
Reconfigurable Systems for Sequence Alignment and for
General Dynamic Programming

§

Ricardo P. Jacobi1, Mauricio Ayala-Rincón2, Luis G. A. Carvalho1, Carlos H. Llanos3
and Reiner W. Hartenstein4

Departamentos de 1Ciência da Computação, 2Matemática e de 3Engenharia Mecânica, Universidade
de Brasília 70910-900 Brasília D. F., Brazil

{1rjacobi@cic,2ayala@mat, 3llanos@}.unb.br
4 Fachbereich Informatik, Technische Universität Kaiserslautern, Germany

hartenst@rhrk.uni-kl.de

Abstract. Reconfigurable systolic arrays can be adapted for efficiently resolving a
wide spectrum of computational problems: parallelism is naturally explored over
systolic arrays and reconfigurability allows for redefinition of the interconnections
and operations even at run time (dynamically). We present a reconfigurable systolic
architecture which is applied to the efficient treatment of several dynamic program-
ming methods for resolving well-known problems such as global and local sequence
alignment, approximate string matching and longest common subsequence. Dy-
namicity of the reconfigurability is showed of relevance for practical applications to
construction of sequence alignments. A VHDL description of the conceived archi-
tecture is implemented synthesized over an FPGA of the APEX family.

1 Introduction
A lot of effort have been done in recent years by the scientific community in order to bet-
ter understand the Human Genoma. This effort was aided by the advances in computer
algorithms and hardware, which allowed the identification of the almost 40 thousand hu-
man genes. The first results were published by Nature [11] and Science [20] in February,
2001. After the first results, a huge amount of biological data was generated and stored in
databases. For instance, GenBank, one of the main public genome databases has been feed
at an exponential rate in time last years.
Due to the huge size of DNA sequences, purely software based implementations of the
Smith-Waterman algorithm [18], whose space and running time complexity belong to
O(mn) for sequences of size m and n, do not compete with high sensitive linear approxi-
mate solutions as the ones implemented in the well-known systems FASTA and BLAST.
On the other side, using dedicated hardware, matching can be processed in parallel reduc-
ing the order to O(m+n). But most of the dedicated hardware solutions are in first place
expensive and in second place lacks of flexibility to be adapted to different problems.
Solutions based on reconfigurable devices such as Field Programmable Gate Arrays
(FPGAs) may provide for those needs. The former solutions can be classified as purely
software approaches oriented to the exploration of parallel hardware architectures as in
Single Instruction Multiple-Data (SIMD) and MultiMedia eXtensions (MMX) available in

§ Work supported by the CAPES-DFG foundations. Partially supported by FINATEC.

Intel microprocessors [17]. The latter solutions can be classified as dedicated or config-
ware/morphware approaches where the threshold between what is hard and what is soft is
flexible allowing for sophisticated "algorithmic" solutions embedding reconfiguration and
execution instructions [4].
This work presents a prototype of a reconfigurable systolic architecture adequate for treat-
ing problems which are solvable by general dynamic programming algorithms. The archi-
tecture was modeled by a rewriting-logic based methodology using ELAN in [3] following
the original lines of design also applied for a space/time efficient implementation of the
Fast Fourier Transform in [2]. Its hardware design and prototyping is presented here,
which includes the architectural description, the specification with VHDL and simulation
and synthesis using the Altera - Quartus II system [1]. While most hardware solutions
limits to sequence comparison, which gives an estimation of the sequence similarity, our
work target sequence alignment, producing effectively the sequence matchings.
The paper is organized as follows: section 2 introduce basic concepts on systolic arrays
and reconfigurable systems; section 3 overviews previous work in the area; section 4 pre-
sents the systolic architecture and explains why reconfiguration is relevant; section 5 de-
scribes the VHDL specification, synthesis and results and section 6 presents conclusions
and future work.

2 Systolic arrays and Reconfigurable Systems

The term systolic array has been coined probably by H. T. Kung around 1979 [10]. A
systolic array is a mesh-connected pipe network of DPUs (datapath units), using only
nearest neighbor (NN) interconnect. DPU functional units usually operate synchronously,
processing streams of data that traverse the network (also asynchronous mode of operation
is possible, where sometimes also the term wavefront array is used instead of systolic
array). Systolic arrays provide a large amount of parallelism and are well adapted to a
restrict set of computational problems: those which present strictly regular data dependen-
cies. Some typical structures are shown in figure 1.

Figure 1. Some systolic structures.

Systolic array restrictions may be circumvented by using reconfigurable circuits: the same
system may be reconfigured in order to deal with different tasks.

3 Related Work
In 1985, Lipton and Lopresti [13] had shown that the parallelism in Smith-Waterman
algorithm can be mapped into a linear bidirectional systolic architecture. Each processing
element (PE) in that structure computes one of the diagonals of the similarity matrix (fig-
ure 2).

Sequences to be compared should
be input to the vector from opposite
sides and were shifted at each clock
cycle to cross the vector. If the two
sequences had sizes m and n then
the vector should have n+m–1
elements. The result provided by
this architecture is a value that
indicates the degree of similarity
between the sequences.
In 1992, Hoang [8] proposes a

similar solution based on SPLASH [5] architecture, which is a matrix of programmable
logic devices developed by the Supercomputer Research Center (SRC), using 32 XC30990
FPGAs from Xilinx [22]. They allowed the user to recover at least one alignment, using
Lipton and Lopresti grading scheme. An improvement was later proposed based on a new
version of SPLASH. Lavenier, in 1998, develop SAMBA [12] (Systolic Accelerator for
Molecular Biological Applications) another systolic alternative to compute sequence com-
parison. Later, in 2002, a new version of Hoang approach was presented based on Virtex
FPGAs from Xilinx [6]. Hoang solution also inspired HokieGene [16], a reconfigurable
system implemented with Osiris [9] card, developed by the Information Sciences Institute.
An architecture which is similar to this work was presented by Yamaguchi, Maruyama and
Konagaya [24] in 2002. It uses a PCI card with a XCV2000E FPGA from Xilinx, which
contains 43200 logic cells that can hold 144 processor nodes, but each processor takes
four clock cycles to compare two bases. Another solution still based on Hoang was pro-
posed in 2003 by Yu, Kwong, Lee and Leong [25]. It uses Xilinx XCV1000E FPGAs,
with 27648 logic cells. Some ASICs were also developed, as BioScan [21] in 1991,
KESTREL [7] in 1996 and the Proclets of Yang [23] in 2002. Commercial products in this
area are DeCypher [19] from TimeLogic, based on FPGAs and GeneMatcher2 [15] from
Paracel, which employs a dedicated ASIC.
There are some interesting remarks concerning these works. First, almost all of them only
computes the comparison and do not produce the alignments between sequences and sub-
sequences. Moreover, the cost function adopted was modified in order to simplify the
hardware. This may produce inaccurate results according to researchers from biology
field. In this work the cost function adopted follows the biological grading system.

4 The Reconfigurable Systolic Array
4.1 Conception of the Systolic Array
The conceived architecture is reconfigured for the treatment of problems such as: local
and global sequence alignment (LSA and GSA) between two sequences: s, t; longest
common subsequence (LCS) between two strings: s, t; k-approximate string matching
(ASM) of a pattern in a string: s, t.
All these problems are similarly solved by dynamic programming algorithms that build a
table V of size m+1 × n+1, where m and n are the length of the two input sequences or
strings (|s| = m, |t| = n). The computation of the i, j-th components of all these tables are
based on the values of the previous components in the same row (i,j-1), column (i-1,j) and

diagonal (i-1,j-1). Components of these tables are denoted by V[i, j] and symbols of the
sequences by s[i], t[j]. These computations are respectively given for these problems by
the following recurrence relations:

• LSA: V[i,j] = max(V[i,j-1]-2, V[i-1,j]-2, V[i-1,j-1]+p, 0), where if s[i]=t[j]
then p=1 else p = -1 and V[i,0] = 0, for i=0..m and V[0,j]=0, for j=0..n.

• GSA: V[i,j] = max(V[i,j-1]-2, V[i-1,j]-2, V[i-1,j-1]+p), where if s[i]=t[j] then
p=1 else p=-1 and V[i,0]=-2× i, for i=0..m and V[0,j]=-2× j, for j=0..n.

• LCS: V[i,j] = max(V[i,j-1], V[i-1,j], V[i-1,j-1]+p), where if s[i]=t[j] then p=1
else p = 0 and V[i,0] = 0, for i=0..m and V[0,j] = 0, for j=0..n.

• ASM: V[i,j] = min(V[i,j-1]+1, V[i-1,j]+1, V[i-1,j-1]+p), where if s[i]=t[j] then
p=0 else p = 1 and V[i,0] = i, for i=0..m and V[0,j] = j, for j=0..n.

Components of these dynamic programming tables are sequentially computed from left to
right and top to down, but parallelization is possible by computing all components in one
(minor) diagonal in a sole step, starting from the first diagonal (i+j=2) and finishing in the
last diagonal (i+j=n+m). Notice that for computing values in the diagonal k (i+j=k) it is
necessary to maintain values of the previous two diagonals k-1 (since, i-1+j=i+j-1=k-1)
and k-2 (since, i-1+j-1=k-2) as shown in figure 3.

The basic processing element is
depicted in figure 4 (a). The
relative position of the neighbor
values is indicated for the
computation of value w. Note
that y is the previous outcome of

the same cell and is stored as the upper value. z was computed by the left neighbor in the
previous step and is stored in an internal register for computing w. x was stored in the left
neighbor as the upper value in the previous step, and is transferred at the same time than z
to the cell computing w. Figure 4 (b) gives an idea of the processing steps. The three proc-
essing elements store “G C T” subsequence. At time t they are computing the values of the
first dashed diagonal and at time t+1 they are computing the values of the second dashed
diagonal. For simplicity of representation, the left value was stored with the base being
processed (as 5 in C5). This illustrates the data flow in the systolic array. Each cell pro-
duces, beyond the comparison value, a 3 bit relative pointer that indicates from where the
alignment that produced that result came from. This information is used by the host where
the FPGA is connected to recover the alignments for the similarity matrix.

4.2 Application of Dynamic Reconfiguration
Dynamic reconfiguration is useful for practical applications over molecular data. Once the
systolic array proposed in the previous section is reconfigured for LSA, detection of the
end positions of high scored alignments between two sequences is possible without writing
out all the components of the dynamic matrix. For real molecular data this is necessary
because the huge length of the usually treated sequences and the space complexity of the
algorithm, which is in O(mn) for sequences of length m and n. For example, a practical
solution for constructing the alignments of interest between two sequences s and t, consists
in alternating the execution of the following two phases of reconfiguration and execution:

• Reconfigure the systolic array for executing LSA moving the sequence t from left to
right, without constructing the dynamic matrix, and maintain only the current scores in
each diagonal of the table and selecting the good ones.

• Once a good score is selected, say finishing at positions i and j of the sequences s and
t respectively, the systolic array is reconfigured to execute the GSA operation in re-
verse order.

Figure 4. The processing element (a) and two steps of the flow of computation (b).

5 Implementation
The hardware implementation has limited size. Since biological sequences may have thou-
sands of elements, often it will not match the size of the array. In this case, sequence parti-
tioning is done by software. The architecture modeled in ELAN was refined to a structural
VHDL description and synthesized and simulated in Altera Quartus II design environment.

5.1 Design in VHDL
The basic architecture of a systolic node to compute the dynamic algorithms includes
registers to hold the neighbor values and a reference sequence character, adders to com-
pute the cost and comparators to check for equality. It runs synchronously, performing one
comparison for each clock cycle. The node netlist is presented in the Figure 5. It
should be noted that the accumulated sequence matching cost grows from left to right,
such that the number of bits needed to store the cost can be different for each node. The
VHDL description of the nodes keep these values generic, such that they are defined when
instantiating the cells.
The circuit for one node is simple. It compares the running base got from a data base with
the base stored in the cell and produces this way the diagonal cost, which is the accumu-
lated cost coming from column j-1 and line i-1 added to +1 or –1, as described in the pre-
vious section.

5.2 Simulation and Results
To verify the systolic array implementation simulations were performed in Quartus II
environment. We show next an small example for illustration purposes. Figure 6 presents
the similarity matrix obtained for the comparison of two pair of sequences, CATAG and
ATAGC and CATAG and CATGA, using the LSA algorithm. This algorithm looks for the
best matching between subsequences of the strings. The main difference with respect to
the global matching is that it does not accumulate negative values, allowing local matches
along the sequences. The arrows in the figure indicate several alternative matches and the

encircled elements are those that need to be stored in a sparse matrix to recover the se-
quences, which is done by software.

Figure 5. Systolic node structure.

The simulation of the comparison between CATAG and ATAGC sequences is shown in
the Figure 7. The symbols are coded as follows: A = 00, T = 01, C = 10 and G = 11. Sig-
nal VAL shows the best score obtained in the comparison, which was 4 in this example.
Signals MEM2, MEM3, MEM4 and MEM5 are the data outputs of the systolic array.
CONTA is an auxiliary signal provided to help building the similarity matrix from the data
produced by the array. To draw a profile of synthesis results, several arrays were generated
and synthesized. The results are summarized in figure 8. The increasing curve (y-axis to
the left) shows the number of logic elements required to implement arrays of varying sizes,
indicated on the x-axis. For a systolic array of 50 nodes it was required around 4500 logic
elements on an APEX device. Since the circuit size grows almost linearly, we can estimate

the size of the vector for devices
based on the same logic element.
For instance, an APEX
EP20K400, with 16.640 logic
elements could hold 180 nodes.
Last generation devices, like
Stratix II or Virtex II could hold
thousands of nodes. The
decreasing curve (y-axis to the
right) corresponds to the
frequency attained by the array. It
is interesting to note that initially

the frequency decays strongly with the size of the vector and then stabilize for vectors with
30 or more cells, around 56 Mhz.
The time needed to compute a sequence comparison is given by the time the running se-
quence takes to traverse the systolic array. Thus, if the reference sequence has n elements
and the data base sequence has m elements, then we need n + m clock cycles to compute
the comparison. To get a rough estimation of the gain with respect to a software solution,
suppose that the frequency keeps around 50 Mhz for larger devices. Considering that we
can chain FPGA in order to implement larger sequences, an estimation of the speed up

provided by the systolic vector compared to the time required by a cluster of workstations
obtained from [14] is given in table 1. The real speed up should be less than this value
because it does not include the communication among FPGAs. Even in this case, the gain
in speed is of several orders of magnitude. The values do not take into account the time to
recover the alignments.

Figure 7. LSA simulation of sequences CATAG and ATAGC.

Table 1. Processing time for a cluster of workstations and the systolic array.

Seq. Size 1 proc. 2 Proc. 4 Proc. 8 Proc. Systolic Array
15K x 15 K 296s 283,18s 202,18s 181,29s 0,000614s
50K x 50K 3461s 2884,15s 1669,53s 1107,02s 0,002048s
80K x 80K 7967s 6094,19s 3370,40s 2162,82s 0,003277s

6 Conclusions and Future Work
The systolic array derived in this work
can speed up string comparison (string
pattern matching and sequence alignment)
algorithms by software in several orders
of magnitude. Previous works in the
literature on string comparison in
hardware focused on sequence
comparison for biological problems using
different approaches but, if implemented
with current technologies, should provide
similar speed up. The main contribution

of this work is the computation of the sequence alignment instead of sequence compari-
son. The systolic architecture generates alignments through relative one bit pointers that
allow the host to recover the proper alignments by software in a post processing step. It
should be noted that by using rewriting-logic in this work we could easily extend the range
of problems covered by our systolic architecture through design exploration and simula-
tion. The reconfigurability of the systolic architecture plays a fundamental role here, al-
lowing the designer to switch from one algorithm to another. Current work address the

integration of this architecture in cluster of reconfigurable workstations, where the FPGA’s
work in parallel and a distributed operating system controls the process.

References
1. Altera® Corporation. Quartus II User Guide. Available at http://www.altera.com. Accessed in 2004
2. M. Ayala-Rincón et al. Modeling a Reconfigurable System for Computing the FFT in Place via Rewriting-
Logic. In IEEE CS Proc. SBCCI'03, pp 205-210, IEEE CS, 2003
3. M. Ayala-Rincón et al. Modeling and Prototyping Dynamically Reconfigurable Systems for Efficient Comp.
of Dynamic Programming Methods by Rewriting-Logic. ACM Proc. SBCCI'04, pp 248-253, 2004
4. J. Becker and R. W. Hartenstein, Configware and morphware going mainstream, Journal of Systems Archi-
tecture 49:127-142, 2003
5. M. Gokhale. Splash: A reconfigurable linear logic array. Proceedings of 1990 International Conference on
Parallel Processing (1990) 526–532
6. S.A. Guccione, E. Keller. Gene matching using jbits. Xilinx, Inc. (2002)
7. J. D. Hirschberg, R. Hughey, K. Karplus: Krestel: A programmable array for sequence analysis. In: Proc. Int.
Conf. Application-Specific Systems, Architectures and Processors, IEEE CS (1996) 25 :34
8. D.T. Hoang. A systolic array for the sequence alignment problem. Technical Report CS-92-22, Brown
University, Providence, RI (1992)
9. Information Sciences Institute - East http:// www.east.isi.edu/projects/SLAAC/:Slaac project. (2002)
10. H.T. Kung, C. E. Leiserson. Systolic Arrays for VLSI Sparse Matrix Proc. Society for Industrial and Applied
Mathematics, pages 256-282, 1978-1979.
11. E. S. Lander et al.: Initial sequencing and analysis of the human genome. Nature 409 (2001) 860–921
12. D. Lavenier, Dedicated Hardware for Biological Sequence Comparison. The Journal of Universal Com-
puter Science 2(2):77-86,1996.
13. R.J. Lipton, D. Lopresti: A systolic array for rapid string comparison. In: Chapel Hill Conference on VLSI.
(1985) 363–376
14. R. C. F. Melo, et al. Comparing Two Long Biological Sequences Using a DSM System. Proc. Euro-Par 2003
- Parallel Processing, LNCS, Vol. 2790, pages 517-524, 2003.
15 Paracel Inc. http://www.paracel.com/products/pdfs/gm2_datasheet.pdf. The Genematcher2 System Data-
sheet. (2002) 24. Paracel, Inc http://www.paracel.com/. (2001)
16. K. Puttegowda, W. Worek, N. Pappas, A. Dandapani, P. Athanas. A run-time reconfigurable system for
gene-sequence searching. Proceedings of the International VLSI Design Conference (2003)
17. T. Rognes and E. Seeberg, Six-fold speed-up of Smith-Waterman Sequence Database Searches Using
Parallel Processing on Common Microprocessors. Bioinformatics 16(8):699-706, 2000. See also Sencel
Bioinformatics http://www.sencel.com.
18. T. F. Smith and M. S. Waterman, Identification of Common Molecular Subsequences. Journal of Molecular
Biology, 147:195-197, 1981.
19 TimeLogic Corp. http://www.timelogic.com. (2002)
20. J. C. Venter et al.: The sequence of the human genome. Science 291 (2001) 1304–1351
21. C. T. White et al. Bioscan: A VLSI system based for biosequence analysis, IEEE CS (1991) 504:509
22. Xilinx Inc. http://www.xilinx.com. Acessed in 2004.
23. B. H. W. Yang. A parallel implementation of Smith-Waterman sequence comparison algorithm. Technical
Report ID: 4469409, Stanford (2002)
24. Y. Yamaguchi et al. High Speed Homology Search Using Run-Time Reconfiguration. 12th Int. Conference
on Field-Programmable Logic and Applications, Springer-Verlag LNCS 2438:281-291.
25. C.W. Yu, K.H. Kwong, K.H. Lee and P.H.W. Leong, A Smith-Waterman Systolic Cell, 13th Int. Conference
on Field-Programmable Logic and Applications, Springer-Verlag LNCS 2778:375-384, 2003.

