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Abstract 
 
The growing adoption of reconfigurable architectures 
opens new implementation alternatives and creates new 
design challenges. In the case of dynamically 
reconfigurable architectures, the choice of an efficient 
architecture and reconfiguration scheme for a given 
application is a complex task. Tools for exploration of 
design alternatives at higher abstraction levels are needed. 
This paper describes the modeling and simulation of a 
dynamically reconfigurable hardware implementation of 
the Fast Fourier Transform – FFT using rewriting-logic. It 
is shown that rewriting-logic can be used as a framework 
for fast design space exploration, providing a quick 
evaluation of different reconfigurable solutions. 
 
 

1. Introduction 
 
Reconfigurable Computing is a new research area which is 
gaining momentum due to the potential improvement that 
can be obtained when compared both to software solutions 
as well as to dedicated full-custom devices. When 
compared to software solutions running on general purpose 
processors, reconfigurable computing delivers more 
processing power due to the implementation of algorithms 
in hardware. A remarkable example in this case is 
DeCypher [9], a reconfigurable machine targeted to 
accelerate genetic related algorithms. It is built upon 
commercial FPGAs interconnected through a PCI bus and 
can improve the performance of genetic algorithms by 
some orders of magnitude. Several other examples can be 
drawn from telecommunication systems, in tasks such as 
data compression, encoding and decoding, and digital 
signal processing. On the other hand, reconfigurable 
computing provides more flexibility than dedicated full 
custom ASICs (Application Specific Integrated Circuits). 

Moreover, the exploding costs of integrated circuits fabrics 
associated with shorter devices lifetimes makes the design 
of ASIC a very expensive alternative. The growing capacity 
of Field Programmable Gate Arrays (FPGA), the possibility 
of reconfiguring them to implement different hardware 
architectures and its lower cost compared to full custom 
design makes it a good solution to the rapid changing 
electronic market. There are several taxonomies applied to 
reconfigurable computing. Concerning the specific moment 
in time where reconfiguration occurs,  dynamic 
reconfiguration refers to systems that change their 
functionality during the execution of a computational task. 
To describe the behavior of such systems for a given 
application, it could be interesting to use a three 
dimensional coordinate system, with time, data and 
configuration as axes (Figure 1). 

 
 
 
 
 
 

Figure 1: Reconfigurable system behavior 
A dynamically reconfigurable system, in a given instant of 
time t, processes data d(t) using a configuration cfg(t). 
Instead of referring to an instruction stream and a data 
stream, as it is done in Flynn classification [10], this kind of 
systems can be described  by their configuration streams 
and  data streams. Optimization of such systems relies on 
an adequate choice of a reconfigurable hardware structure 
and a reconfiguration scheme for a given application under 
a set of constraints. It is a complex task, since there are no 
commercial tools available that are well adapted to this kind 
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of problem. Prototyping alternatives in VHDL or even 
SystemC, in a first approach, may be too cumbersome.  
In this paper we propose the use of rewriting systems to 
model and evaluate dynamically reconfigurable systems. 
We present a case study based on the dynamic 
reconfiguration of a circuit designed to compute the FFT. 
Rewriting has been successfully applied into different areas 
of research in computer science as an abstract formalism for 
assisting the simulation, verification and deduction of 
complex computational objects and processes. In particular, 
in the context of computer architectures, rewriting theory 
has been applied as a tool for reasoning about hardware 
design. It is worth to mention the work of Kapur, who has 
used his well-known Rewriting Rule Laboratory - RRL for 
verifying arithmetic circuits [14,12,13] as well as the work 
of Arvind’s group that treated the implementation of 
processors based on simple architectures [16, 17,2], which 
we have extended for simulation and analysis of 
performance of processors in [3]; the rewrite-based 
description and synthesis of simple logical digital circuits 
[11]; and the description of cache protocols over memory 
systems [18,19]. In our specifications we apply rewriting-
logic, that is basically rewriting enlarged with logic. For 
recent evidence about the usefulness of this paradigm see 
[15]. The programming environment used in this work is 
ELAN [7,6]. It provides more flexibility than pure rewriting 
systems by introducing logical strategies, which are meta 
rules that control the application of the rewriting rules.  
The paper outline is as follows. Section 2 provides an 
introduction to basic concepts in rewriting theory and 
shortly describes the FFT. Section 3 discusses the use of 
rewriting-logic to specify and simulate a dynamically 
reconfigurable architecture for computing in optimal space 
the FFT and section 4 is the conclusion. 
 

2. Background  
 

We include the minimal needed notions on rewriting 
theory, rewriting-logic and the Fast Fourier Transform. For 
a detailed presentation on rewriting see [5] and for the FFT 
see classical text books on algorithms such as [8,4, 1]. 
 

2.1. Rewriting theory 
 

A Term Rewriting System, TRS for short, is defined as a 
triple � R, S, S0 �, where S and R are respectively sets of 
terms and of rewrite rules of the form l � r if p(l) being l 
and r terms and p a predicate and where S0 is the subset of 
initial terms of S. l and r are called the left-hand and right-
hand sides of the rule and p its condition. 
In the architectural context of [17], terms and rules 
represent states and state transitions, respectively.  

A term s can be rewritten or reduced to the term t, denoted 
by s � t, whenever there exist a subterm s' of s that can be 
transformed according to some rewrite rule into the term s'' 
such that replacing the occurrence of s' in s with s'' gives t. 
A term that cannot be rewritten is said to be in normal or 
canonical form. The relation over S given by the previous 
rewrite mechanism is called the rewrite relation of R and is 
denoted by �. Its inverse is denoted by ← and its reflexive-
transitive closure by �* and its equivalence closure by ↔*. 
The important notions of terminating property (or 
Noetherianity) and Church-Rosser property or confluence 
are defined as usual. These notions correspond to the 
practical computational aspects as the determinism of 
processes and their finiteness. 

• a TRS is said to be terminating if there are no infinite 
sequences of the form s0 � s1 � ... 

• a TRS is said to be confluent if for all divergence of the 
form s �* t1, s �* t2 there exists a term u such that t1 �* u 
and t2 �* u . 

The use of the subset of initial terms S0, representing 
possible initial states in the architectural context (which is 
not standard in rewriting theory), is simply to define what is 
a "legal" state according to the set of rewrite rules R; i.e., t 
is a legal term (or state) whenever there exists an initial 
state s ∈ S0 such that s �* t. 
Using these notions of rewriting one can model the 
operational semantics of algebraic operators and functions. 
Although in the pure rewriting context rules are applied in a 
truly non deterministic manner in practice it is necessary to 
have a control of the ordering in which rules are applied. 
This is provided by rewriting-logic, which is the union of 
rewriting theory with logic.  
 

2.2. The Fast Fourier Transform 
 

The FFT is an implementation of the Discrete Fourier 
Transform - DFT, which is widely used in signal 
processing. Given an n-array of complex numbers  a = (a0, 
…, an-1), its DFT, Fn × a, is the n-array (b0, …, bn-1), where 

b j =  ak ⋅ωn
kj

k= 0

n−1

�  for  j = 0,1,...,n −1 
 

and ωn = e
i
2π
n

is a primitive nth complex root of the unity. 
The basic operations are multiply-accumulate, executed 
over complex numbers. The DFT has a time complexity of 
O(n2), which is too excessive for large sequences. The FFT 
is an O(n ln n) run time implementation of DFT based on a 
recursive algorithm proposed by Cooley-Tukey. This 
algorithm can be implemented in dataflow hardware as it is 
shown in the Figure 2.  



The number of data points is a power of 2. The network of 
nodes is a butterfly circuit.  Each node implements a 
complex number multiplies-accumulate operation on its 
inputs:  bj = uj + z vj. 
 

 

 

 

 

 

 

 
 

Figure 2: FFT circuit for n = 8 

3. Modeling a Reconfigurable System for the FFT 
 

In this section we analyze an implementation of the FFT 
using a compact n-array of MACs (Multiply-Adders). 
Observe that classical circuits for Fn use O(n ln(n)) cells 
(see the Figure 2).  For simplicity, our presentation is 
formulated for the computation of F8.  

The 8-array architecture that we use for computing F8 is 
founded on these circuits and its (operational semantics 
and) correctness is based on the adequate  application of 
dynamic reconfiguration of the operators, constants and 
data selection registers. Reconfiguration steps are alternated 
with execution steps on the array of MACs. For this 
example, the structure of each MAC is presented in the 
Figure 3. It is not designed exclusively to FFT application: 
it could be reused to implement other array processing 
applications like matrix multiplication, string matching, etc. 
We distinguish between reconfigurable (shadowed) and 
fixed components. The formers are the two data selection 
registers, Ar1 and Ar2; the two operators, Op1 and Op2; 
and the constant, C1. The latter are the  ports, P1 and P2; 
and  registers, R1 and R2. 
The registers, ports and constant store complex numbers 
and consist of two components: the real and imaginary 
parts. The two operators can be reconfigured to be any 
operation over complex numbers. In particular, for 

implementing FFT we will use only addition (+), 
subtraction (-) and multiplication (×) of complex numbers. 
In each of the eight MACs the data selection registers, Ar1 
and Ar2, indicate the origin of the data that should be 
loaded into the respective ports, P1 and P2. The options for 
their configuration are either the input (I) (as input we will 
supply the coefficients of a given polynomial permuted 
adequately) or the output (second register R2) of one of the 
eight nodes (indexed by 0,1,...,7). 
In any reconfiguration the constant part of each MAC is set 
to arbitrary complex numbers. For implementing FFT, these 
constants are set with adequate complex roots of the unity. 
 

3.1 The 8-nodes Array 
 
The Figure 4 shows the basic idea behind the 8-array 
implementation. The upper row is composed by nodes with 
the architecture depicted in the Figure 3. The node outputs 
are feedback to their inputs through a reconfigurable 
interconnection network (RIN). The RIN can provide to the 
MAC ports any MAC output or an external input. The 
configuration of data selection registers Ar1 and Ar2 will 
select from the RIN the specific node inputs in a given 
iteration. In the first step, the 8-array receives as input zeros 
and coefficients of an input polynomial a0+a1·x+...+a7·x7 in 
the adequate ordering  (bit-reversal permutation; see Figure 
2), taken from the primary (external) inputs. Then, at each 
step the interconnections and the node operations are 
reconfigured in order to implement the corresponding 
butterfly slice (columns in the Figure 2). The initial 
reconfiguration parameters are given by the sequence: 

0: I,I,+,1, ×;  1: I,I,+,1, ×;  2: I,I,+,1, ×;  3: I,I,+,1, ×; 
4: I,I,+,1, ×;  5: I,I,+,1, ×;  6: I,I,+,1, ×;  7: I,I,+,1, ×; 

This means that the node 0 receives its inputs from the 
corresponding external inputs; its first operator is 
configured as addition; its constant component as 1; and its 
second operator as multiplication. Similarly for the 
remaining seven nodes. After this reconfiguration, the 
operations are executed, obtaining in the output register 
(R2) of each node the input coefficients: a0, a4, a2, a6, a1, a5, 
a3 and a7, respectively. Observe that this first step provides 
again the same input, but now, after a second 

Reconfigurable Interconnection Network 

Fig. 4: Reconfigurable 8-array FFT 
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reconfiguration, it can be combined adequately by means of 
the selection registers.  The current execution is stopped 
while the second reconfiguration parameters are provided: 

   0: 0,1,+,1, ×;  1: 0,1,-,1, ×;  2: 2,3,+,1, ×;   3: 2,3,-, i, ×; 
   4: 4,5,+,1, ×;  5: 4,5,-,1, ×;  6: 6,7,+,1, ×;   7: 6,7,-, i, ×; 
This means that the first and second data selection registers 
of the nodes 0 and 1 should be loaded with 0 and 1. Thus, 
the outputs of nodes 0 and 1 are loaded in the associated 
ports, and these are added in the first node and subtracted in 
the second node. In this iteration, the constants in all nodes 
are configured as  1 except for the fourth and eighth nodes 
where it is set to i. The second operator remains as 
multiplication. After the second reconfiguration and 
execution we will obtain as respective outputs the values: a0 

+a4, a0-a4, a2+i·a6, a2-i·a6, a1+a3, a1-a3, a5+i·a7 and a5-i·a7.  
The third reconfiguration is given by the sequence: 
 
 
 
 
 

The interconnections that result from this reconfiguration 
step are illustrated in the Figure 5. Finally, after the 
execution phase, the 8-array is reconfigured with the 
following sequence: 
  0: 0,4,+,1, ×;   1: 1,5,+,1, ×;  2: 2,6,+,1, ×;   3: 3,7,+,1, ×; 
  4: 0,4,-,1, ×;    5: 1,5,-,1, ×;   6: 2,6,-,1, ×;    7: 3,7,-,1, ×; 

This gives as output F8×(a0, ..., a7), that is the DFT of the 
polynomial a0 + a1·x +...+ a7·x7. 
 

3.2 The 8-array in ELAN 
 

The key operators of our specification in ELAN of this 
dynamically reconfigurable 8-array have the type 
description given in the Table 1. The notation  
“<@ @> : ( num num ) complexUnit;” means that “< >” is 
a binary operator of type complexUnit with two parameters 
of type num. Our processor is described as the 10-ary 
operator: 
<@ @ @ @ @ @ @ @ @ @> : ( int rArrayStruct 
   MAC MAC MAC MAC MAC MAC MAC MAC )Proc; 
whose first two parameters are the identifier of the current 
reconfiguration step and an 8-array for the transfer of data 
between the registers and ports of the eight MACs. Each 
MAC consists of its fixed and reconfigurable components 
fixMAC and recMAC as shown in the Figure 3.  
The execution steps of the 8 MACs are split in four 
rewriting rules (MAC01, MAC23, MAC45, MAC67) for 
pairs of MACs. The specification of the rule MAC01 for 
the first pairs of MACs is presented in the Table 2. In this 
rule the values in the ports of the first two MACs are 
operated according to the configuration of the first operator 
in each MAC: (cRegRes1 := () operate(cPort1,cPort2,op1) 
and cRegRes3 := () operate(cPort3,cPort4,op3)); then this 
result loaded in the first register is operated with the 
configured constants according to the configuration of the 
second operator: (cRegRes2 :=() operate(cRegRes1, 
cConst1, op2) and cRegRes4 :=() operate( cRegRes3, 
cConst2, op4)) and the result is loaded in the second 
register of each MAC as well as in the 8-array with the rule: 
(sendToRegsArray(regsStr, cRegRes2, cRegRes4)). The 
process is executed for the eight MACs via the logical 
strategy MAC01; MAC23; MAC45; MAC07, which 
determines the order of application of these rules. In fact, in 

0: 0, 2, +,1, ×;   1: 1,3,+, 1,    ×; 
2: 0, 2, -, 1, ×;   3: 1,3, -, 1,  ×; 
4: 4, 6, +,1, ×;   5: 5,7,+, (1+i)/ 2 , ×; 
6: 4, 6, -,  i, ×;   7: 5,7, -, (-1+i)/ 2 , ×; 

 
Figure 5: Interconnections in reconfiguration  

0 2 3 4 5 6 7 1 

Table 1: ELAN description of the operators 
operators global  // here all operators, functions, etc. are defined 
  ‘+’  : Op;  ‘-‘  : Op;  ‘*’  : Op;   // defining the operators: type Op 
   <  @  >                        : ( Op ) OpUnit;  // syntax <+> defines the operator add 
   <  @ @  >                     : ( num num ) complexUnit;  // complex number 
  const(@)                        : ( complexUnit ) Const;    // complex constant 
  port(@)                         : ( complexUnit ) Port;     // MAC ports stores a complex 
  reg(@)                          : ( complexUnit ) Reg;       // complex register 
  addr(@)                         : ( int ) Addr;  
  @,@,@,@,@                       : ( int Port Port Reg Reg ) fixMAC;   
  @,@,@,@,@                       : ( Addr Addr Const OpUnit OpUnit ) recMAC;   
   [  @ # @  ]               : ( fixMAC recMAC ) MAC;  
   <  @ @ @ @ @ @ @ @ @ @  >      : ( int rArrayStruct MAC MAC MAC MAC MAC MAC MAC MAC )Proc;  
  operate( @,@,@ )             : ( complexUnit complexUnit OpUnit ) complexUnit;  
  initialize( @,@,@ )             : ( int complexUnit complexUnit ) fixMAC;  
  getfixMAC ( @,@,@ )             : ( fixMAC recMAC regsArray ) fixMAC;  
  extractVal ( @,@ )              : ( regsArray int ) complexUnit;  
  @ eqOp @                        : ( Op Op ) bool;  
  @ | @ | @ | @ | @ | @ | @ | @   : ( complexUnit complexUnit complexUnit complexUnit  
                                  complexUnit complexUnit complexUnit complexUnit) regsArray;                  
end  



theory a sole rule is necessary for the execution, but this is 
done in this way because of a restriction in ELAN in the 
number of different variables one can use in the description 
of a rewriting rule. 
Table 2: Rule for execution over MAC0 and MAC1 
[MAC01] 
 < recN regsStr  
   [0,port(cPort1),port(cPort2), 
      reg(cReg1),reg(cReg2) 
    # addr1,addr2,const(cConst1),op1,op2]  
   [1,port(cPort3),port(cPort4), 
      reg(cReg3),reg(cReg4) 
    # addr3,addr4,const(cConst2),op3,op4]  
   [fix2#rec2] [fix3#rec3] [fix4#rec4]  
   [fix5#rec5] [fix6#rec6] [fix7#rec7] >  
=>  
< recN  sendToRegsArray(regsStr,cRegRes2,cRegRes4)  
  [0,port(cPort1),port(cPort2), 
     reg(cRegRes1),reg(cRegRes2)  
   # addr1,addr2,const(cConst1),op1,op2]  
  [1,port(cPort3),port(cPort4), 
     reg(cRegRes3),reg(cRegRes4)  
   # addr3,addr4,const(cConst2),op3,op4]  
  [fix2#rec2] [fix3#rec3] [fix4#rec4]  
  [fix5#rec5] [fix6#rec6] [fix7#rec7] >   
where cRegRes1 :=()operate( cPort1,cPort2,op1 ) 
where cRegRes2 :=()operate( cRegRes1,cConst1,op2 )  
where cRegRes3 :=()operate( cPort3,cPort4,op3 )  
where cRegRes4 :=()operate( cRegRes3,cConst2,op4 ) 
end  

Reconfiguration steps and executions of the operations in 
the eight MACs are alternatively applied. The rewriting rule 
for the third reconfiguration, that has previously been 
explained, is presented in the Table 3. This rule that is 
guided by the index of reconfiguration (2 in this case), 
reconfigures the processor exactly as indicated in the 
previous comments. Observe that complex numbers are 
given as pairs of numbers of the form <0,7071 0,7071>. 
The use of explicit rewriting rules for reconfiguration is 
unessential. In fact, in a more elaborated specification of 
this processor we give as input both data and a 
reconfiguration stream as it has been explained in the 
Figure 1. For this specification a unique rewriting rule 
guides the reconfiguration process based in the parameters 
of reconfiguration given in the reconfiguration stream. 
Now we explain how we use logical strategies for 
simulating the desired execution with the alternate dynamic 
reconfigurations. The key for a correct simulation of our 
processor is in fact a very simple logical strategy, which 
alternatively simulates a reconfiguration step and a 
computation step followed by the propagation of results to 
the 8-array. The former corresponds to a reconfiguration 
step and the latter to the sequence MAC01; MAC23; 
MAC45; MAC07. The logical strategy for controlling the 
execution of the process, i.e. this alternatively execution of 
reconfigurations and executions, is specified as: 
      strategies for Proc  
      implicit  
        [] process    =>    
           input;  MAC01; MAC23; MAC45; MAC67; 

           repeat*(reconfiguration; propagate; MAC01;  MAC23;    
                         MAC45; MAC67); output                                 
        end           
      end 

Using logical strategies for guiding the rule application  in 
ELAN allows for a natural separation between the steps of 
execution and reconfiguration in our proposed processors. 
We believe that this is a clean way to specify and simulate 
this kind of (dynamically) reconfigurable architectures. By 
clean we mean in a realistically manner in relation to 
physical implementations of the conceived systems. 

  Table 3: Reconfiguration rule 
[reconfiguration]  
< 2  regsStr 
  [fix0#rec0][fix1#rec1][fix2#rec2][fix3#rec3]   
  [fix4#rec4][fix5#rec5][fix6#rec6][fix7#rec7] >  
=>  
 < 3  regsStr 
   [ fix0 # addr(0),addr(2), 
       const( < 1,0000 0,0000 > ), < + >,< * > ]  
   [ fix1 # addr(1),addr(3), 
       const( < 1,0000 0,0000 > ), < + >,< * > ]  
   [ fix2 # addr(0),addr(2), 
       const( < 1,0000 0,0000 > ), < - >,< * > ]  
   [ fix3 # addr(1),addr(3), 
       const( < 1,0000 0,0000 > ), < - >,< * > ]  
   [ fix4 # addr(4),addr(6), 
       const( < 1,0000 0,0000 > ), < + >,< * > ]  
   [ fix5 # addr(5),addr(7), 
       const( < 0,7071 0,7071 > ), < + >,< * > ]  
   [ fix6 # addr(4),addr(6), 
       const( < 0,0000 1,0000 > ), < - >,< * > ]   
   [ fix7 # addr(5),addr(7), 
     const( <minus(0,7071) 0,7071> ), <->,<*> ] >  

end     
With different strategies of (dynamical) reconfiguration the 
8-array can be adapted to execute other operations, like 
matrix multiplication, inverse of the DFT, etc. 
It should be stressed here that one of the main  advantages 
of using the rewriting formalism is the direct reduction of 
the correctness proof of our FFT specification to the usual 
algebraic proof of  the in place algorithm (as  in [4]).  
 

3.3 A Reconfigurable Pipeline Implementation 
 

Our specification of the FFT has used a single vector of 
MACs which makes it optimal in the use of space such as 
the well-known in place algorithmic implementations of 
this operator. The number of necessary reconfigurations 
and computation steps is four (in the general case ln(n)+1). 
In this approach, the data processing must be interrupted 
while reconfiguration takes place. A more time efficient 
alternative is to implement a two-stage pipeline, which 
consists of two 8-array of MACs interconnected by a 
reconfigurable network. The idea is illustrated in the Figure 
6. Since computing of operations with complex numbers 
takes longer time than reconfiguration time, this approach 
does not provide a linear time reduction, but eliminates the 
reconfiguration overhead. The idea is that while one row of 



MACs is being reconfigured, the other is computing one 
step of the FFT.  
This architecture was modeled and simulated in ELAN, 
using a similar approach. The details of the 
implementations are not presented here, but they are 
available at  www.mat.unb.br/~ayala/TCgroup.   

4. Conclusions 
 

Since digital systems get more and more complex, 
modeling the various architectural trade offs in the context 
of reconfigurable systems may benefit from the high 
abstraction level provided by rewriting-logic environments. 
In this paper, we showed how rewriting systems can be 
used to model a dynamically reconfigurable hardware to 
implement the FFT in optimal space (O(n) that is the size of 
the input). In our experiments we have compared two 
alternative designs: one using a single reconfigurable vector 
of MACs (presented in this paper) and another based on a 
pipeline of two reconfigurable vectors (both available on 
internet). The ELAN model allows us to simulate the 
behavior of both designs and verify its correctness with 
respect to a set of input vectors. Moreover, it gave us 
insights on the time/space complexity of the 
implementations. The high abstraction level provided by 
ELAN makes the design exploration a simpler task and 
provides a starting point to the design implementation.  
Current work address the automatic generation of 
synthesizable VHDL models from the ELAN specification. 
VHDL  in this case is used as an “assembly language” in 
the design process. Compared to a SystemC or a Java 
specification, ELAN has the advantage of an embedded 
inference engine; a flexible type definition mechanism (data 
and operators); a powerful manipulation of typed 
expressions through rules and meta-rules and the 
availability of logical strategies to control their application. 
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Fig. 6: Pipelined Reconfigurable FFT 
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