω.Γ>i. Thus, by rules v〈〉 and v, M+i :〈Γ′
≤i.ω.Γ′

>i ` U ′〉.

Lemma 14 (Substitution). Let M : 〈Γ ` U〉, for sup(M) > 0, and N : 〈∆ `
Γi〉:

1. If i /∈FI(M), then { i /N}M :〈Γ<i.Γ>i ` U〉.

2. Otherwise, if sup(N)≥ i−1, then { i /N}M :〈(Γ<i.Γ>i) u ∆ ` U〉.

Proof. By induction on the derivation M :〈Γ ` U〉.

1. Observe that i < |Γ|=sup(M):

• If
1:〈T.nil ` T 〉

, nothing to prove.

• Let
M :〈envM

ω ` ω〉
. By lemma 4.1, sup({ i /N}M) = sup(M)−1.

Thus, env
{ i /N}M
ω =(envM

ω)<i.(envM
ω)>i and the result holds trivially

by rule ω.

• Let
n :〈Γ ` U〉

n+1:〈ω.Γ ` U〉
. By lemma 10.1, |ω.Γ|=n+1, hence, i< (n+1)

and { i /N}n+1= n. Note that (ω.Γ)i =Γ(i−1), thus, by IH one has
{ i−1 /N}n : 〈Γ<(i−1).Γ>(i−1) ` U〉. Since (i−1)< n, { i−1 /N}n=
n−1, hence, by rule varn, n :〈ω.Γ<(i−1).Γ>(i−1) ` U〉.

• Let
M :〈U.Γ ` T 〉

λ.M :〈Γ ` U →T 〉
. If sup(N)=0, then, by lemma 2.1, N+≡N ,

otherwise, by lemma 13, N+ : 〈ω.∆ ` Γi〉. By IH, { i+1 /N+}M :
〈U.Γ<i.Γ>i ` T 〉, thus, by →i, λ.{ i+1 /N+}M :〈Γ<i.Γ>i ` U →T 〉.

• Let
M1 :〈Γ ` U →T 〉 M2 :〈Γ′ ` U〉

M1 M2 :〈Γ u Γ′ ` T 〉
. Suppose, w.l.o.g., i < sup(M1)

and i< sup(M2), thus, (Γ u Γ′)i =Γi u Γ′
i. By rules ue, v〈〉 and v

one has N : 〈∆ ` Γi〉 and N : 〈∆ ` Γ′
i〉. Hence, by IH, { i /N}M1 :

〈Γ<i.Γ>i ` U →T 〉 and { i /N}M2 : 〈Γ′
<i.Γ

′
>i ` U〉. Thus, by rule

→e, ({ i /N}M1 { i /N}M2) :〈(Γ<i u Γ′
<i).(Γ>i u Γ′

>i) ` T 〉.

• Let
M :〈Γ ` U1〉 M :〈Γ ` U2〉

M :〈Γ ` U1 u U2〉
. By IH, { i /N}M : 〈Γ<i.Γ>i ` U1〉

and { i /N}M : 〈Γ<i.Γ>i ` U2〉. Thus, by rule ui, one has that
{ i /N}M :〈Γ<i.Γ>i ` U1 u U2〉.

• Let
M :〈Γ ` U〉 〈Γ ` U〉 v 〈Γ′ ` U ′〉

M :〈Γ′ ` U ′〉
. By lemma 9.5, Γ′ v Γ and

U v U ′, hence, by lemma 9.2, Γ′
i v Γi and Γ′

<i.Γ
′
>i v Γ<i.Γ>i.

Thus, by rules v〈〉 and v, N : 〈∆ ` Γi〉, and, by IH, { i /N}M :
〈Γ<i.Γ>i ` U〉. By rules v〈〉 and v, { i /N}M :〈Γ′

<i.Γ
′
>i ` U ′〉.

10

2. • If
1:〈T.nil ` T 〉

, nothing to prove.

• Let
M :〈envM

ω ` ω〉
. One has the following cases:

- If FI(M) = { i }, then |envM
ω | = i, thus, (envM

ω)<i.(envM
ω)>i =

envM ′

ω , where M ′ is any term such that sup(M ′)= i− 1. Hence,
envM ′

ω u ∆ = ∆. By lemmas 4.3 and 10.1, sup({ i /N}M) =
sup(N)= |∆|, hence, by lemma 10.2, { i /N}M :〈∆ ` ω〉.

- Otherwise, by lemma 4.3 and 10.1, sup({ i /N}M) is given by
max(sup(N), sup(M)−1)=max(|∆|, |envM

ω |−1), which is equiv-
alent to |∆ u ((envM

ω)<i.(envM
ω)>i)|. Thus, by lemma 10.2,

{ i /N}M :〈∆ u ((envM
ω)<i.(envM

ω)>i) ` ω〉.

• Let
n :〈Γ ` U〉

n+1:〈ω.Γ ` U〉
. For i=n+1, {n+1 /N}n+1=N and, by lemma

10.1, |Γ|= n. By lemma 12, Γn = V , where V v U . Thus, by rule
ue and lemma 9.2, (ω.Γ<n.nil) u ∆ v ∆ and, by rules v〈〉 and v,
N :〈(ω.Γ<n.nil) u ∆ ` U〉.

• Let
M :〈U.Γ ` T 〉

λ.M :〈Γ ` U →T 〉
. Note that (U.Γ)(i+1) = Γi. If sup(N) = 0,

then, by lemma 2.1, N+ ≡N , otherwise, by lemma 13, N+ : 〈ω.∆ `
Γi〉. By IH, { i+1 /N+}M : 〈(U.Γ<i.Γ>i) u ∆′ ` T 〉, where ∆′ is
either nil or ω.∆. If ∆′≡ω.∆, then (U.Γ<i.Γ>i)u∆′=U.

(

(Γ<i.Γ>i)u

∆
)

. Thus, by rule →i, λ.{ i+1 /N+}M : 〈(Γ<i.Γ>i) u ∆ ` U →T 〉.
The case where ∆′≡nil is trivial.

• Let
M1 :〈Γ ` U →T 〉 M2 :〈Γ′ ` U〉

M1 M2 :〈Γ u Γ′ ` T 〉
. If i∈FI(M1) and i∈FI(M2),

then, (Γ u Γ′)i =Γi u Γ′
i, and, by rules ue, v〈〉 and v, N : 〈∆ ` Γi〉

and N : 〈∆ ` Γ′
i〉. By IH, { i /N}M1 : 〈(Γ<i.Γ>i) u ∆ ` U →T 〉

and { i /N}M2 : 〈(Γ′
<i.Γ

′
>i) u ∆ ` U〉. Note that (Γ<i.Γ>i) u ∆ u

(Γ′
<i.Γ

′
>i) u ∆ =

(

(Γ u Γ′)<i.(Γ u Γ′)>i

)

u ∆. Thus, by rule →e,

{ i /N}(M1 M2) : 〈
(

(Γ u Γ′)<i.(Γ u Γ′)>i

)

u ∆ ` T 〉. The cases i /∈
FI(M1) and i /∈ FI(M2) are similar, using 1 on the induction step
whenever necessary.

• Let
M :〈Γ ` U1〉 M :〈Γ ` U2〉

M :〈Γ ` U1 u U2〉
. By IH one has that { i /N}M :

〈(Γ<i.Γ>i) u ∆ ` U1〉 and { i /N}M : 〈(Γ<i.Γ>i) u ∆ ` U2〉. Thus,
by rule ui, { i /N}M :〈(Γ<i.Γ>i) u ∆ ` U1 u U2〉.

• Let
M :〈Γ ` U〉 〈Γ ` U〉 v 〈Γ′ ` U ′〉

M :〈Γ′ ` U ′〉
. By lemma 9.5, Γ′ v Γ and

U v U ′, hence, by lemma 9.2, Γ′
i v Γi and Γ′

<i.Γ
′
>i v Γ<i.Γ>i.

Thus, by rules v〈〉 and v, N :〈∆ ` Γi〉 and, by IH, one has { i /N}M :
〈(Γ<i.Γ>i) u ∆ ` U〉. By lemma 9.6, (Γ′

<i.Γ
′
>i)u ∆ v (Γ<i.Γ>i)u ∆,

thus, by rules v〈〉 and v, { i /N}M :〈(Γ′
<i.Γ

′
>i) u ∆ ` U ′〉.

As a consequence of lemma 10 and the possibility of some free indices be
eliminated during a β-reduction, we need the following definition.

Definition 9. Let M be a term and sup(M)=m. For a context Γ, let Γ�M be

the restriction of Γ to FI(M), given by Γ≤m.nil.

11

The definition above will allow us to type the resulting term from a β-
reduction in a shorter context, related to the original one. First, we prove some
properties about the restriction on contexts.

Lemma 15. 1. If sup(N) ≤ sup(M), then envM
ω �N= envN

ω .

2. If |Γ| ≤ sup(M), then (Γ u ∆)�M= Γ u ∆�M .

3. If sup(N) > 0, then (U.Γ)�N= U.Γ�(λ.N).

Proof. 1. Straightforward from definition 9 and the definition of envM
ω .

2. Let sup(M)=m. Thus, (Γu ∆)�M= (Γu ∆)≤m.nil = (Γ≤mu ∆≤m).nil =
(Γ≤m.nil) u (∆≤m.nil)=Γ u (∆≤m.nil)=Γ u ∆�M .

3. If sup(N) > 0, by lemma 1.2, sup(λ.N) = sup(N)−1. Thus, (U.Γ)�N=
(U.Γ)≤sup(N).nil=U.Γ≤(sup(N)−1).nil=U.Γ�(λ.N).

Finally, we have theorem 2 stating the proof for β-redices and then theorem
3 for any β-contraction.

Theorem 2. If (λ.M N) :〈Γ ` U〉 then { 1 /N}M :〈Γ�{ 1 /N}M ` U〉

Proof. By induction on the derivation (λ.M N) :〈Γ ` U〉.

• Let
(λ.M N) :〈env

(λ.M N)
ω ` ω〉

. By lemma 5, one has sup({ 1 /N}M) ≤

sup(λ.M N), hence, by lemma 15.1, envλ.M N
ω �{ 1 /N}M= env

{ 1 /N}M
ω . By

rule ω the result is obtained, trivially.

• Let
λ.M :〈∆ ` U →T 〉 N :〈∆′ ` U〉

(λ.M N) :〈∆ u ∆′ ` T 〉
. One has the following cases.

If sup(M)=0, then, by lemma 12.3, ∆=nil and M :〈nil ` T 〉. By lemma
3.3, { 1 /N}M≡M , thus, ∆ u ∆′=∆′ and ∆′�{ 1 /N}M=∆′�M=nil.

If sup(M)>0, then, by lemma 12.2, M :〈U.∆ ` T 〉:

- If 1 /∈ FI(M), then, by lemma 14.1, { 1/N}M : 〈∆ ` T 〉. By
lemma 15.2, (∆u ∆′)�{ 1 /N}M=∆u (∆′�{ 1 /N}M), hence, by rule ue

and lemma 9.2, (∆ u ∆′)�{ 1 /N}Mv ∆. Thus, by rules v〈〉 and v,
{ 1 /N}M :〈(∆ u ∆′)�{ 1 /N}M ` T 〉.

- Otherwise, by lemma 14.2, { 1/N}M :〈∆ u ∆′ ` T 〉. By lemma 10.1,
|∆ u ∆′|=sup({ 1/N}M), thus, (∆ u ∆′)�{ 1 /N}M= ∆ u ∆′.

• Let
(λ.M N) :〈Γ ` U1〉 (λ.M N) :〈Γ ` U2〉

(λ.M N) :〈Γ ` U1 u U2〉
. By IH one has { 1 /N}M :

〈Γ�{ 1 /N}M ` U1〉 and { 1 /N}M : 〈Γ�{ 1 /N}M ` U2〉. Thus, by rule ui,
{ 1 /N}M :〈Γ�{ 1 /N}M ` U1 u U2〉.

• Let
(λ.M N) :〈Γ ` U〉 〈Γ ` U〉 v 〈Γ′ ` U ′〉

(λ.M N) :〈Γ′ ` U ′〉
. By IH, one has { 1 /N}M :

〈Γ�{ 1 /N}M ` U〉. By lemma 9.5, Γ′ v Γ and U v U ′, hence, by lemma
9.2, Γ′ �{ 1 /N}Mv Γ �{ 1 /N}M . Thus, by rules v〈〉 and v, { i /N}M :
〈Γ′�{ 1 /N}M ` U ′〉.

12

Theorem 3 (SR for β-contraction). If M : 〈Γ ` U〉 and M −→β N , then

N :〈Γ�N ` U〉.

Proof. Induction on the derivation M :〈Γ ` U〉

• Let
M :〈envM

ω ` ω〉
. One has that FI(N) ⊆ FI(M), hence, sup(N) ≤

sup(M). By lemma 15.1, envM
ω �N=envN

ω , thus, by rule ω, N :〈envN
ω ` ω〉.

• Let
M ′ :〈V.Γ ` T 〉

λ.M ′ :〈Γ ` V →T 〉
. By IH, N ′ :〈(V.Γ)�N ′ ` T 〉, where M ′ −→β N ′.

If sup(N ′)=0, then N ′ : 〈nil ` T 〉. By →′
i, λ.N ′ : 〈nil ` ω→T 〉, hence, by

rules →, v〈〉 and v, λ.N ′ :〈nil ` V →T 〉.

If sup(N ′) > 0, then, by lemma 15.3, (V.Γ)�N ′= V.Γ�λ.N ′ . Thus, by rule
→i, λ.N ′ :〈Γ�λ.N ′ ` V →T 〉.

• Let
M ′ :〈nil ` T 〉

λ.M ′ :〈nil ` ω→T 〉
. Thus, M ′ −→β N ′ and, by theorem 1, sup(N ′)≤

sup(M ′)=0. By IH, N ′ :〈nil ` T 〉, hence, by rule →′
i, λ.N ′ :〈nil ` ω→T 〉.

• Let
M1 :〈∆ ` U →T 〉 M2 :〈∆′ ` U〉

M1 M2 :〈∆ u ∆′ ` T 〉
. Suppose that N ≡ (N1 M2), where

M1 −→β N1, hence, by IH, N1 : 〈∆�N1
` U →T 〉. By rule →e, (N1 M2) :

〈∆�N1
u ∆′ ` T 〉.

- If sup(N1)≥ sup(M2), then sup(N) = sup(N1) and, by lemma 15.2,
(∆ u ∆′)�N1

=∆�N1
u ∆′.

- If sup(M2)>sup(N1), then sup(N)= sup(M2) and, by lemma 15.2,
(∆ u ∆′)�M2

=∆�M2
u ∆′. By rule ue and lemma 9.2, one has that

(∆�M2
)>sup(N1) u ∆′

>sup(N1)
v∆′

>sup(N1), thus, by lemma 9.2, (∆ u

∆′)�N1
. ((∆�M2

)>sup(N1)u ∆′
>sup(N1))v(∆u ∆′)�N1

.∆′
>sup(N1)

. Ob-

serve, by lemma 6.4 and definition 9, that (∆u ∆′)�N1
.∆′

>sup(N1) =

∆�N1
u ∆′ and that (∆ u ∆′)�N1

. ((∆�M2
)>sup(N1) u ∆′

>sup(N1)
) =

∆�M2
u ∆′. Thus, by rules v〈〉 and v, N :〈∆�M2

u ∆′ ` T 〉.

• Let
M :〈Γ ` U1〉 M :〈Γ ` U2〉

M :〈Γ ` U1 u U2〉
. By IH, one has N : 〈Γ�N ` U1〉 and

N :〈Γ�N ` U2〉, thus, by rule ui, N :〈Γ�N ` U1 u U2〉.

• Let
M :〈Γ′ ` U ′〉 〈Γ′ ` U ′〉 v 〈Γ ` U〉

M :〈Γ ` U〉
. By IH, N : 〈Γ′�N ` U ′〉 and, by

lemma 9.5, Γ v Γ′ and U ′ v U . Thus, by lemma 9.2, Γ�Nv Γ′�N and, by
rules v〈〉 and v, N :〈Γ�N ` U〉.

5 Conclusions and Future Work

We introduced an intersection type system in de Bruijn notation and proved it to
preserve subject reduction. One particular difference between the type system
presented in definition 8 and the one in [KN07] is that the former allows some
kind of weakenig, while the latter does not. This characteristic may be relevant
while investigating the principal typing property [Wel02]. A type inference
algorithm for it might need Expansions to be performed [CW04.2]. Apparently,

13

the way to achieve it is adding expansion variables to the type system [CW04,
CW04.2].

The investigation of type inference, principal types, principal typings and
other relevant properties in this system of intersection types as well as its adap-
tation for explicit substitution calculi in de Bruijn notation is an interesting
work to be done.

References

[ACCL91] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit Substitutions. J. of

Func. Programming, 1(4):375–416, 1991.

[ARK01] M. Ayala-Rincón and F. Kamareddine. Unification via the λse-Style of Explicit
Substitution. The Logical Journal of the Interest Group in Pure and Applied

Logics, 9(4):489–523, 2001.

[BCDC83] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and
the completeness of type assignment. J. Symbolic Logic, 48:931–940, 1983.

[CDC78] M. Coppo and M. Dezani-Ciancaglini. A new type assignment for lambda-terms.
Archiv für Mathematische Logik und Grundlagenforschung, 19:139–156, 1978.

[CDC80] M. Coppo and M. Dezani-Ciancaglini. An Extension of the Basic Functionality
Theory for the λ-Calculus. Notre Dame Journal of Formal Logic, 21(4):685–693,
1980.

[CF58] H. B. Curry and R. Feys. Combinatory Logic, volume 1. North Holland, 1958.

[CW04] S. Carlier and J. B. Wells. Type Inference with Expansion Variables and Inter-
section Types in System E and an Exact Correspondence with β-reduction. In
PPDP ’04: Proceedings of the 6th ACM SIGPLAN international conference on

Principles and practice of declarative programming, pages 132–143. ACM, 2004.

[CW04.2] S. Carlier and J. B. Wells. Expansion: the Crucial Mechanism for Type Inference
with Intersection Types: a Survey and Explanation. In ITRS ’04 workshop, 2004.

[dB72] N.G. de Bruijn. Lambda-Calculus Notation with Nameless Dummies, a Tool for
Automatic Formula Manipulation, with Application to the Church-Rosser Theo-
rem. Indag. Mat., 34(5):381–392, 1972.

[dB78] N.G. de Bruijn. A namefree lambda calculus with facilities for internal definition
of expressions and segments. T.H.-Report 78-WSK-03, Technische Hogeschool
Eindhoven, Nederland, 1978.

[Kam03] F. Kamareddine, editor. Thirty Five Years of Automating Mathematics. Kluwer,
2003.

[KN07] F. Kamareddine and K. Nour. A completeness result for a realisability semantics
for an intersection type system. Annals of Pure and Applied Logic, 146:180–198,
2007.

[KR95] F. Kamareddine and A. Ŕıos. A λ-calculus à la de Bruijn with Explicit Sub-
stitutions. In Proc. of PLILP’95, volume 982 of LNCS, pages 45–62. Springer,
1995.

[Mil78] Robin Milner. A theory of type polymorphism in programming. Journal of com-

puter and System Science, 17(3):348–375, 1978.

[NGdV94] R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer. Selected papers on Automath.
North-Holland, 1994.

[Pot80] G. Pottinger. A type assignment for the strongly normalizable λ-terms. In J.P.
Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic,

Lambda Calculus and Formalism, pages 561–578. Academic Press, 1980.

[Wel02] J.B. Wells. The essence of principal typings. In Proc. 29th International Collo-

quium on Automata, Languages and Programming, ICALP 2002, volume 2380 of
LNCS, pages 913–925. Springer, 2002.

14

