
Principal Typings for Explicit Substitutions
Calculi?

Daniel Lima Ventura1??, Mauricio Ayala-Rincón1? ? ?, and
Fairouz Kamareddine2

1 Grupo de Teoria da Computação, Dep. de Matemática Universidade de Braśılia,
Braśılia D.F., Brasil

2 School of Mathematical and Computer Sciences Heriot-Watt University,
Edinburgh, Scotland UK

{ventura,ayala}@mat.unb.br, fairouz@macs.hw.ac.uk

Abstract. Having principal typings (for short PT) is an important
property of type systems. In simply typed systems, this property guaran-
tees the possibility of a complete and terminating type inference mecha-
nism. It is well-known that the simply typed λ-calculus has this property
but recently J.B. Wells has introduced a system-independent definition
of PT, which allows to prove that some type systems, e.g. the Hind-
ley/Milner type system, do not satisfy PT. Explicit substitutions ad-
dress a major computational drawback of the λ-calculus and allow the
explicit treatment of the substitution operation to formally correspond
to its implementation. Several extensions of the λ-calculus with explicit
substitution have been given but some of which do not preserve basic
properties such as the preservation of strong normalization. We consider
two systems of explicit substitutions (λse and λσ) and show that they
can be accommodated with an adequate notion of PT. Specifically, our
results are as follows:
• We introduce PT notions for the simply typed versions of the λse- and
the λσ-calculi and prove that they agree with Wells’ notion of PT.
• We show that these versions satisfy PT by revisiting previously intro-
duced type inference algorithms.

Key Words: lambda-calculus, explicit substitution, principal typings

1 Introduction

The development of well-behaved calculi of explicit substitutions is of great in-
terest in order to bridge the formal study of the λ-calculus and its real im-
plementations. Since β contraction depends on the definition of the operation

? Research supported by the CNPq Brazilian Research Council.
?? Corresponding author, currently supported by a PhD scholarship of the CNPq at

the Heriot-Watt University.
? ? ? Author partially supported by the CNPq.

of substitution, which is informally given in the theory of λ-calculus, substitu-
tions are in fact made explicit, but obscurely developed (that is, in an empirical
manner), when most computational environments based on the λ-calculus are
implemented. A remarkable exception is λProlog, for which its explicit sub-
stitutions calculus, the suspension calculus, has been extracted and formally
studied [NaWi98].

In the study of making substitutions explicit, several alternatives rose out
and all of them are directed to guarantee essential properties such as simu-
lating beta-reduction, confluence, noetherianity (of the associated substitution
calculus), subject reduction, having principal typings (for short PT), preserva-
tion of strong normalization etc. This is a non trivial task; for instance, the
λσ-calculus [ACCL91], that is one of the first proposed calculi of explicit sub-
stitutions, was reported to break the latter property some years after its intro-
duction [Mel95]: this implies that infinite derivations starting from well-typed
λ-terms are possible in this calculus, which is at least questionable for any mech-
anism supposed to simulate the λ-calculus explicitly. In this paper, the focus is
on the PT property, which means that for any typable term M , there exists
a type judgment A ` M : τ , representing all possible typings 〈A′, τ ′〉 for M .
In the simply typed λ-calculus this corresponds to the existence of more repre-
sentative typings. PT guarantees compositional type inference helping to find a
complete/terminating type inference algorithm.

In section 2 we present the type-free λ-calculus in de Bruijn notation, the
λse-calculus [KR97] and the λσ-calculus [ACCL91]. In section 3 we present the
type assignment systems background and then we present simply typed systems
for each calculus we study. Then, we discuss the general notion of principal
typings defined in [We2002] and present notions of principal typings for the λ-
calculus in de Bruijn notation, the λσ- and the λse-calculi and prove that they
are adequate. In section 4 we conclude and present future work.

2 The type free calculi

2.1 λ-calculus in de Bruijn notation

Definition 1 (Set ΛdB). The syntax of λ-calculus in de Bruijn notation, the
λdB-calculus, is defined inductively as

Terms M ::= n | (M M) |λ.M where n ∈ N∗= Nr{0}
Let M be a λ-term. If, in the tree representation of M , there are exactly n
abstractors in the minimal path from the root position until the position of
some subterm M1, then M1 is said n-deep in M . In other words, M1 is in
between n abstractors.
Definition 2. We say that i occurs as free index in a term M if i + n is
n-deep in M .
Terms like ((((M1 M2) M3) . . .) Mn) are written as usual (M1 M2 . . . Mn). The
β-contraction definition in this notation needs a mechanism which detects and
updates free indices of terms. It follows an operator similar to the one presented
in [ARKa2001a].

Definition 3. Let M ∈ ΛdB and i ∈ N. The i-lift of M , denoted as M+i, is
defined inductively as

1 . (M1 M2)+i = (M+i
1 M+i

2) 3 . n+i =
{

n + 1 , if n > i
n , if n ≤ i.

2 . (λ.M1)+i = λ.M
+(i+1)
1

The lift of a term M is its 0-lift, denoted as M+. Intuitively, the lift of M cor-
responds to an increment by 1 of all free indices occurring in M . Using the i-lift,
we are able to present the definition of the substitution used by β-contractions,
similarly to the one presented in [ARKa2001a].
Definition 4. Let m,n ∈ N∗. The β-substitution for free occurrences of n in
M ∈ ΛdB by term N , denoted as {n /N}M , is defined inductively by

1 . {n /N}(M1 M2) = ({n /N}M1 {n /N}M2) 3 . {n /N}m =

8<:
m− 1 , if m > n
N, if m = n
m , if m < n2 . {n /N}λ.M1 = λ.{n + 1 /N+}M1

Observe that in item 2 of Def. 4, the lift operator is used to avoid captures of
free indices in N . We present the β-contraction as defined in [ARKa2001a].
Definition 5. β-contraction in λdB is defined by (λ.M N)→β {1 /N}M .
Notice that item 3 in Definition 4, for n = 1, is the mechanism which does
the substitution and updates the free indices in M as consequence of the lead
abstractor elimination.

2.2 The λse-Calculus

The λse-calculus is a proper extension of the λdB-calculus. Two operators σ
and ϕ are introduced for substitution and updating, respectively, to control the
atomization of the substitution operation by arithmetic constraints.
Definition 6 (Set Λs of λse-terms). The syntax of the λse-calculus, where
n, i, j ∈ N∗ and k ∈ N is given by

Terms M ::= n | (M M) |λ.M |MσiM |ϕj
kM

The term MσiN represents the term {i /N}M ; i.e., the substitution of free
occurrences of i in M by N , updating free variables in M (and in N). The term
ϕj

kM represents j−1 applications of the k-lift to the term M ; i.e., M+k(j−1)
.

Table 1 contains the rewriting rules of the λse-calculus together with the rule
(Eta), as given in [ARKa2001a].

=se denotes the equality for the associated substitution calculus, denoted as
se, induced by all the rules except (σ-generation) and (Eta).

2.3 The λσ-Calculus

The λσ-calculus is given by a first-order rewriting system, which makes substi-
tutions explicit by extending the language with two sorts of objects: terms and
substitutions which are called λσ-expression.
Definition 7 (Set Λσ of λσ-expressions). The λσ-expressions consist of:

Terms M ::=1 | (M M) |λ.M |M [S]
Substitutions S ::= id | ↑ |M.S |S ◦ S

(λ.M N) −→ M σ1N (σ-generation)
(λ.M)σiN −→ λ.(Mσi+1N) (σ-λ-transition)
(M1 M2)σ

iN −→ ((M1σ
iN) (M2σ

iN)) (σ-app-trans.)

n σiN −→

8<:
n− 1 if n > i
ϕi

0N if n = i
n if n < i

(σ-destruction)

ϕi
k(λ.M) −→ λ.(ϕi

k+1M) (ϕ-λ-trans.)
ϕi

k(M1 M2) −→ ((ϕi
kM1) (ϕi

kM2)) (ϕ-app-trans.)

ϕi
k n −→


n + i− 1 if n > k
n if n ≤ k

(ϕ-destruction)

(M1σ
iM2)σ

jN −→ (M1σ
j+1N)σi(M2σ

j−i+1N) if i ≤ j (σ-σ-trans.)
(ϕi

kM)σjN −→ ϕi−1
k M if k < j < k + i (σ-ϕ-trans. 1)

(ϕi
kM)σjN −→ ϕi

k(Mσj−i+1N) if k + i ≤ j (σ-ϕ-trans. 2)
ϕi

k(MσjN) −→ (ϕi
k+1M)σj(ϕi

k+1−jN) if j ≤ k + 1 (ϕ-σ-trans.)

ϕi
k(ϕj

l M) −→ ϕj
l (ϕ

i
k+1−jM) if l + j ≤ k (ϕ-ϕ-trans. 1)

ϕi
k(ϕj

l M) −→ ϕj+i−1
l M if l ≤ k < l + j (ϕ-ϕ-trans. 2)

λ.(M 1) −→ N if M=seϕ2
0 N (Eta)

Table 1. The rewriting system of the λse-calculus with the Eta rule

Substitutions are lists of the form N/i indicating that the index i should be
changed to the term N . The expression id represents a substitution of the form
{1 /1 , 2 /2 , . . . } whereas ↑ is the substitution { i + 1 / i |i∈N∗}. The expression
S◦S represents the composition of substitutions. Moreover, 1 [↑n], where n ∈ N∗,
codifies the de Bruijn index n + 1 and i [S] represents the value of i through
the substitution S, which can be seen as a function S(i). The substitution M.S
has the form {M/1 , S(i)/i + 1 }, called the cons of M in S. M [N.id] starts
the simulation of the β-reduction of (λ.M N) in λσ. Thus, in addition to the
substitution of the free occurrences of the index 1 by the corresponding term,
free occurrences of indices should be decremented because of the elimination
of the abstractor. Table 2 includes the rewriting system of the λσ-calculus, as
presented in [DoHaKi2000].

(λ.M N) −→ M [N.id] (Beta)
(M N)[S] −→ (M [S] N [S]) (App)
1[M.S] −→ M (V arCons)
M [id] −→ M (Id)
(λ.M)[S] −→ λ.(M [1.(S◦↑)]) (Abs)
(M [S])[T] −→ M [S ◦ T] (Clos)
id ◦ S −→ S (IdL)
↑◦ (M.S) −→ S (ShiftCons)
(S1 ◦ S2) ◦ S3 −→ S1 ◦ (S2 ◦ S3) (AssEnv)
(M.S) ◦ T −→ M [T].(S ◦ T) (MapEnv)
S ◦ id −→ S (IdR)
1.↑ −→ id (V arShift)
1[S].(↑◦S) −→ S (Scons)
λ.(M 1) −→ N if M=σN [↑] (Eta)

Table 2. The rewriting system for the λσ-calculus with the Eta rule

This system without (Eta) is equivalent to that of [ACCL91]. The associated
substitution calculus, denoted as σ, is the one induced by all the rules except
(Beta) and (Eta), and its equality is denoted as =σ.

3 The Type Systems

Definition 8. The syntax of the simple types and contexts is given by:
Types τ ::= α | τ → τ Contexts A ::= nil | τ.A

α ranges over type variables. A type assignment system S is a set of rules
which allows some terms of a given system be associated with a type. A context
gives the necessary information used by S rules to associate a type to a term. In
the simply typed λ-calculus [Hi97], the typable terms are strongly normalizing.
The ordered pair 〈A, τ〉, of a context and a type, is called a typing in S. For a
term M , A ` M : τ denotes that M has type τ in context A, and 〈A, τ〉 is called
a typing of M . Let Θ = 〈A, τ〉 be a typing in S. S
 M : Θ denotes that Θ is
a typing of M in S.

The contexts for λ-terms in de Bruijn notation are sequences of types. Let
A be some context and n ∈ N. Then A<n denotes the first n − 1 types of A.
Similarly we define A>n, A≤n and A≥n. Note that, for A>n and A≥n the final
nil element is included. For n=0, A≤0.A=A<0.A=A. The length of A is defined
as |nil|=0 and, if A is not nil, |A|=1+|A>1|. The addition of some type τ at the
end of a context A is defined as A.τ=A≤m.τ.nil, where |A|=m.

Given a term M , an interesting question is whether it is typable in S or
not. Note that, we are using a Curry-style/implicit typing, where in λ.M we did
not specify the type of the bound variable (1). Such terms have many types,
depending on the context. Another important question is whether given a term,
its so-called most general typing can be found. An answer to this question,
which represents any other answer, is called principal typing. Principal typing
(which is context independent) is not to be confused with a principal type (which
is context dependent). Let Θ be a typing in S and TermsS(Θ)={M |S
 M :Θ}.
J.B. Wells introduced in [We2002] a system-independent definition of PT and
proved that it generalizes previous system-specific definitions.

Definition 9 ([We2002]). A typing Θ in system S is principal for some term
M if S
 M : Θ and for any Θ′ such that S
 M : Θ′ we have that Θ ≤S Θ′,
where Θ1 ≤S Θ2 ⇐⇒ TermsS(Θ1) ⊆ TermsS(Θ2).
In simply typed systems the principal typing notion is tied to type substi-
tution and weakening. Weakening allows one to add unnecessary informa-
tion to contexts. Type substitution maps type variables to types. Given
a type substitution s, the extension for functional types is straightforward as
s(σ→τ)=s(σ)→s(τ) and the extension for sequential contexts as s(nil)=nil and
s(τ.A)=s(τ).s(A). The extension for typings is given by s(Θ)=〈s(A), s(τ)〉.

3.1 Principal typings for the simply typed λ-calculus in de Bruijn
notation TAλdB

Definition 10. (The System TAλdB) The TAλdB typing rules are given by

(Var) τ.A ` 1 : τ (Varn)
A ` n : τ

σ.A ` n + 1 : τ

(Lambda)
σ.A ` M : τ

A ` λ.M : σ → τ
(App)

A ` M : σ → τ A ` N : σ

A ` (M N) : τ

This system is similar to TAλ([Hi97]). The rule (Varn) allows the construction
of contexts as sequences.
Lemma 1. Let M be a λdB-term. If A `M : τ , then A.σ `M : τ . Hence, the
rule A ` M :τ

A.σ ` M :τ
(λdB-weak) holds in the system TAλdB.

Using (λdB-weak) and type substitution, we follow the definition of [We2002]
for Hindley’s Principal Typing to define principal typing for the λdB-calculus.
Definition 11. A principal typing in TAλdB of a term M is the typing Θ =
〈A, τ〉 such that
1. TAλdB
 M : Θ
2. If TAλdB
 M : Θ′ for any typing Θ′ = 〈A′, τ ′〉, then there exists some

substitution s such that s(A) = A′
≤|A|.nil and s(τ) = τ ′.

Observe that, given a principal typing 〈A, τ〉 of M , the context A is the
shortest context where M can be typable. In contrast to the λ-calculus with
names, where the context from a principal typing of M is the smallest set because
it declares types for exactly the free variables of M , the context from a principal
typing in λdB may has some type declaration for variables not occurring in the
term, to maintain the ordered structure of contexts. For example, a PT for 2 is
〈τ1.τ2.nil, τ2〉.

As is the case for the simply typed λ-calculus with names, the best way to
assure that Definition 11 is the correct translation of the PT concept, is to verify
that Definition 11 corresponds to Definition 9.
Theorem 1. A typing Θ is principal in TAλdB according to Definition 11 iff Θ
is principal in TAλdB according to Definition 9.

We now present a type inference algorithm for λdB-terms, similarly to the
one in [AyMu2000] for λse, to verify whether TAλdB has PT according to Defi-
nition 11. Given any term M , decorate each subterm with a new type variable
as subscript and a new context variable as superscript, obtaining a new term
denoted as M ′. For example, for term λ.(2 1) we have the decorated term
(λ.(2 A1

τ1 1 A2
τ2)A3

τ3)A4
τ4 . Then, rules from Table 3 are applied to pairs of the form

〈〈R,E〉〉, where R is a set of decorated terms and E a set of equations on type
and context variables.

The inference rules in Table 3 are given according to the typing rules of
TAλdB . Type inference for M starts with 〈〈R0, ∅〉〉, where R0 is the set of all M ′

subterms. The rules from Table 3 are applied until one reaches 〈〈∅, Ef 〉〉, where
Ef is a set of first-order equations over context and type variables.

(Var) 〈〈R ∪ {1A
τ }, E〉〉 →〈〈R, E ∪ {A = τ.A′}〉〉,where A′ is a fresh

context variable;
(Varn) 〈〈R ∪ {nA

τ }, E〉〉 →〈〈R, E ∪ {A = τ ′1. · · · .τ ′n−1.τ.A′}〉〉,where A′

and τ ′1, . . . , τ
′
n−1 are fresh context and type

variables;
(Lambda) 〈〈R ∪ {(λ.MA1

τ1)A2
τ2 }, E〉〉 →〈〈R, E ∪ {τ2 = τ∗ → τ1, A1 = τ∗.A2}〉〉, where

τ∗ is a fresh type variable;
(App) 〈〈R ∪ {(MA1

τ1 NA2
τ2)A3

τ3 }, E〉〉→〈〈R, E ∪ {A1 = A2, A2 = A3, τ1 = τ2 → τ3}〉〉
Table 3. Rules for Type Inference in System TAλdB

Example 1. Let M = λ.(2 1). Then M ′ = (λ.(2 A1
τ1 1 A2

τ2)A3
τ3)A4

τ4 and R0 = { 2 A1
τ1 ,

1 A2
τ2 , (2 A1

τ1 1 A2
τ2)A3

τ3 , (λ.(2 A1
τ1 1 A2

τ2)A3
τ3)A4

τ4 }. Using the rules in Table 3 we have the
following reduction:

〈〈R0, ∅〉〉 →Varn

〈〈R1 = R0 r { 2 A1
τ1 }, E1 = {A1 = τ ′1.τ1.A

′
1}〉〉 →Var

〈〈R2 = R1 r { 1 A2
τ2 }, E2 = E1 ∪ {A2 = τ2.A

′
2}〉〉 →App

〈〈R3 = R2 r {(2 A1
τ1 1 A2

τ2)A3
τ3 }, E3 = E2 ∪ {A1 = A2, A2 = A3, τ1 = τ2→τ3}〉〉 →Lambda

〈〈∅ = R3 r {(λ.(2 A1
τ1 1 A2

τ2)A3
τ3)A4

τ4 }, E4 = E3 ∪ {τ4 = τ∗1→τ3, A3 = τ∗1 .A4}〉〉

Thus, E4 = Ef . Solving the trivial equation over context variables, i.e. A1 =
A2 = A3, and using variables of smaller subscripts, one gets {τ1 = τ2→τ3, τ4 =

τ∗1→τ3, A1 = τ ′1.τ1.A
′
1, A1 = τ2.A

′
2, A1 = τ∗1 .A4}. Thus, simplifying one gets {τ1 =

τ2→τ3, τ4 = τ∗1→τ3, τ
′
1.τ1.A

′
1 = τ2.A

′
2 = τ∗1 .A4}. From these equations one gets the

most general unifier (mgu for short) τ4 = τ2→τ3 and A4 = (τ2→τ3).A′
1, for the

variables of interest. Since the context must be the shortest one, A′
1 = nil and

〈(τ2→τ3).nil, τ2→τ3〉 is a principal typing of M .

From Definition 11 and by the uniqueness of the solutions of the type infer-
ence algorithm, one deduces that TAλdB satisfies PT. The next theorem says
that every typable term has a principal typing.

Theorem 2 (Principal Typings for TAλdB). TAλdB satisfies the property
of having principal typings.

3.2 Principal typings for TAλse
, the simply typed λse

The typed version of λse presented is in Curry style, which we have verified
to have the same properties which properties as the version in Church style
presented in [ARKa2001a]. In particular, the properties in question being: weak
normalisation (WN), confluence (CR) and subject reduction (SR). Thus, the
syntax of λse-terms and the rules are the same as the untyped version.

Since the syntax of λse remains close to the λdB-calculus, to have a type
assignment system for the λse-calculus we only need to add typing rules to
TAλdB for the two new kinds of terms.
Definition 12 (The System TAλse

). TAλse
is given by (Var), (Varn), (App),

(Lambda) from Definiton 10 and the following new rules.

(Sigma)
A≥i ` N : ρ A<i.ρ.A≥i ` M : τ

A ` MσiN : τ
(Phi)

A≤k.A≥k+i ` M : τ

A ` ϕi
kM : τ

Weakening for λse is done the same way as for λdB, adding types at the end of
a context, giving the following lemma.
Lemma 2 (Weakening for λse). The rule (λse-weak) holds in System TAλse

,

where A ` M : τ

A.σ ` M : τ
(λse-weak).

Consequently, the definition of principal typings in λse is the same as that for
TAλdB . For the sake of completeness we repeat it here.

Definition 13 (Principal Typings in TAλse
). A principal typing of a term

M in TAλse is a typing Θ = 〈A, τ〉 such that

1. TAλse

 M : Θ

2. If TAλse

 M : Θ′ for any typing Θ′ = 〈A′, τ ′〉, then there exists a substitu-

tion s such that s(A) = A′
≤|A|.nil and s(τ) = τ ′.

Theorem 3. A typing Θ is principal in TAλse according to Definition 13 iff Θ
is principal in TAλse

according to Definition 9.

We now present a type inference algorithm for the λse-calculus, similarly to that
of [AyMu2000]. The algorithm is composed of the rules from Table 3 and the
new rules in Table 4.

(Sigma) 〈〈R ∪ {(MA1
τ1 σiNA2

τ2)A3
τ3 }, E〉〉 →

〈〈R, E ∪ {τ1=τ3, A1=τ ′1. · · · .τ ′i−1.τ2.A2, A3=τ ′1. · · · .τ ′i−1.A2}〉〉,
where τ ′1, . . . , τ

′
i−1 are new type variables and the sequence is

empty if i = 1;

(Phi) 〈〈R ∪ {(ϕi
kMA1

τ1)A2
τ2 }, E〉〉 →

〈〈R, E ∪ {τ1 = τ2, A2 = τ ′1. · · · .τ ′k+i−1.A
′, A1 = τ ′1. · · · .τ ′k.A′}〉〉,

where A′ and τ ′1, . . . , τ
′
k+i−1 are new variables of context and

type and if k + i− 1, k = 0 then the sequences τ ′1, . . . , τ
′
k+i−1

and τ ′1, . . . , τ
′
k, respectively, are empty.

Table 4. Type inference rules for the λse-Calculus

Similarly to the previous algorithm, the rules of the Table 4 were developed
according to the rules of Definition 12. The decorated term associated with
M , denoted as M ′, has a syntax close to the one of decorated λdB-terms: any
subterm is decorated with its type and its context variables. The rules are applied
to pairs 〈〈R,E〉〉, starting from the pair 〈〈R0, ∅〉〉, as was done to TAλdB .

Example 2. For the λse-term M = λ.((1σ22) (ϕ2
0 2)), one obtains the corre-

sponding R0 from M ′ = (λ.((1A1
τ1

σ22A2
τ2

)A3
τ3

(ϕ2
0 2A4

τ4
)A5
τ5

)A6
τ6

)A7
τ7

. Then, applying
the rules in Table 3 and 4 to the pair 〈〈R0, ∅〉〉, obtaining the pair 〈〈∅, Ef 〉〉, and
simplifying Ef , similarly to the example 1, one obtains the system of equations˘

τ1 = τ4 → τ6 , τ7 = τ∗1 → τ6 , τ1.A
′
1 = τ ′2.τ2.A2 , τ ′2.A2 = τ ′4.τ

′
3.τ4.A

′
3 = τ∗1 .A7 , A2 =

τ ′1.τ2.A
′
2

¯
from which one has the mgu τ7 = (τ2 → τ6) → τ6 and A7 = τ ′1.τ2.A

′
2

for variables of interest.

Theorem 4 (Principal Typings for TAλse). TAλse satisfies the property of
having principal typings.

3.3 Principal typings for TAλσ, the simply typed λσ

The typing rules of the λσ-calculus provide types for objects of sort term as
well as for objects of sort substitution. An object of sort substitution, due to its
semantics, can be viewed as a list of terms. Consequently, its type is a context.
S � A denotes that the object of sort substitution S has type A.

Definition 14 (The System TAλσ). TAλσ is given by the following typing
rules.

(var) τ.A ` 1 : τ (lambda)
σ.A ` M : τ

A ` λ.M : σ → τ

(app)
A ` M : σ → τ A ` N : σ

A ` (M N) : τ
(clos)

A ` S � A′ A′ ` M : τ

A ` M [S] : τ
(id) A ` id � A (shift) τ.A `↑ �A

(cons)
A ` M : τ A ` S � A′

A ` M.S � τ.A′ (comp)
A ` S � A′′ A′′ ` S′ � A′

A ` S′ ◦ S � A′

Observe that the name of the typing rules begin with lower-case letters, while
the rewriting rules with upper-case letters. As for λse, the typed version of the
λσ-calculus is presented in Curry style. We have verified that the Curry style
version has WN, CR and SR as the Church style version of [DoHaKi2000].

For TAλσ the notion of typing has to be adapted since the λσ-expression of
sort substitution is decorated with contexts variables as types and as contexts.
Thus, one may say that Θ=〈A, T〉 is a typing of a λσ-expression in TAλσ, where
T can be either a type or a context. If the analysed expression belongs to the
λ-calculus, the notion of typing corresponds to that of TAλdB .
Lemma 3 (Weakening for λσ). Let M be a λσ-term and S a λσ-substitution.
If A ` M : τ , then A.σ ` M : τ , for any type σ. Similarly, if A ` S � A′, then
A.σ ` S � A′.σ. Hence, the rules (λσ-tweak) and (λσ-sweak) hold in System
TAλσ, where

A ` M : τ

A.σ ` M : τ
(λσ-tweak)

A ` S � A′

A.σ ` S � A′.σ
(λσ-sweak)

Lemma 3 and type substitution allow us present a definition for PT in TAλσ.

Definition 15 (Principal Typings in TAλσ). A principal typing of an
expression M in TAλσ is a typing Θ = 〈A, T〉 such that
1. TAλσ
 M : Θ
2. If TAλσ
 M : Θ′ for any typing Θ′ = 〈A′, T′〉, then there exists a substitu-

tion s such that s(A) = A′
≤|A|.nil and if T is a type, s(T) = T′, otherwise

we have that s(T) = T′
≤|T|.nil.

We might verify if this PT definition has a correspondence with Wells’ system-
independent definition [We2002].
Theorem 5. A typing Θ is principal in TAλσ according to Definition 15 iff Θ
is principal in TAλσ according to Definition 9.
We now present an algorithm for type inference, to verify if TAλσ has PT ac-
cording to Definition 15. Thus, given an expression M , we will work with the
decorated expression M ′ but the type for substitutions is a context as well. We
use the same syntax for decorated expressions as in [Bo95].

(Var) 〈〈R ∪ {1A
τ }, E〉〉 →〈〈R, E ∪ {A = τ.A′}〉〉,where A′ is a fresh

context variable;
(Lambda) 〈〈R ∪ {(λ.MA1

τ1)A2
τ2 }, E〉〉 →〈〈R, E ∪ {τ2 = τ∗ → τ1, A1 = τ∗.A2}〉〉, where

τ∗ is a fresh type variable;
(App) 〈〈R ∪ {(MA1

τ1 NA2
τ2)A3

τ3 }, E〉〉→〈〈R, E ∪ {A1 = A2, A2 = A3, τ1 = τ2 → τ3}〉〉
(Clos) 〈〈R ∪ {(MA1

τ1 [SA2
A3

])A4
τ2 }, E〉〉→〈〈R, E ∪ {A1 = A3, A2 = A4, τ1 = τ2}〉〉

(Id) 〈〈R ∪ {idA1
A2
}, E〉〉 →〈〈R, E ∪ {A1 = A2}〉〉

(Shift) 〈〈R ∪ {↑A1
A2
}, E〉〉 →〈〈R, E ∪ {A1 = τ ′.A2}〉〉,where τ ′ is a fresh

type variable;

(Cons) 〈〈R ∪ {(MA1
τ1 .SA2

A3
)A4
A5
}, E〉〉 →〈〈R, E ∪ {A1 = A2, A2 = A4, A5 = τ1.A3}〉〉

(Comp) 〈〈R ∪ {(SA1
A2

◦ T A3
A4

)A5
A6
}, E〉〉→〈〈R, E ∪ {A1 = A4, A2 = A6, A3 = A5}〉〉

Table 5. Type inference rules for the λσ-calculus

The inference rules presented in Table 5 are given according to the typing
rules of the system TAλσ presented in Definition 14. Similarly to the previous al-
gorithm, the rules are applied to pairs 〈〈R,E〉〉, where R is a set of subexpressions
of M ′ and E a set of equations over type and context variables.

Example 3. For M = (2 .id) ◦ ↑ one has M ′ = (((1A1
τ1

[↑A2
A3

])A4
τ2 .idA5

A6
)A7
A8

◦ ↑A9
A10

)A11
A12

.
Then R0 = {(1A1

τ1
[↑A2

A3
])A4

τ2 , ((1A1
τ1

[↑A2
A3

])A4
τ2 .idA5

A6
)A7
A8

, (((1A1
τ1

[↑A2
A3

])A4
τ2 .idA5

A6
)A7
A8

◦ ↑A9
A10

)A11
A12

,

1A1
τ1

, ↑A2
A3

, idA5
A6

, ↑A9
A10

}. Applying the rules from Table 5 to the pair 〈〈R0, ∅〉〉 until
obtain the pair 〈〈∅, Ef 〉〉 and simplifying Ef , as in example 1, one obtains the
set of equations {τ1 = τ2, A11 = A12 = τ2.A2, A2 = τ ′1.A1, A1 = τ1.A

′
1}. From this

equational system one obtains the mgu A11=A12=τ1.τ
′
1.τ1.A

′
1, for the variables

of interest. Thus, 〈τ1.τ
′
1.τ1.nil, τ1.τ

′
1.τ1.nil〉 is a principal typing of M .

Theorem 6 (Principal Typings for TAλσ). TAλσ satisfies the property of
having principal typings.

4 Conclusions and Future Work

We considered for λse and λσ particular notions of principal typings and gave
respective definitions which we proved to agree with the system-independent
notion of Wells in [We2002]. The adaptation of this general notion of principal
typings for the λσ requires special attention, since this calculus enlarges the lan-
guage of the λ-calculus by introducing a new sort of substitution objects, whose
types are contexts. Thus, the provided PT notion has to deal with the principal-
ity of substitution objects as well. Then, the property of having principal typings
is straightforwardly proved by revisiting type inference algorithms for the λse

and the λσ, previously presented in [AyMu2000] and [Bo95], respectively. The
result is based on the correctness, completeness and uniqueness of solutions given
by adequate first-order unification algorithms (e.g. see the unification algorithm
given in [Hi97]).

The investigation of this property for more elaborated typing systems of
explicit substitutions is an interesting work to be done.

References

[ACCL91] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit Substitutions.
J. of Functional Programming, 1(4):375–416, 1991.

[ARMoKa2005] M. Ayala-Rincón, F. de Moura, and F. Kamareddine. Comparing and
Implementing Calculi of Explicit Substitutions with Eta-Reduction. Annals of
Pure and Applied Logic, 134:5–41, 2005.

[ARKa2001a] M. Ayala-Rincón and F. Kamareddine. Unification via the λse-Style
of Explicit Substitution. The Logical Journal of the Interest Group in Pure and
Applied Logics, 9(4):489–523, 2001.

[AyMu2000] M. Ayala-Rincón and C. Muñoz. Explicit Substitutions and All That.
Revista Colombiana de Computación, 1(1):47–71, 2000.

[Bo95] P. Borovanský. Implementation of Higher-Order Unification Based on Calculus
of Explicit Substitutions. In M. Bartošek, J. Staudek, and J. Wiedermann, editors,
Proceedings of the SOFSEM’95: Theory and Practice of Informatics, volume 1012
of LNCS, pages 363–368. Springer Verlag, 1995.

[deBru72] N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-Rosser theo-
rem. Indagationes Mathematicae, 34:381–392, 1972.

[DoHaKi2000] G. Dowek, T. Hardin, and C. Kirchner. Higher-order Unification via
Explicit Substitutions. Information and Computation, 157(1/2):183–235, 2000.

[Hi97] J. R. Hindley. Basic Simple Type Theory. Number 42 in Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1997.

[KR97] F. Kamareddine and A. Ŕıos. Extending a λ-calculus with Explicit Substi-
tution which Preserves Strong Normalisation into a Confluent Calculus on Open
Terms. J. of Func. Programming, 7:395–420, 1997.

[Mel95] P.-A. Melliès. Typed λ-calculi with explicit substitutions may not terminate.
In Proc. of TLCA’95, volume 902 of LNCS, pages 328–334. Springer Verlag, 1995.

[NaWi98] G. Nadathur and D. S. Wilson. A Notation for Lambda Terms A General-
ization of Environments. Theoretical Computer Science, 198:49–98, 1998.

[We2002] J. Wells. The essence of principal typings. In Proc. 29th International Col-
loquium on Automata, Languages and Programming, ICALP 2002, volume 2380 of
LNCS, pages 913–925. Springer Verlag, 2002.

A Proofs

The proofs are divided in three parts: A.1, where the proof of weakening for each
type system is given; A.2, where the three proofs of the correspondence between
system-independent and system-specific definition of PT are merged in one; and
A.3, where the three proofs of PT are also merged.

A.1 Proofs of weakening

Proof (Lemma 1 (Weakening for TAλdB)).
Let A ` M : τ . We will prove a more general result stating, for i ∈ N, that

A≤i.σ.A>i ` M+i : τ . The proof is done by induction on the structure of M .
Note that if i ≥ m, where m = |A|, then σ is added at the end of A.

1) M = n : Suppose A ` n : τ . If n ≤ i, then n+i = n . The σ addition at the
i+1-th position changes only types of indices ≥ i + 1 , thus one has trivially
that A≤i.σ.A>i ` n : τ . If n > i, then n+i = n + 1 . By (V arn) i times
one has A>i ` n− i : τ . Thus, by (V arn) applied i + 1 times, one has that
A≤i.σ.A>i ` n + 1 : τ .

2) M = (M1 M2): Suppose A ` (M1 M2) : τ . By (App), A ` M1 : ρ → τ and
A ` M2 : ρ. By induction hypothesis (IH), A≤i.σ.A>i ` M+i

1 : ρ → τ and
A≤i.σ.A>i ` M+i

2 : ρ. Thus, by (App), A≤i.σ.A>i ` (M+i
1 M+i

2) : τ .
3) M = λ.N : Suppose A ` λ.N : τ . By (Lambda) one has that ρ.A ` N : µ,

where τ = ρ → µ. By IH one has ρ.A≤i.σ.A>i ` N+(i+1) : µ. Thus, by
(Lambda), A≤i.σ.A>i ` λ.N+(i+1) : ρ → µ = τ .

Since all the information about M free indices is in context A, one has that
a maximum value for a free index occurrence, at 0-deep in M , is m = |A|.
Consequently, M+j = M for any j ≥ m. Thus, for i = m, we have that A.σ `
M : τ , for any type σ. Then a weak rule for TAλdB is admissible, adding types at
the end of the context. A type addition in any other position of context A would
require updating some free indices, then M+i would correspond to a different
function from the one to which the term M corresponds. ut

Proof (Lemma 2 (Weakening for TAλse)). Induction on the structure of M .

1) M = n : Let A ` n : τ . Since the type addition at the end of A does not
change any free index type, one has trivially that A.σ ` n : τ .

2) M = (M1 M2): Let A ` (M1 M2) : τ . By (App), A ` M1 : ρ → τ and
A ` M2 : ρ, for some ρ. By IH, A.σ ` M1 : ρ → τ and A.σ ` M2 : ρ. Thus,
by (App), A.σ ` (M1 M2) : τ .

3) M = λ.N : Let A ` λ.N : τ . By (Lambda), ρ.A ` N : µ, where τ = ρ → µ.
By IH, ρ.A.σ ` N : µ. Thus, by (Lambda), A.σ ` λ.N : τ .

4) M = M1σ
iM2: Let A ` M1σ

iM2 : τ . By (Sigma), A≥i ` M2 : ρ and
A<i.ρ.A≥i ` M1 : τ . By IH, A≥i.σ ` M2 : ρ and A<i.ρ.A≥i.σ ` M1 : τ .
Thus, by (Sigma), A.σ ` M1σ

iM2 : τ .
5) M = ϕi

kN : Let A ` ϕi
kN : τ . By (Phi), A≤k.A≥k+i ` N : τ . By IH,

A≤k.A≥k+i.σ ` N : τ . Thus, by (Phi), A.σ ` ϕi
kN : τ . ut

The proof of Lemma 3 needs some auxiliary definitions and lemmas.

Definition 16. Let M be a λσ-expression. Define ‖ · ‖ : Λσ → N as

‖(M N)‖ = ‖M‖+ ‖N‖ ‖1 ‖ = 0

‖λ.M‖ = ‖M‖ ‖id‖ = 0

‖M [S]‖ = ‖M‖+ ‖S‖ ‖↑‖ = 0

‖S ◦ T‖ = ‖S‖+ ‖T‖ ‖M.S‖ = 1 + ‖M‖+ ‖S‖

Lemma 4. In λσ, if ‖S‖ = 0 and A ` S � A′, then A.σ ` S � A′.σ.

Proof. By induction on the structure of S where ‖S‖ = 0.

1) S = id: By (id) one has A.σ ` id � A′.σ, trivially.
2) S =↑: Let A `↑ �A′ where, by (shift), A = τ.A′. Thus A.σ `↑ �A′.σ.
3) S = S1 ◦ S2: Let A ` S1 ◦ S2 � A′. By (comp), one has that A ` S2 � A′′

and A′′ ` S1 � A′, for some A′′. By IH one has A.σ ` S2 � A′′.σ and
A′′.σ ` S1 � A′.τ . Thus, by (comp), A.σ ` S1 ◦ S2 � A′.σ.

ut

Lemma 5. In λσ, if ‖M‖ = 0 and A ` M : τ , then A.σ ` M : τ .

Proof. By induction on on the structure of M where ‖M‖ = 0.

1) M = 1 : Let A ` 1 : τ . By (var) one has that A = τ.A′, for some A′. Thus
one has A.σ ` 1 : τ , trivially.

2) M = (M1 M2): Let A ` (M1 M2) : τ . By (app), A ` M1 : ρ → τ and
A ` M2 : ρ, for some ρ. By IH, A.σ ` M1 : ρ → τ and A.σ ` M2 : ρ. Thus,
by (app), A.σ ` (M1 M2) : τ .

3) M = λ.N : Let A ` λ.N : τ . By (lambda), ρ.A ` N : µ, where τ = ρ → µ.
By IH, ρ.A.σ ` N : µ. Thus, by (lambda), A.σ ` λ.N : τ .

4) M = N [S]: Let A ` N [S] : τ . By (clos), A ` S �A′ and A′ ` N : τ , for some
A′. Since ‖N [S]‖ = ‖N‖ + ‖S‖ = 0, by Lemma 4, A.σ ` S � A′.σ. By IH,
A′.σ ` N : τ . Thus, by (clos), A.σ ` N [S] : τ .

ut

Proof (Lemma 3 (Weakening for TAλσ)). By induction on the structure of M
with subinduction on ‖ · ‖, having Lemmas 4 and 5 as induction base (IB).

1) M = 1 : Let A ` 1 : τ . By (var), A = τ.A′ for some A′. Thus A.σ ` 1 : τ .
2) M = (M1 M2): Let A` (M1 M2) : τ . By (app) one has that A`M1 : ρ → τ

and A ` M2 : ρ, for some ρ. By IH on structure one has A.σ ` M1 : ρ → τ
and A.σ ` M2 : ρ. Thus, by (app), A.σ ` (M1 M2) : τ .

3) M = λ.N : Let A ` λ.N : τ . By (lambda), ρ.A ` N : µ, where τ = ρ → µ.
By IH, ρ.A.σ ` N : µ. Thus, by (lambda), A.σ ` λ.N : τ .

4) M = N [S]: Let A ` N [S] : τ . By (clos), A ` S �A′ and A′ ` N : τ , for some
A′. By IH, A′.σ ` N : τ . Substitution S has to be examined. If ‖N‖ > 0,
then by IH on ‖ · ‖, as ‖N [S]‖ > ‖S‖, one has that A.σ ` S � A′.σ. Else, if
‖N‖ = 0 then:

- If ‖S‖ = 0, then Lemma 4 can be applied.
- Otherwise, S = P.T or S = S1◦S2. If S = P.T , then by (cons), A ` P : ρ

and A ` T � A′′, where A′ = ρ.A′′. As ‖P‖, ‖T‖ < ‖S‖ = ‖N [S]‖,
by IH on ‖ · ‖, A.σ ` P : ρ and A.σ ` T � A′′.σ. Thus, by (cons),
A.σ ` P.T � A′.σ. If S = S1 ◦ S2, then by (comp), A ` S2 � A′′ and
A′′ ` S1 � A′, for some A′′. If ‖S1‖, ‖S2‖ > 0, the result holds by IH
on ‖ · ‖. Otherwise, at least one of the substitutions has ‖ · ‖ greater
than 0. Using induction on the structure of S where ‖S‖ > 0, the result
holds. Then, A.σ ` S2 � A′′.σ and A′′.σ ` S1 � A′.σ. Thus, by (comp),
A.σ ` S1 ◦ S2 � A′.σ.

Finally, by (clos), one has that A.σ ` N [S] : τ .
ut

A.2 Proof of Correspondence

Proof (Theorems 1, 3 and 5). The proofs are an adapted version of that given
by Wells in [We2002]. Our adaptation deals with de Bruijn indices rather than
variables and the proof for λσ has an adaptation to deal with substitutions too.
Let u ∈ {λdB, λse, λσ} and Ou be the index updating operator of each calculus.
In other words, OλdB(M) = M+, Oλse

(M) = ϕ2
0M and Oλσ(M) = M [↑]. Let

O1
u = Ou and On+1

u (M) = Ou(On
u(M)). For a type τ , let T (τ) be the set of type

variables occurring in τ . For brevity, 1 [↑n] is denoted as n + 1 .
⇒ proof: Let Θu = 〈Au, τu〉 be a PT of some term Mu, according to Definitions
11, 13 and 15, and Θ′

u = 〈A′
u, τ ′u〉 be a typing of Mu. By the PT definition for

each type system, there is a type substitution s such that s(Au) = (A′
u)≤|Au|.nil

and s(τu) = τ ′u. Since TAu
 M : Θu implies TAu
 M : s(Θu), for any
type substitution s, we have Θu ≤TAu s(Θu). By the weakening admissible
rule for each type system ((λdB-weak), (λse-weak)) and (λσ-tweak), we have
s(Θu) ≤TAu

Θ′
u. Thus, Θu is PT of Mu, according to Definition 9.

The proof for a λσ-substitution S with PT Θ = 〈A,B〉 according to Definiton
15 and typing Θ′ = 〈A′, B′〉 is similar to the proof for λσ-terms, using the proper
weakening rule (λσ-sweak).
⇐ proof: Let Θu = 〈Au, τu〉 be a PT of some term Mu, according to Definitions
11, 13 and 15, and Θ′

u = 〈A′
u, τ ′u〉 be a typing of Mu which is not PT according

to these definitions. Then, there exists a type substitution s such that s(Au) =
(A′

u)≤|Au|.nil and s(τu) = τ ′u and there does not exist any substitution s′ such
that s′(A′

u) = (Au)≤|A′
u|.nil and s′(τ ′u) = τu.

1. If s(Au) 6= A′
u, then mu = |Au| < |A′

u|. Let Nu =(λ.Ou(Mu) mu+1).
2. If s(Au) = A′

u, let α be a type variable. Define the functions φu
1 , φu

2 by:

φu
1 (α, α) = λ.λ.

`
1 (2 4) (2 3)

´
φu

1 (σ → τ, α) =

(
λ.λ.

`
1 (3 2) (O3

u(λ.φu
1 (σ, α)) 2)

´
, if α ∈ T (σ)

λ.
`
O2

u(λ.φu
1 (τ, α)) (2 1)

´
, otherwise

φu
2 (α, α) = λ.λ.

`
1 (2 3) (2 4)

´
φu

2 (σ → τ, α) =

(
λ.λ.

`
1 (4 2) (O2

u(λ.φu
1 (σ, α)) 2)

´
, if α ∈ T (σ)

λ.
`
Ou(λ.φu

1 (τ, α)) (3 1)
´
, otherwise

(a) Suppose s(αu) is not a type variable for αu ∈ T (Θu)
i. Suppose αu ∈ T (τu).

Let Nu =
(
λ.

(
λ. 2 λ.(Ou(λ.φu

2 (τu, αu)) λ. 2)
)

Mu

)
.

ii. Suppose αu ∈ T ((Au)iu
).

Let Nu =
(
λ.Ou(Mu) λ.(λ.λ.φu

2 ((Au)iu
, αu) iu+1 λ. 2)

)
.

(b) Suppose s(α1
u) = s(α2

u) = β for distinct α1
u, α2

u ∈ T (Θu)
i. Suppose αj

u ∈ T ((Au)iu,j
) for j ∈ {1, 2}.

Let P j
u =

(
λ.φu

1 ((Au)iu,j
, αj

u) iu,j+1
)

and Pu = λ.λ.
(
1 Ou(P 1

u)Ou(P 2
u)

)
. Let Nu =

(
λ.λ. 2 Mu Pu

)
.

ii. Suppose α1
u ∈ T ((Au)iu

) and α2
u ∈ T (τu).

Let Pu = λ.λ.
(
1

(
Ou(λ.φu

1 ((Au)iu
, α1

u)) iu+3
)
Ou(φu

2 (τu, α2
u))

)
and

Nu =
(
λ.(λ. 2 Pu) Mu

)
.

iii. Suppose αi
u ∈ T (τu) for i ∈ {1, 2}.

Let Pu = λ.λ.
(
1 Ou(φu

2 (τu, α1
u)) Ou(φu

2 (τu, α2
u))

)
and Nu =

(
λ.(λ. 2 Pu) Mu

)
.

Then, Nu ∈ TermsTAu
(Θ′

u) r TermsTAu
(Θu). Thus, Θ′

u �TAu
Θu.

As consequence, if Θ′
u is not PT according to Definitions 11, 13 and 15, Θ′

u is
not PT according to Definition 9.

Let M be a λσ-substitution S and Θ = 〈A,B〉 be a PT of S, according to Def-
inition 15, and Θ′ = 〈A′, B′〉 be a typing of S which is not PT according to this
definition. Then, there is a type substitution s such that s(A) = A′

≤|A|.nil and
s(B) = B′

≤|B|.nil and there is no substitution s′ such that s′(A′) = A≤|A′|.nil

and s′(B′) = B≤|B′|.nil.

1. Suppose s(A) 6= A′. Then, m = |A| < |A′|.
Let Si=(1 . 2 . · · · .m+1 .↑m+1) and T = S ◦ Si.

2. Otherwise, s(A) = A′. Let φ1 be φλσ
1 and φ2 be φλσ

2 as defined above.
(a) Suppose s(α) is not a type variable for α ∈ T (Θ)

i. Suppose α∈T (Bi). Let N =
“
λ.

`
λ. 2 λ.((λ.φ2(Bi, α))[↑] λ. 2)

´
i

”
and

let S′
i = (1 . 2 . · · · . i−1 .N.↑i). Let T = S′

i ◦ S.
ii. Suppose α∈T (Ai). Let N and S′

i be as above. Let T =S ◦ S′
i.

(b) Suppose s(α1) = s(α2) = β for distinct α1, α2 ∈ T (Θ)
i. Suppose αj ∈ T (Aij

) for j∈{1, 2}. Let Pj=
(
λ.φ1(Aij

, αj) ij+1
)

and
P =λ.λ.

(
1 P1[↑] P2[↑]

)
. Let Nj =

(
λ.λ. 2 ij P

)
, where j ∈ {1, 2} and

let Sij
=(1 . 2 . · · · . ij−1 .Nj . ↑ij). Let T = S ◦ Sij

.
ii. Suppose αj ∈ T (Bij

), j ∈ {1, 2}. Let Pj =
(
λ.φ1(Bij

, αj) ij+1
)
.

Then, for P , Nj and Sij
as above, let T = Sij

◦ S.
iii. Suppose α1 ∈ T (Ai) and α2 ∈ T (Bj). Let N =

(
λ.(λ. 2 P) j [S]

)
,

where P = λ.λ.
(
1

(
(λ.φ1(Ai, α1))[↑] i+3

)
φ2(Bj , α2)[↑]

)
. Let T =(

1 [S]. 2 [S]. · · · . j − 1 [S].N.(↑j ◦S)
)
.

Then, T ∈ TermsTAλσ
(Θ′) r TermsTAλσ

(Θ). Thus, Θ′ �TAλσ
Θ

As consequence, if a typing Θ′ of some λσ-substitution is not PT according to
Definition 15, then Θ′ is not PT according to Definition 9. ut

A.3 Proof of PT

Proof (Theorems 2, 4 and 6). Let M be any term (expression in λσ) and M ′

its decorated version. Let R0 be the set of all sub-terms (sub-expressions) of
M ′. Starting with the pair 〈〈R0, ∅〉〉 and applying the rules of the type inference
algorithm in Table 3, 4 or 5 one obtains a final pair after a finite number of
steps, because after each step the number of elements in the set of decorated
sub-terms(sub-expressions) of the pair is decremented. By the uniqueness in
the decomposition of the sub-terms (sub-expressions) in each calculus, a unique
rule can be applied to each element of R0. Thus, the process finishes with a
pair 〈〈∅, Ef 〉〉, where Ef is a set of first-order equations over context and type
variables, according to the rules of the type systems TAλdB , TAλse

and TAλσ

respectively. An adequate first-order unification algorithm, e.g. see [Hi97], is then
applied. And by the correctness, completeness and uniqueness of first-order uni-
fication, one has that the algorithm will find an mgu if M is typable. Otherwise,
the algorithm will report that there are no unifiers. Consequently, the typing
systems TAλdB , TAλse

and TAλσ satisfy PT. ut

