
Parallel Memetic Genetic Algorithms for Sorting
Unsigned Genomes by Translocations

Lucas A. da Silveira
Department of

Computer Science
Universidade de Brası́lia

Email: lucas.angel9@gmail.com

José L. Soncco-Álvarez
Department of

Computer Science
Universidade de Brası́lia

Email: jose.soncco.alvarez@gmail.com

Mauricio Ayala-Rincón
Departments of

Computer Science and Mathematics
Universidade de Brası́lia

Email: ayala@unb.br

Abstract—The rearrangement of genomes is an important
task to study the evolution of genomes. Rearrangement by
translocations is a suitable operation when treating genomes
with multiple chromosomes, indeed translocations occur between
two chromosomes. The problem of sorting by translocations
unsigned genomes is an optimization problem that was shown
to be NP-Hard. Many approximation algorithms were proposed,
among them, in previous work the authors have introduced
competitive genetic algorithms improved with opposition based
learning and memetic mechanisms. In this paper, two approaches
for parallelizing a memetic algorithm are presented. The first
approach, which uses a parallel calculation of the fitness, was
proposed in order to obtain a speed-up over the memetic
algorithm. The second approach, which deals in parallel with
multiple populations, was proposed for improving precision (that
is, for reducing the number of translocations). Many experiments
were performed with randomly generated synthetic and biologi-
cally based genomes. Results show that the parallel approaches
outperform the previously proposed memetic algorithm in terms
of speed-up and accuracy providing solutions with less translo-
cations.

I. INTRODUCTION

The study of the evolutionary distance between two species
using biological genomes requires the reconstruction of the
sequence of evolutionary events that transform a genome into
another. Currently, the mechanisms of rearrangements most
used include global operations such as reversion, transposition,
duplication and translocation. This work deals with genomes
given as sequences of genes arranged into chromosomes; thus,
it considers the operation of translocation, that combines genes
of pairs of chromosomes, and which was first studied in [1].
More specifically, this operation consist in the interchange of
blocks of genes between pairs of chromosomes of a genome.
The problem of sorting genomes by translocation consists
in given to genomes, build a minimal sequence of translo-
cations necessary to transform a genome into another. The
translocation distance problem consists in computing only the
length of a minimal sequence of translocations. Two different
representations of genomes have received attention: signed and
unsigned genomes. In the latter one, the genes are abstracted
without any orientation inside the genome, and at the former,
each gene has either a positive or negative sign reflecting its
orientation within in the genome.

For the signed translocation distance problem (STD), Han-
nenhalli in [2] provided the first polynomial time algorithm
which provides the minimum distance in O(n3). A decade
later, Wang et al in [3] taking advantage of the ideas used
in [2] proposed a new algorithm which provides both the
sequence as the distance of translocation in O(n2). Shortly
after that, Bergeron et al in [4] provided two new algorithms
using methods applied to the reversal distance problem [5].
The first one provides the minimum distance in O(n) and the
second one provides the minimal sequence of translocations
used to transforming a genome into another in O(n3).

When considering unsigned genomes, the unsigned translo-
cation distance problem (UTD), that is the one addressed in
this paper, was shown to be NP-hard by D. Zhu et al. in [6].
Before proving the NP-hardness of this problem, Kececioglu
and Ravi in [1] designed an approximation algorithm of ratio 2.
More recent work intensifies the search for better approximate
solutions. Namely, in 2007 Yun Cui et at in [7] proposed
an approximate algorithm with ratio 1.75. A year later, the
same authors improved the ratio to 1.5 + ε. To the best of
our knowledge, the best approximate algorithm reported in
the literature was proposed very recently, in [8], and has
ratio 1.408 + ε; however, such algorithm demonstrates to
be of theoretical interest, but not of practical interest, since
the key routines of the 1.408 + ε-approximation algorithm
used to compute approximate solutions for the following NP-
complete problems: maximum set packing with size at most 3
([9]) and maximum independent set with size at most 4 ([9]),
and these routines can not be implemented in a straightforward
manner. Recently, in [10], the authors proposed a genetic
algorithm (referred in this paper as GAS ) to solve UTD.
Essentially, GAS maps a given unsigned genome of size n (that
is, with n genes) on a subset of its 2n possible signed versions.
This is done assigning randomly either a positive or negative
signal to each gene of the input genome. The subset of signed
genomes constitutes the population of GAS . Each solution for
STD of each individual of this population corresponds to a
feasible solution for the input unsigned genome. Thus, the
fitness function of each one of these signed genomes in the
population is given as the exact translocation distance provided
in linear time by the algorithm for STD proposed in [4]. As
a quality control mechanism for the solutions provided by



GAS the 1.5+ ε-approximation algorithm was implemented in
[10]. GAS provides solutions that improve precision of those
computed with the 1.5 + ε-approximation algorithm in 12%.
Subsequently, the authors proposed improvements to GAS and
two new evolutionary algorithms were proposed and reported
in [11]. The first improved algorithm incorporates memetic
and local search techniques and the second one the technique
of opposition based learning (OBL), and are referred in this
paper respectively as MAS and GAOBL . Through experiments
and statistical tests it was concluded that MAS has better
performance regarding precision of the results than GAS , and
that GAOBL did not provides any improvement in the quality
of the solutions computed by GAS .

As reported in [11],MAS provides the best known solutions
for UTD compared with the other evolutionary algorithms
found in the literature. So, in this work two parallel approaches
for improving MAS were provided.

• The first one (referred as MAPF ) searches a better
execution performance maintaining the accuracy of the
results, making use of the parallel global model (master-
slave), where the master process keeps the stages of
MAS with a single population, while the slave processes
are responsible of computing the fitness value of each
individual.

• The second parallel approach seeks to increase the ac-
curacy of the results using multi-populations in such
a manner that each process maintains an instance of
MAS dealing with its respective population of size
n log n. Two variants were proposed:

– The first variant shares the best individuals between
the different populations during the breeding cycle,
and is referred as MAMPE . In this strategy, each
process deals with its own population and through
of the exchange of the best individuals it is expected
to accelerate the convergence of each population to
the best adapted general solutions of the problem.

– The second variant, referred as MAMPnE , evolves
each population in a homogeneous way without
sharing individuals of the different populations. The
algorithm MAMPnE outputs the best solution found
among all the processes involved.

In both variants, one searches essentially to improve the
accuracy of the results exploring a bigger population, of
size n log n times the number of processes, among the
UTD search space.

Results from the experiments showed that
MAPF significantly reduces the runtime of the MAS .
For the variants with multi-populations, MAMPnE increases
the accuracy of the obtained results (number of translocations)
when compared toMAS ; however, the variant with exchange
of individuals MAMPE does not provide any increase in the
accuracy of the results.

The source code of the whole development is available at
www.mat.unb.br/∼ayala/publications.html.

II. BACKGROUND

A. Definitions and Terminology

The definitions and terminology in this paper are compatible
with those used in [2], [4], [12].

A signed genome is composed by a set of chromosomes
{X1, · · · , Xl}, where each Xu for 0 < u <= l, consists of
a gene sequence, such that each gene xi is represented by a
different natural number with positive or negative signal. Each
gene appears only once, either positively or negatively, in a
genome. Unsigned genomes are defined similarly but genes
are naturals without signals. Naturals representing genes in a
signed or unsigned genome of length n range from 1 to n.

The orientation of a chromosome does not matter. So,
a signed chromosome X = (x1, x2, . . . , xk) is equal to
X = (−xk, . . . ,−x2,−x1), and an unsigned chromosome
X = (x1, x2, . . . , xk) is equal to X = (xk, . . . , x2, x1).

Consider two chromosomes X = (x1, x2, . . . , xk) and Y =
(y1, y2, . . . , ym) of a signed genome. There are two kind of
translocations:
• A prefix-prefix translocation ρpp(X,Y, i, j), 1 < i ≤ k,

1 < j ≤ m transforms the chromosomes X and Y
into two new chromosomes (x1, . . . , xi−1, yj , . . . , ym)
and (y1, . . . , yj−1, xi, . . . , xk).

• A prefix-suffix translocation ρps(X,Y, i, j), 1 < i ≤ n,
1 < j ≤ m transforms the chromosomes X and Y into
two new chromosomes (x1, . . . , xi−1,−yj−1, . . . ,−y1)
and (−ym, . . . ,−yj , xi, . . . , xk).

For unsigned genomes, the definitions of prefix-prefix
translocation and prefix-suffix translocation are the same
eliminating the negative signals in the new chromosomes.
So one obtains respectively the new chromosomes
(x1, . . . , xi−1, yj , . . . , ym) and (y1, . . . , yj−1, xi, . . . , xk)
as before, for the prefix-prefix translocation, and
(x1, . . . , xi−1, yj−1, . . . , y1) and (ym, . . . , yj , xi, . . . , xk), for
the prefix-suffix translocation.

The Signed Translocation Distance problem (briefly written
as STD) consists in finding the minimum number of transloca-
tions for transforming a signed genome A into another signed
genome B. The Unsigned Translocation Distance problem
(for short written as UTD) consists in finding the minimum
number of translocations for transforming an unsigned genome
A into another genome B. In both cases, A and B must
have the same size, that is the same number of genes n, and
chromosomes N . In this paper the genome B (for both the
signed and the unsigned versions of the problem) is always
considered as an identity genome, that is a genome with all its
genes (with positive signals) and sorted in increasing order. For
instance, {(1, 2, 3)(4, 5, 6, 7)} and {(1, 2, 3)(4, 5), (6, 7)} are
identity genomes of size 7 with two and three chromosomes,
respectively.

Consider a chromosome X = (x1, x2, · · · , xk). The genes
x1 and −xk are called tails of X for signed genomes. For
unsigned genomes the tails are x1 and xk. Two genomes are
called co-tails if their sets of tails are the same. Example:
Consider two unsigned genomes A = {(1, 5, 7)(4, 6, 2, 3)}



and B = {(1, 2, 3)(4, 5, 6, 7)}, both genomes are co-tails, with
the tail set being {1, 3, 4, 7}.

A translocation does not modify the tails of a genome. In
order to transform by translocations a genome A into another
B, they must satisfy the following property.
Property 1 ([11]) The genomes A and B have the same
number of genes n and chromosomes N , and they are co-
tails.

Observe that, without loss of generality, when the genomes
A and B are co-tails and have the same length and number of
chromosomes, the genes of A and B can be renamed so that
B can be rewritten as an identity.

B. Genetic Algorithms

A Genetic Algorithm (GA) is a meta-heuristic inspired in
the principles of natural evolution, which was developed by J.
H. Holland in the 1970s.

As mentioned in the introduction, da Silveira et al. proposed
a standard genetic algorithm (GAS ) for UTD in [10] which is
based on two crucial observations:
(a) the solution for a signed version of an unsigned genome

is a feasible solution;
(b) the solution for one of the 2n signed versions of a unsigned

genomes is an optimal solution.
Thus, GAS considers an initial population that consists of

individuals that are signed genomes randomly built from the
input unsigned genome, and the fitness function is the translo-
cation distance from these individuals to the corresponding
identity unsigned genome, that is computed in linear time
using the algorithm for solving STD introduced in [4]. The
pseudo-code of the GAS is shown in Algorithm 1.

Algorithm 1: Genetic Algorithm for UTD (GAS )
Input: Unsigned genomes A and B (identity genome)
Output: Number of translocations for transforming A

into B
1 Generate the initial population of signed genomes;
2 Compute fitness of the initial population;
3 for i = 1 to numberGenerations do
4 Perform the selection and save the best solution

found;
5 Apply the crossover operator;
6 Apply the mutation operator;
7 Compute the fitness of the offspring;
8 Perform replacement of the worst individuals;

C. Memetic Algorithms

Memetic Algorithms (for short, MA) are the combination of
evolutionary algorithms and local search heuristics [13], [14].

As mentioned in the introduction, da Silveira et al. pro-
posed memetic techniques for improving GAS and introduce
algorithm MAS in [11]. The distinguishing feature of MAS is
the inclusion of several stages of local search. The local
search procedure consist in modifying the sign of a gene

for an individual of the population, and then verifying if
this modification indeed improves the fitness value of the
individual. In the case in which the fitness is not improved
the individual is maintained otherwise it is substituted. The
local search procedure is shown in Algorithm 2, and MAS in
Algorithm 3.

Algorithm 2: Local Search
Input: A signed genome A
Output: An improved signed genome

1 bestFitness = Compute the fitness of A;
2 for i = 1 to numberIterations do
3 Generate a random position k for a gene of A;
4 Modify the sign of gene at position k;
5 fitness = Compute the fitness of the modified A;
6 if fitness ¡ bestFitness then
7 Update new fitness of A;
8 break;

9 else
10 Recover last state of A;

Algorithm 3: Memetic Algorithm for UTD (MAS )
Input: Unsigned genomes A and B (identity genome)
Output: Number of translocations for transforming A

into B
1 Generate the initial population of signed genomes;
2 Compute fitness of the initial population;
3 Improve initial population by applying Local Search;
4 for i = 1 to numberGenerations do
5 Perform the selection and save the best solution

found;
6 Apply the crossover operator;
7 Apply the mutation operator;
8 Compute the fitness of the offspring;
9 Perform replacement of the worst individuals;

10 Apply Local Search to the current population;
11 if entropyThreshold is reached then
12 Restart population improved by Local Search;

III. PARALLEL MA APPROACHES FOR UTD

According to Cantu-Paz [15] there exist three main models
for parallelizing a genetic algorithm:

1) global single-population master-slave;
2) single-population fine-grained;
3) multiple-population coarse-grained.
The first and third models are suitable for the purposes of

this research since the used computational platforms are single
computers with multiple cores. The second model is more
suitable for experiments with massively parallel and clusters
of computers.



Following, the models (and variations) used for parallelizing
the memetic algorithm for UTD are presented. The standard
commands MPI_Send and MPI_Recv were used for the
exchange of messages among processes, both commands are
taken from the Message Passing Interface MPI library.

A. MA with Parallel Calculation of the Fitness Function

This parallelization (called MAPF ) is based on the
model of global single-population master-slave. The algo-
rithm MAPF maintains a single population of size n log n (as
adopted by the MAS ) in the master process, the slaves are
used for the fitness calculation which is done in parallel. The
aim of this parallelization is to speed up the runtime ofMAS ,
while keeping precision of results (number of translocations).

The Algorithm 4 shows the pseudo-code of the master and
slave processes, while Algorithm 5 shows the evaluation of
the fitness in parallel.

Algorithm 4: MA with Parallel Calculation of the Fitness
Function for UTD (MAPF )

Input: Unsigned genomes A and B (identity genome)
Output: Number of translocations for transforming A

into B
/* Pseudocode for the master process:

*/
1 Generate initial population of signed genomes;
2 Compute fitness of the initial pop. in parallel (Alg. 5);
3 Improve initial pop. by applying Local Search (fitness

eval. using Alg. 5);
4 for i = 1 to numberGenerations do
5 Perform the selection and save the best solution

found;
6 Apply the crossover operator;
7 Apply the mutation operator;
8 Compute the fitness of the offspring in parallel (Alg.

5);
9 Perform replacement of the worst individuals;

10 Apply Local Search to the current population;
11 if entropyThreshold is reached then
12 Restart population improved by Local Search;

/* Pseudocode for a slave process: */
13 while 1 do
14 Receive an individual (signed genome) from the

master process (MPI_Send);
15 Evaluate the fitness;
16 Send the result to the master process (MPI_Recv);

B. MA with Multiple Populations and Exchange of Individuals

This parallelization (called MAMPE ) is based on the
model of multiple-population coarse-grained. The algorithm
MAMPE maintains multiple different populations where each
population, of size n log n, is located in a separate process. In
each generation a stage is implemented in which all processes

Algorithm 5: Evaluation of Fitness in Parallel

1 for all the slaves processes do
2 Send an individual (signed genome) to a slave

process (MPI_Send);

3 while individual without fitness value do
4 Receive result from a slave process (MPI_Recv);
5 Send an individual (signed genome) to a slave

process (MPI_Send);

6 for all the slaves processes do
7 Receive result from a slave process (MPI_Recv);

exchange their best individuals, all processes restart their
breeding cycle before they reach a barrier (MPI_Barrier),
which is executed for synchronizing the processes. As previ-
ously mentioned, the aim of this parallelization is to improve
precision by exploring a wider search space.

Algorithm 6 shows the pseudo-code ofMAMPE . Algorithm
7 describes the procedure for exchanging individuals in paral-
lel.

A variant of the Algorithm 6 is proposed, called MAMPnE .
The main feature of this variant regarding 6 is that there is
no exchange of individuals. The pseudo-code of MAMPnE is
obtained by eliminating line 6 and 7 from Algorithm 6. The
aim of doing the last modification was to test the behaviour
of the algorithm without exchanging individuals. In principle
this modification brings out a much more different mechanism
than MAS since it will apply the whole genetic process over
isolated populations.

The parameter p that appears in the Algorithm 7 is used for
controlling whether or not to replace an individual.

IV. EXPERIMENTS AND RESULTS

The implementation of the algorithms were developed using
the MPI library of the C language. The experiments were
executed on a computer with 64GB of RAM, and two pro-
cessors Xeon E5-2620 with hyper-threading. Each processor
has 6 cores with a CPU clock rate of 2.4Ghz.

The parameters used by the parallel implementations are the
same established forMAS in [11], these parameters are shown
in Table I. Additionally, a new parameter p was included
for controlling the replacement of a worse individual by the
best individual received from other process, as shown in the
Algorithm 7. Fine-tuning of this parameter p was performed
through preliminary experiments. Results from the sensitivity
analysis performed over this parameter showed that the best
results are obtained when using p = 0.2.

Also, a sensitivity analysis was performed over the number
of processors to be used byMAPF . The number of processors
was varied from 3 to 24, and results showed that using just 12
processor gives the best speed-up. For the case ofMAMPE and
MAMPnE the number of processor was fixed to 24 in order to
obtain a better precision of the results.



Algorithm 6: Parallel MA with Multiple Populations for
UTD (MAMPE ), where each process maintains a different
initial population

Input: Unsigned genomes A and B (identity genome)
Output: Number of translocations for transforming A

into B
1 Generate initial population of signed genomes;
2 Compute fitness of the initial population;
3 Improve initial pop. by applying Local Search;
4 for i = 1 to numberGenerations do
5 Perform the selection and save the best solution

found;
6 Send the best individual, and receive individuals

(Alg. 7);
7 MPI_Barrier;
8 Apply the crossover operator;
9 Apply the mutation operator;

10 Compute the fitness of the offspring;
11 Perform replacement of the worst individuals;
12 Apply Local Search to the current population;
13 if entropyThreshold is reached then
14 Restart population improved by Local Search;

15 Save the best individual into the process 0;

Algorithm 7: Procedure for sending and receiving indi-
viduals in parallel

1 for i = 1 to numberProcesses do
2 if i is not current process then
3 Send the best individual to process i

(MPI_Send);

4 for i = 1 to numberProcesses do
5 if i is not current process then
6 Receive best individual from process i

(MPI_Recv);
7 Generate a float number r between 0 and 1;
8 if r < p then
9 Replace a worse individual by the received

individual;

TABLE I
PARAMETERS SETTING FOR THE PARALLEL MEMETIC ALGORITHMS

Parameter Best Value
Crossover probability 0.90
Mutation probability 0.02

Percentage for selection 80%
Percentage for replacement 70%
Percentage for local search 60%
Percentage for preservation 60%

Threshold entropy 0.3

A. Experiments with Hundred Synthetic Genomes
The input data for this experiment consists of six packages

of hundred genomes, that were randomly generated, each

TABLE II
AVERAGE RESULTS FOR THE EXPERIMENT WITH HUNDRED SYNTHETIC

GENOMES HAVING 3 CHROMOSOMES

3 Chromosomes
Length MAS MAMPE MAMPnE

100 64.31 64.82 63.80
110 71.43 72.10 70.74
120 78.62 79.50 77.73
130 86.45 87.45 85.34
140 94.16 95.46 92.89
150 100.55 102.08 99.17

TABLE III
AVERAGE RESULTS FOR THE EXPERIMENT WITH HUNDRED SYNTHETIC

GENOMES HAVING 4 CHROMOSOMES

4 Chromosomes
Length MAS MAMPE MAMPnE

100 61.24 61.53 60.72
110 68.07 68.65 67.49
120 75.01 75.73 74.30
130 81.53 82.41 80.77
140 88.85 90.13 87.91
150 95.43 96.83 94.40

TABLE IV
AVERAGE RESULTS FOR THE EXPERIMENT WITH HUNDRED SYNTHETIC

GENOMES HAVING 5 CHROMOSOMES

5 Chromosomes
Length MAS MAMPE MAMPnE

100 57.95 58.16 57.69
110 64.78 65.12 64.35
120 72.15 72.62 71.62
130 78.48 79.25 77.82
140 85.25 86.23 84.58
150 91.89 93.07 91.20

package with synthetic genomes of lengths varying by 10
genes from 100 until 150. For all genomes the number of chro-
mosomes was fixed from 3 to 5. For each package of hundred
genomes the algorithms MAS , MAMPE and MAMPnE were
executed in order to solve UTD. The results of this experiment
are shown in Tables II, III, and IV where the value in each
cell represents the average translocation distance computed for
each package of hundred genomes. From these tables, it can be
seen (highlighted in bold font) thatMAMPnE computes the best
results, that is the minimum average number of translocations.

B. Experiments with Benchmark (Single) Genomes

For this experiment the benchmarks proposed in [11]
were used as inputs. The algorithms MAS , MAMPE , and
MAMPnE were executed fifty times for each benchmark
genome and the following measures were calculated: mean,
median, minimum and maximum of the resulting number of
translocations.

The results of this experiment are shown in Tables V and
VI. From these results, it can be observed (highlighted in bold
font) that MAMPnE computes the best results for all measures.

Also, a statistical comparison was performed, in order to
verify thatMAMPnE is in fact the best algorithm. The following



TABLE V
MEAN AND MEDIAN RESULTS FOR THE EXPERIMENT WITH BENCHMARK

GENOMES

Mean Median
Benchmark MAS MAMPE MAMPnE MAS MAMPE MAMPnE
L150C2 101.56 104.00 100.00 102.00 104.00 100.00
L150C3 108.34 109.00 106.00 108.00 109.00 106.00
L150C4 99.82 103.00 99.00 100.00 103.00 99.00
L150C5 96.08 97.00 95.00 96.00 97.00 95.00
L150C6 84.06 86.00 84.00 84.00 86.00 84.00
L150C7 90.22 92.00 90.00 90.00 92.00 90.00
L150C8 76.90 77.00 76.00 77.00 77.00 76.00
L150C9 78.12 78.00 78.00 78.00 78.00 78.00
L150C10 77.00 78.00 77.00 77.00 78.00 77.00

TABLE VI
MINIMUM AND MAXIMUM RESULTS FOR THE EXPERIMENT WITH

BENCHMARK GENOMES

Minimum Maximum
Benchmark MAS MAMPE MAMPnE MAS MAMPE MAMPnE
L150C2 100.00 104.00 100.00 103.00 104.00 100.00
L150C3 107.00 109.00 106.00 110.00 109.00 106.00
L150C4 99.00 103.00 99.00 101.00 103.00 99.00
L150C5 95.00 97.00 95.00 98.00 97.00 95.00
L150C6 84.00 86.00 84.00 86.00 86.00 84.00
L150C7 90.00 92.00 90.00 91.00 92.00 90.00
L150C8 76.00 77.00 76.00 78.00 77.00 76.00
L150C9 78.00 78.00 78.00 79.00 78.00 78.00
L150C10 77.00 78.00 77.00 77.00 78.00 77.00

TABLE VII
RESULTS OF THE WILCOXON RANK SUM TEST, WHERE NUMBERS ARE

THE MEDIANS, AND “s+” REPRESENTS A STATISTICALLY SIGNIFICANCE
DIFFERENCE, OTHERWISE THE “s−” IS USED

Benchmark MAMPnE MAS MAMPE
L150C2 100.00 102.00 s+ 104.00 s+
L150C3 106.00 108.00 s+ 109.00 s+
L150C4 99.00 100.00 s+ 103.00 s+
L150C5 95.00 96.00 s+ 97.00 s+
L150C6 84.00 84.00 s− 86.00 s+
L150C7 90.00 90.00 s+ 92.00 s+
L150C8 76.00 77.00 s+ 77.00 s+
L150C9 78.00 78.00 s+ 78.00 s−

L150C10 77.00 77.00 s− 78.00 s+

methodology as discussed in [16], [17], [18] was applied:
firstly, the Kolmogorov-Smirnov test was applied in order to
determine the non-normality of the samples (results from 50
runs); after this, the Wilcoxon Rank Sum test was performed
in order to compare the medians of the samples of each
algorithm. The results of this test are shown in the Table VII,
using a significance level of 5% (p-value ≤ 0.05).

In Table VII, s+ can be interpreted as a different behavior
between MAMPnE and the other algorithm (either MAS or
MAMPE ), in case the median is smaller we can say that
MAMPnE has the best performance. Otherwise s− can be
interpreted as a similar behavior between MAMPnE and the
other algorithm.

Using the same benchmarks, an additional experiment was
performed for measuring the speed-up of MAPF . For this
experiment, the algorithms MAS and MAPF were executed
ten times for each benchmark and then the average time

TABLE VIII
RESULTS OF EXPERIMENT FOR MEASURING THE SPEED-UP USING

BENCHMARK PERMUTATIONS

Benchmark MAS MAPF Speed-up MAS MAPF
(sec) (sec) #individuals #individuals

L150C2 27.08 5.04 5.37 11773 83216
L150C3 29.05 5.34 5.44 1111 78852
L150C4 29.99 5.52 5.43 10860 78850
L150C5 31.54 5.77 5.47 10542 79680
L150C6 32.61 6.49 5.02 10269 73110
L150C7 33.92 6.45 5.26 10106 74023
L150C8 35.62 6.89 5.17 9913 70654
L150C9 36.86 7.09 5.20 9561 62831
L150C10 39.28 8.13 4.83 9345 54585

TABLE IX
RESULTS OF EXPERIMENTS WITH BIOLOGICALLY-BASED GENOMES

Pairs of MAS MAPF Speed-up MAS MAPF
organisms (sec) (sec) #individuals #individuals

Human-Cat 54.24 10.80 5.02 7198 43238
Human-Mouse 50.64 10.97 4.62 7774 42968

Cat-Mouse 50.18 11.09 4.52 7874 42618

(in seconds) was calculated. Also, the average number of
individuals processed per second was calculated. An individual
is considered to be processed whenever its fitness value was
calculated. The speed-up is calculated by dividing the results
of MAS by MAPF . The results of this experiment are shown
in Table VIII.

In Table VIII can be observed that for all benchmarks the
algorithm MAPF has a speed-up factor of around 5 regarding
MAS . Also, the average number of individuals processed per
second by the algorithm MAPF is always higher than those
obtained by MAS .

C. Experiments with Biologically-Based Genomes

For this experiment the algorithms MAS and MAPF were
executed ten times for each input (biologically-based
genomes). The input data was taken from [19] and consist in
the gene order of 114 markers on the genome (complete DNA
sequence) of three species: human, cat, and mouse. Before
using these gene order sequences a pre-processing was applied
over the sequences in [11], which is explained in the following
paragraph.

Each input is built considering only those genes in common
among the genomes of pairs of different organisms (human, cat
and mouse) and the genes of the second genome of each pair
are represented by naturals in such a way that its genome is
represented as an identity. In the end, the three inputs remains
with 18 chromosomes and 147 genes, where auxiliary genes
were used at the extreme points of each chromosome in order
to fulfil Property 1.

The aim of this experiment was to measure the speed-up of
the algorithms for real data. The results are shown in Table
IX.

From Table IX, it can be observed that the algorithm
MAPF brings a speed-up factor greater than 4.5 for all cases.
Additionally, as for the experiments with benchmark genomes,



100 110 120 130 140 150
Genome Length

50

60

70

80

90

100

110

Nu
m

be
r o

f T
ra

ns
lo

ca
tio

ns

1.5Approx.

GAs

MAs

MAMPnE

Fig. 1. Comparison of algorithms using hundred genomes

the number of individuals processed per second by the algo-
rithm MAPF is higher than those obtained by the algorithm
MAS .

V. DISCUSSION

A comparison of the precision of the 1.5+ε-approximation
algorithm (For short, 1.5Approx), the genetic algorithm (GAS ),
the memetic algorithm (MAS ), and the parallel memetic
algorithm(MAMPnE version) for UTD is shown in the Figure
1. The data for the 1.5 + ε-approximation and the genetic
algorithms were taken from [10]. These results are from
experiments with hundred genomes of lengths from 100 to
150, with 5 chromosomes.

In the Figure 1, it can be observed that the
MAMPnE algorithm computes the best results among all
algorithms, providing distances that in average have the
minimum number of translocations.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposed two approaches for parallelizing the
memetic algorithm MAS introduced by the authors in [11].
The first approach, MAPF , is based on a model that uses
a single population where the calculation of the fitness is
performed in parallel. The second approach, MAMPE , is
based on a model with multiple populations with exchange of
individuals in each generation. Also, a variation of the latter

approach was proposed, called MAMPnE , where there is not
exchange of individuals of different populations.

Several experiments were performed using sets of hun-
dred genomes randomly generated, benchmark genomes, and
biologically-based genomes.

From the experiments with set of hundred genomes it
can be observed that MAMPnE has the best results in terms
of accuracy providing sorting solutions with the smallest
number of translocations. From the experiments with bench-
mark genomes it can be observed that MAMPnE has the best
results for different measures (mean, median, minimum, and
maximum), these results were confirmed by statistical tests.
Using the same benchmarks an additional experiment was
performed for measuring the speed-up of MAPF over MAS .
This experiment showed that MAPF has a speed-up factor
higher than 5 for all cases. Finally, from the experiment with
biologically-based genomes, MAPF showed a speed-up factor
higher than 4.5 for all cases.

As a future work, we are planning to improve MAMPE by
testing other models for exchanging individuals, and then
try to outperform the results of MAMPnE , in which there is
no exchange of individuals. Of course, the more interesting
challenge is applying the proposed genetic mechanisms for the
construction of phylogenetic threes not only with translocation
distances but also with other measures such as the reversal
distance.



ACKNOWLEDGMENT

The first two authors are funded by CAPES graduate
scholarships and the third by a CNPq grant.

REFERENCES

[1] J. D. Kececioglu and R. Ravi, “Of mice and men: algorithms for
evolutionary distances between genomes with translocation,” in Proc. of
the sixth annual ACM-SIAM symposium on Discrete algorithms. Society
for Industrial and Applied Mathematics, 1995, pp. 604–613.

[2] S. Hannenhalli, “Polynomial-time algorithm for computing translocation
distance between genomes,” Discrete App. Math., vol. 71, no. 1, pp.
137–151, 1996.

[3] L. Wang, D. Zhu, X. Liu, and S. Ma, “An o(n2) algorithm for signed
translocation,” J. of Comp. and Sys. Sciences, vol. 70, no. 3, pp. 284–
299, 2005.

[4] A. Bergeron, J. Mixtacki, and J. Stoye, “On sorting by translocations,”
J. of Comp. Biology, vol. 13, no. 2, pp. 567–578, 2006.

[5] A. Bergeron and J. Stoye, “On the similarity of sets of permutations
and its applications to genome comparison,” in Computing and Combi-
natorics. Springer, 2003, pp. 68–79.

[6] D. Zhu and L. Wang, “On the complexity of unsigned translocation
distance,” Theor. Comput. Sci., vol. 352, no. 1, pp. 322–328, 2006.

[7] Y. Cui, L. Wang, and D. Zhu, “A 1.75-approximation algorithm for
unsigned translocation distance,” J. of Comp. and Sys. Sciences, vol. 73,
no. 7, pp. 1045–1059, 2007.

[8] H. Jiang, L. Wang, B. Zhu, and D. Zhu, “A (1.408+ ε)-approximation
algorithm for sorting unsigned genomes by reciprocal translocations,”
in Frontiers in Algorithmics. Springer, 2014, pp. 128–140.

[9] R. M. Karp, Reducibility among combinatorial problems. Springer,
1972.

[10] L. A. da Silveira, J. L. Soncco-Álvarez, T. A. de Lima, and
M. Ayala-Rincón, “Computing Translocation Distance by a Genetic
Algorithm,” in 2015 Latin American Computing Conference, CLEI
2015, Arequipa, October, 2015. IEEE, 2015, pp. 1–12. [Online].
Available: http://dx.doi.org/10.1109/CLEI.2015.7359994

[11] L. A. da Silveira, J. L. Soncco-Álvarez, T. A. de Lima, and M. Ayala-
Rincón, “Memetic and Opposition-Based Learning Genetic Algorithms
for Sorting Unsigned Genomes by Translocations,” in Proc. 7th World
Congress on Nature and Biologically Inspired Computing, NaBIC 2015,
Pietermaritzburg, December, 2015, ser. Advances in Intelligent Systems
and Computing. Springer, 2016, vol. 419, pp. 73–85. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-27400-3 7

[12] Y. Cui, L. Wang, D. Zhu, and X. Liu, “A (1.5+ε)-approximation
algorithm for unsigned translocation distance,” IEEE/ACM T. on Comp.
Biology and Bioinformatics, vol. 5, no. 1, pp. 56–66, 2008.

[13] P. Moscato et al., “On evolution, search, optimization, genetic algorithms
and martial arts: Towards memetic algorithms,” Caltech concurrent
computation program, C3P Report, vol. 826, p. 1989, 1989.

[14] P. Moscato and C. Cotta, “An introduction to memetic algorithms,”
Inteligencia artificial, Revista iberoamericana de inteligencia artificial,
vol. 19, pp. 131–148, 2003.

[15] E. Cantú-Paz, “A survey of parallel genetic algorithms,” Calculateurs
paralleles, reseaux et systems repartis, vol. 10, no. 2, pp. 141–171,
1998.

[16] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
The Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.

[17] J. J. Durillo, J. Garcı́a-Nieto, A. J. Nebro, C. A. C. Coello, F. Luna, and
E. Alba, “Multi-objective particle swarm optimizers: An experimental
comparison,” in Evolutionary Multi-Criterion Optimization. Springer,
2009, pp. 495–509.

[18] D. M. Muñoz, C. H. Llanos, L. Coelho, and M. Ayala-Rincón,
“Opposition-based shuffled pso with passive congregation applied to fm
matching synthesis,” in Evolutionary Computation (CEC), 2011 IEEE
Congress on. IEEE, 2011, pp. 2775–2781.

[19] G. Bourque and P. A. Pevzner, “Genome-scale evolution: reconstructing
gene orders in the ancestral species,” Genome research, vol. 12, no. 1,
pp. 26–36, 2002.


