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This work presents a formalization of the theorem of existence of most general unifiers in first-order
signatures in the higher-order proof assistant PVS. The distinguishing feature of this formalization
is that it remains close to the textbook proofs that are based on proving the correctness of the well-
known Robinson’s first-order unification algorithm. The formalization was applied inside a PVS
development for term rewriting systems that provides a complete formalization of the Knuth-Bendix
Critical Pair theorem, among other relevant theorems of the theory of rewriting. In addition, the
formalization methodology has been proved of practical use in order to verify the correctness of
unification algorithms in the style of the original Robinson’s unification algorithm.

1 Introduction

A formalization in the proof assistant PVS of the theorem of existence of most general unifiers (mgu’s)
in first-order theories is presented. There are several applications of this theorem on computational logic,
which range from the correctness of first-order resolution [19], the correctness of the Knuth-Bendix
completion algorithm [15] to the correctness of principal type algorithms [13] and their implementations
in programming and specification languages. This well-known result is stated as follows:

Theorem 1 (Existence of mgu’s) Let s and t be terms. Then, if s and t are unifiable then there exists an
mgu of s and t.

The analytic proof of this theorem is constructive and the first proof was introduced by Robinson
himself in [19]. In Robinson’s seminal paper, the unification algorithm either gives as output a most
general unifier for each unifiable pair of terms, or fails when there are no unifiers. Essentially, the proof
of correctness of this algorithm consists in, firstly, proving that the algorithm always terminates and,
secondly, proving that, when it terminates and returns an mgu it implies the existence theorem.

Several variants of this first-order unification algorithm appear in well-known textbooks on compu-
tational and mathematical logic, semantics of programming languages, rewriting theory, type theory etc.
(e.g., [17, 9, 6, 3, 2, 14]). Since the presented formalization follows the classical proof schema, only a
sketch of this proof will be given here.

The development of the PVS theory unification was motivated by the formalization of a PVS library
for term rewriting systems [11] in which the theorem of existence of mgu’s is essential in order to obtain
complete formalizations of relevant results such as the well-known Knuth-Bendix(-Huet) Critical Pair
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theorem [12]. In addition to this application of the formalization of the theorem of existence of mgu’s,
in [1] it was reported a general verification methodology of first-order unification algorithms, illustrated
through the formalization of the correctness of a greedy version of Robinson’s unification algorithm,
that follows the lines of the formalization of the theorem of existence of mgu’s presented in this paper,
in order to check termination and soundness of the algorithm. Essentially, in that work it is illustrated
how the verification of completeness of a unification algorithm depends on the particular way in that the
algorithm deals with the detection of non unifiable inputs. But also, in the exercise of formalization of
correctness of efficient unifications algorithms, it is of main relevance the specific data types and refined
strategies used to efficiently detect and solve differences appearing among the terms being unified.

In Sec. 2, the necessary analytic concepts (terms, subterms, positions and substitutions) together with
their corresponding specifications in PVS are given. The formalization of the theorem of existence of
mgu’s is presented in Sec. 3. Also in Sec. 3 it is illustrated how specific unification algorithms à la Robin-
son are verified using this methodology. In the sequel related work and conclusions are presented. The
PVS files of the formalization of the theorem of existence of mgu’s and verification of Robinson’s style
unification algorithms are available as part of the theory for term rewriting systems (trs) in the NASA
LaRC PVS libraries http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html.

2 Specification of terms, positions, subterms and substitutions

Although it is supposed familiarity with unification and its standard notations (e.g. as in [2, 3]), analytical
concepts will be presented together with their associated specifications in PVS.

Consider a signature Σ in which function symbols and their associated arities are given as well as an
enumerable set V of variables.

Definition 1 (Well-formed terms) The set of well-formed terms, denoted by T (Σ,V ), over the signature
Σ and the set V of variables is recursively defined as: i) x ∈ V is a well-formed term and ii) for each
n-ary function symbol f ∈ Σ and well-formed terms t1, . . . , tn, f (t1, . . . , tn) is a well-formed term.

Note that constants are 0-ary well-formed terms.
In the sequel, for brevity “terms” instead of “well-formed terms” will be used.
The hierarchy of the theory unification is presented in Fig. 1. This is part of the theory trs for

term rewriting systems presented in [11], which includes also the subtheory ars for abstract reduction
systems [10]. The most relevant notions related with unification are inside the subtheories positions,
subterm and substitution. The PVS notions used for specifying these basic concepts are taken from
the prelude theories for finite sequences and finite sets. Finite sequences are used to specify
well-formed terms which are built from variables and function symbols with their associated arities.
This is done by application of the PVS DATATYPE mechanism which is used to define recursive types.
term[variable: TYPE+, symbol: TYPE+, arity: [symbol -> nat]] : DATATYPE

BEGIN vars(v:variable): vars?

app(f:symbol, args:{args:finite_sequence[term] | args‘length=arity(f)}): app?

END term

Notice that the fact that a term is well-formed, that is, that function symbols are applied to the
right number of arguments is guaranteed by typing the arguments of each function symbol f as a finite
sequence of length arity(f).

Finite sets and sequences are also used to specify sets of subterms and sets of term positions, as is
shown below.
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Figure 1: Hierarchy of unification inside the theory trs

2.1 The subtheories positions and subterm

As usual, positions of a term are defined as finite sequences of positive naturals, which simplifies the
definitions of subterms and occurrences. A dot “·” is used for the operation of concatenation of two
naturals m and n, m · n, and for the concatenation of the elements in sets of naturals; that is N ·M :=
{n ·m | n ∈ N,m ∈M}. For simplicity n ·M denotes {n} ·M.

Definition 2 (Positions, subterms, occurrences) The set of positions of a term t in T (Σ,V ), denoted as
Pos(t), is defined inductively as i) Pos(x) := {ε} and ii) Pos( f (t1, . . . , tn)) := {ε} ∪

⋃n
i=1 i ·Pos(ti),

where ε denotes the empty sequence that represents the root position of the term t. The subterm at a
given position π ∈ Pos(t) of a term t is defined inductively as i) t|ε := t and ii) f (t1, . . . , tn)|i·π := ti|π .

The set of subterms of a term t is the set {t|π | π ∈ Pos(t)}.
Whenever s = t|π , it is said that there is an occurrence of the subterm s of t at position π . The set of

positions of occurrences of a term s in t is given by the set {π | t|π = s}.

The (finite) set of positions positionsOF of a term t is recursively specified on its structure as below,
where only empty seq is a set containing an empty finite sequence only, that is the set containing the
root position only.

positionsOF(t: term): RECURSIVE positions =

(CASES t OF vars(t): only_empty_seq,

app(f, st): IF length(st) = 0 THEN only_empty_seq

ELSE union(only_empty_seq,

IUnion((LAMBDA (i: upto?(length(st))):

catenate(i, positionsOF(st(i-1)) ))))

ENDIF ENDCASES)

MEASURE t BY <<
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where the operator IUnion builds the union of all sets of positions of the arguments of a functional
term app(f, st) in which f is the name of the function and st is the sequence of arguments, that is a
sequence of length equal to the arity of f. The positions of the ith argument are prefixed by i in order to
build the sequence of positions inside this argument relative to the whole term.

Several necessary results on terms, subterms and positions are formalized by induction on the struc-
ture of terms following the lines of this abstract datatype specification. For instance, properties, such as
the one that states that the set of positions of a term is finite and that terms with the same heading symbol
(applications) have the same number of arguments, presented below, are proved by structural induction
on the abstract datatype for terms.

positions_of_terms_finite : LEMMA is_finite(positionsOF(t))

equal_symbol_equal_length_arg : LEMMA

FORALL (s, t: term, fs, ft: symbol,

ss:{args: finite_sequence[term] | args‘length = arity(fs)},

st:{argt: finite_sequence[term] | argt‘length = arity(ft)}) :

(s = app(fs, ss) AND t = app(ft,st) AND fs = ft) => ss‘length = st‘length

For p ∈ Pos(t), in the subtheory subterm, the subterm of t at position p also is specified in a
recursive way (now on the length of p), as follows:

subtermOF(t: term, (p: positions?(t))): RECURSIVE term =

IF length(p) = 0 THEN t ELSE LET st = args(t), i = first(p), q = rest(p) IN

subtermOF(st(i-1), q) ENDIF

MEASURE length(p)

where first and rest are constructors that return, respectively, the first element and the rest of a finite
sequence, and positions?(t) is the (dependent) type of all positions in t, which is specified as follows:

positions?(t: term): TYPE = {p: position | positionsOF(t)(p)}

Several necessary results on terms, subterms and positions are formalized by induction on the struc-
ture of terms following the lines of these definitions. For instance, properties such as the one that states
that the set of variables occurring in a term is finite (lemma vars of term finite in the subtheory
subterm). Other results are formalized by induction on the length of (sequences representing) positions;
for instance the ones below stating the equality t|p.q = (t|p)|q and that whenever p is a position of t and
q a position of t|p, p.q is a position of t, are proved by structural induction on terms.

pos_subterm: LEMMA FORALL (p, q: position, t: term):

positionsOF(t)(p o q) => subtermOF(t, p o q) = subtermOF(subtermOF(t, p), q)

pos_o_term: LEMMA FORALL (p, q: position, t: term):

positionsOF(t)(p) & positionsOF(subtermOF(t, p))(q) => positionsOF(t)(p o q)

2.2 The subtheory substitution

By using the definition of position, the notion of replacement of a subterm of a term is stated easily.

Definition 3 (Replacement of subterms) Consider t ∈ T (Σ,V ) and π ∈ Pos(t). The term resulting from
replacing the subterm at position π of t by the term s is denoted by t[π ← s].

Alternatively, the notation t[s]π is also frequently used in the literature.
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Definition 4 (Substitution) A substitution σ is defined as a function from V to T (Σ,V ), such that the
domain of σ , defined as the set of variables {x | x ∈V,xσ 6= x} and denoted by Dom(σ), is finite.

Definition 5 (Homomorphic extension of a substitution) The homomorphic extension of a substitu-
tion σ , denoted as σ̂ , is inductively defined over the set T (Σ,V ) as i) xσ̂ := xσ and ii) f (t1, . . . , tn)σ̂ :=
f (t1σ̂ , . . . , tnσ̂).

Given the notion of homomorphic extension, it is possible to define substitution composition.

Definition 6 (Composition of substitutions) Consider two substitutions σ and τ , their composition σ ◦
τ is defined as the substitution σ ◦ τ such that Dom(σ ◦ τ) = Dom(σ)∪Dom(τ) and for each variable x
in this domain, x(σ ◦ τ) := (xτ)σ̂ .

The subtheory substitution specifies the algebra of substitutions. In this subtheory the type of
substitutions is built as functions from variables to terms sig : [V -> term], whose domain is fi-
nite: Sub?(sig): bool = is finite(Dom(sig)) and Sub: TYPE = (Sub?). Also, the notions
of domain, range, and the variable range are specified, closer to the usual theory of substitution as pre-
sented in well-known textbooks (e.g., [2]). These notions are specified as follows:

Dom(sig): set[(V)] = {x: (V) | sig(x) /= x}

Ran(sig): set[term] = {y: term | EXISTS (x: (V)): member(x, Dom(sig)) & y = sig(x)}

VRan(sig): set[(V)] = IUnion(LAMBDA (x | Dom(sig)(x)): Vars(sig(x)))

where (V) denotes the type of all terms that are variables and Vars(t) denotes the set of all variables
occurring in a term t.

Also, in the subtheory substitution the homomorphic extension ext(sig) of a substitution sig

is specified inductively over the structure of terms:

ext(sigma)(t): RECURSIVE term =

CASES t OF vars(t): sigma(t),

app(f, st):

IF length(st) = 0 THEN t ELSE LET sst = (# length := st‘length,

seq := (LAMBDA (n: below[st‘length]): ext(sigma)(st(n)))#) IN app(f, sst) ENDIF

ENDCASES

MEASURE t BY <<

The composition of two substitutions, denoted by comp, is specified as

comp(sigma, tau)(x: (V)): term = ext(sigma)(tau(x))

In standard rewriting notation, the homomorphic extension of a substitution σ from its domain of
variables to the domain of terms is denoted by σ̂ , but to simplify notation, usually textbooks do not
distinguish between a substitution σ and its extension σ̂ . In the formalization this distinction should be
maintained carefully. For instance observe the following lemma and its formalization.

Lemma 2 Let s be term, p a position of s and σ a substitution. Then (sσ̂)|p = (s|p)σ̂ .

subterm_ext_commute: LEMMA FORALL (p: position, s: term, sigma: Sub):

positionsOF(s)(p) => subtermOF(ext(sigma)(s), p) = ext(sigma)(subtermOF(s, p))

Several important results useful for the development of subtheory unification were formalized in the
subtheory substitution, e.g., the property that states that the application of a homomorphic extension
of a substitution preserves the original set of positions of the instantiated term, formalized as:
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ext_preserv_pos: LEMMA FORALL (p: position, s: term, sigma: Sub):

positionsOF(s)(p) => positionsOF(ext(sigma)(s))(p)

The lemma below formalizes the set of positions of the instantiation of a term by a substitution.
positions_of_ext: LEMMA positionsOF(ext(sigma)(t)) =

union({p | positionsOF(t)(p) & (NOT vars?(subtermOF(t, p)))},

{q | EXISTS p1, p2: q = p1 o p2 AND positionsOF(t)(p1) AND

vars?(subtermOF(t, p1)) AND positionsOF(ext(sigma)(subtermOF(t, p1)))(p2)})

Additional formalized lemmas, presented below, state that all variables in the domain but not in the
range of a substitution σ disapear in all σ instantiated terms and that non-variable subterms, i.e. function
symbols, remain untouched after any possible instantiation.
vars_subst_not_in: LEMMA FORALL t, sigma, x:

Dom(sigma)(x) AND (FORALL r: Ran(sigma)(r) => NOT member(x, Vars(r)))

=> NOT member(x, Vars(ext(sigma)(t)))

ext_preserve_symbol : LEMMA FORALL(s:term, sig:Sub, p:position | positionsOF(s)(p)):

app?(subtermOF(s, p)) => f(subtermOF(s, p)) = f(subtermOF(ext(sig)(s), p))

3 Formalization of first-order unification

The formalization of the existence of first-order mgu’s is presented and then it is explained how the
formalization technology was applied to verify a specific unification algorithm. Again, definitions and
their corresponding specifications are included. The theory unification consists of 57 lemmas from
which 30 are type proof obligations (TCCs) that are lemmas automatically generated by the prover during
the type checking. The specification file has 273 lines and its size is 9.8 KB and of the proof file has
11540 lines and 657 KB.

Two terms s and t are said to be unifiable whenever there exists a substitution σ such that sσ̂ = tσ̂ .

Definition 7 (Unifiers) The set of unifiers of two terms s and t is defined as U(s, t) := {σ | sσ̂ = tσ̂}.
Definition 8 (More general substitutions) Given two substitutions σ and τ , σ is said to be more gen-
eral than τ whenever, there exists a substitution γ such that γ ◦σ = τ . This is denoted as σ ≤ τ .

Definition 9 (Most General Unifier) Given two terms s and t such that U(s, t) 6= /0. A substitution σ

such that for each τ ∈U(s, t), σ ≤ τ , is said to be a most general unifier of s and t. For short it is said
that σ is an mgu of s and t.

Now, it is possible to state the theorem of existence of mgu’s.

Theorem 3 (Existence of mgu’s) Let s and t be terms built over a signature T (Σ,V ). Then, U(s, t) 6= /0
implies that there exists an mgu of s and t.

The analytic proof of this theorem is constructive and the first introduced proof was presented by
Robinson himself in [19]. In Robinson’s paper, a unification algorithm was introduced, which either
gives as output a most general unifier for each unifiable pair of terms or fails when there are no unifiers.
The proof of correctness of this algorithm, which consists in proving that the algorithm always terminates
and that when it terminates it gives an mgu implies the existence theorem. Several variants of this first-
order unification algorithm appear in well-known textbooks on computational and mathematical logic,
semantics of programming languages, rewriting theory, etc. (e.g., [17, 9, 6, 3, 2, 14]). Since the presented
formalization follows the classical proof schema, no analytic presentation of this proof is given here.

Basic notions on unification are specified straightforwardly in the language of PVS. For instance the
notion of most general substitution is given as
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<=(theta, sigma): bool = EXISTS tau: sigma = comp(tau, theta)

From this specification, one proves that the relation <= is a pre-order (i.e., reflexivity and transitivity).
The notions of unifier, unifiable, the set of unifiers of two terms and a most general unifier of two

terms are specified as
unifier(sigma)(s,t): bool = ext(sigma)(s) = ext(sigma)(t)

unifiable(s,t): bool = EXISTS sigma: unifier(sigma)(s,t)

U(s,t): set[Sub] = {sigma: Sub | unifier(sigma)(s,t)}

mgu(theta)(s,t): bool =

member(theta, U(s,t)) & FORALL sigma: member(sigma, U(s,t)) => theta <= sigma

Several auxiliary lemmas related with the previous notions were also formalized as the ones pre-
sented below: unifier o formalizes the facts that, whenever σ ∈ U(sθ̂ , tθ̂), σ ◦ θ ∈ U(s, t); mgu o,
that whenever ρ ≥ σ , ρ ◦ θ ≥ σ ◦ θ ; unifier and sub, that instantiations of unifiers are unifiers;
idemp mgu iff all unifier that idempotence property of mgu’s, and; the lemma that formalizes the
fact that corresponding subterms of unifiable terms are unifiable, unifiable terms unifiable args.
unifier_o: LEMMA

member(sig, U(ext(theta)(s),ext(theta)(t))) => member(comp(sig,theta), U(s,t))

mgu_o: LEMMA sig <= rho => comp(sig, theta) <= comp(rho, theta)

unifier_and_subs: LEMMA

member(theta, U(s,t)) => (FORALL (sig: Sub): member(comp(sig, theta), U(s,t)))

idemp_mgu_iff_all_unifier: LEMMA FORALL (theta: Sub | member(theta, U(s,t))):

mgu(theta)(s,t) & idempotent_sub?(theta) <=>

(FORALL (sig: Sub | member(sig, U(s,t))): sig = comp(sig, theta))

unifiable_terms_unifiable_args: LEMMA

FORALL (s: term, t: term, p: position | positionsOF(s)(p) & positionsOF(t)(p)):

member(sig, U(s,t)) => member(sig, U(subtermOF(s, p), subtermOF(t, p)))

The unification algorithm receives two unifiable terms as arguments and is specified as the function
unification algorithm, presented below. This function together with the two auxiliary functions
sub of frst diff and resolving diff, to be explained in the remaining of this section, conform the
kernel of the unification specified mechanism.
unification_algorithm(s: term, (t: term | unifiable(s,t))): RECURSIVE Sub =

IF s = t THEN identity ELSE LET sig = sub_of_frst_diff(s, t) IN

comp( unification_algorithm((ext(sig))(s), (ext(sig)(t))), sig) ENDIF

MEASURE Card(union(Vars(s), Vars(t)))

In this specification, the function sub of frst diff(s, t), presented below, gives as result a sub-
stitution that resolves the first difference (left-most, outer-most in the structure of the terms) between the
terms s and t, that are unifiable and different terms. In order to generate this substitution, the subterms
that generate the difference must occur in the same position of s and t, one of these terms must be a
variable and the other, a term without occurrences of this variable. The unification algorithm re-
cursive function has a pair of unifiable terms as domain type, given by the parameters s and t, and in
the interesting case, after encountering the resolving substitution σ for the first difference, it returns the
composition of the result of the recursive call with the arguments sσ̂ and tσ̂ and σ .

The functions resolving diff and sub of frst diff, presented below, have the same type of
parameters, and the former returns the first (left-most, outer-most) position of conflict between the unifi-
able and different terms s and t, as previously explained, while the latter returns the substitution that
solves the conflict at the position generated by the function resolving diff.
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resolving_diff(s: term, (t: term | unifiable(s,t) & s /= t ) ): RECURSIVE position =

(CASES s OF

vars(s): empty_seq,

app(f, st): IF length(st) = 0 THEN empty_seq

ELSE (CASES t OF

vars(t): empty_seq,

app(fp, stp): LET k: below[length(stp)] =

min({kk: below[length(stp)] |

subtermOF(s,#(kk+1)) /= subtermOF(t,#(kk+1))}) IN

add_first(k+1, resolving_diff(subtermOF(s,#(k+1)), subtermOF(t,#(k+1))))

ENDCASES) ENDIF ENDCASES)

MEASURE s BY <<

sub_of_frst_diff(s: term , (t: term | unifiable(s,t) & s /= t )): Sub =

LET k: position = resolving_diff(s,t) IN

LET sp = subtermOF(s,k) , tp = subtermOF(t,k) IN

IF vars?(sp) THEN (LAMBDA (x: (V)): IF x = sp THEN tp ELSE x ENDIF)

ELSE (LAMBDA (x: (V)): IF x = tp THEN sp ELSE x ENDIF) ENDIF

3.1 Termination

Notice that the measure of the function unification algorithm is the cardinality of the union of the
sets of variables occurring in the term parameters s and t. From this measure, the PVS type-checker
generates an interesting type proof obligation concerning the property of decreasingness of this measure,
that guarantees the termination of the algorithm for all pairs of unifiable terms.

unification_algorithm_TCC6: OBLIGATION FORALL (s, (t | unifiable(s, t))):

NOT s = t => (FORALL (sig: Sub): sig = sub_of_frst_diff(s, t) =>

Card(union(Vars(ext(sig)(s)), Vars(ext(sig)(t)))) < Card(union(Vars(s), Vars(t))))

Although this key TCC is automatically generated, it is not automatically proved by PVS. In order to
prove this TCC, one should first prove the following auxiliary lemma:

vars_ext_sub_of_frst_diff_decrease: LEMMA

FORALL (s: term, t: term | unifiable(s, t) & s /= t):

LET sig = sub_of_frst_diff(s, t) IN

Card(union( Vars(ext(sig)(s)), Vars(ext(sig)(t)))) < Card(union( Vars(s), Vars(t)))

To prove the previous lemma, one requires the following additional lemma:

union_vars_ext_sub_of_frst_diff : LEMMA

FORALL (s : term, t : term | unifiable(s, t) & s /= t) :

LET sig = sub_of_frst_diff(s, t) IN union(Vars(ext(sig)(s)), Vars(ext(sig)(t))) =

difference(union( Vars(s), Vars(t)), Dom(sig))

The proof of the previous lemma requires that the substitution σ , that resolves the first conflict
between the given terms, maps a variable into a term without occurrences of this variable. From this fact,
it is possible to guarantee that the mapped variable disappears from the instantiated terms sσ̂ and tσ̂ ,
and hence the decreasing property holds. This is formalized as the lemma:

sub_of_frst_diff_remove_x : LEMMA FORALL (s:term, t:term | unifiable(s, t) & s /= t):

LET sig = sub_of_frst_diff(s, t) IN Dom(sig)(x) =>

(NOT member(x, Vars(ext(sig)(s)))) AND (NOT member(x, Vars(ext(sig)(t))))
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Two other lemmas, one for s and the other for t, formalize the fact that the variables in the σ instan-
tiated terms are contained in the set of variables occurring in the original terms being unified.

vars_sub_of_frst_diff_s_is_subset_union : LEMMA

FORALL (s : term, t : term | unifiable(s, t) & s /= t):

LET sig = sub_of_frst_diff(s, t) IN

subset?(Vars(ext(sig)(s)), union( Vars(s), Vars(t)))

Applying the previous lemmas, it is formalized the fact that the cardinality of the set of variables
occurring in the terms being unified decreases after resolving each conflict between the terms.

In the remaining of this section the formalization of lemma union vars ext sub of frst diff,
the lemma presented above, will be explained. After a first step of skolemization and simplifications, the
following sequent is obtained.

{-1} sub_of_frst_diff(s, t) = sig

|-------

{1} union(Vars(ext(sig)(s)), Vars(ext(sig)(t)))(x) IFF

difference(union(Vars(s), Vars(t)), Dom(sig))(x)

Note that there is a variable x, resulting from an application of the PVS proof command “decompose-
equality” that simplifies the equality between sets in the consequent formula into a biconditional, where
the following assertion is established: x is a member of Vars(sσ̂)∪Vars(tσ̂) if, and only if, x is a member
of Vars(s)∪Vars(t) \Dom(σ). At this point, a propositional simplification is applied and the proof is
divided in two branches, presented below, one for each direction of the biconditional:

• x ∈Vars(sσ̂)∪Vars(tσ̂) implies x ∈Vars(s)∪Vars(t)\Dom(σ).
After expanding the definitions of difference and union, the following sequent is obtained:

{-1} Vars(ext(sig)(s))(x) OR Vars(ext(sig)(t))(x)

[-2] sub_of_frst_diff(s, t) = sig

|-------

{1} (Vars(s)(x) OR Vars(t)(x)) AND NOT Dom(sig)(x)

Then, after propositional simplification, the proof divides into four branches:

1. In this case, x ∈Vars(sσ̂) and one should verify that either x ∈Vars(s) or x ∈Vars(t), which
is done by application of lemma vars sub of frst diff s is subset union.

2. In this case, x ∈Vars(sσ̂) and one should verify that x /∈Dom(σ), which is done by applica-
tion of lemma sub of frst diff remove x.

3, 4. These cases are similar to the previous two cases for the term t.

• x ∈Vars(s)∪Vars(t)\Dom(σ) implies x ∈Vars(sσ̂)∪Vars(tσ̂).
In this branch, after propositional simplification, one should verify that x ∈ Vars(s) implies x ∈
Vars(sσ̂) or, x ∈ Vars(t) implies x ∈ Vars(tσ̂). This is true because if x /∈ Dom(σ), then for a
position π ∈ Pos(s) such that s|π = x, one has (s|π)σ̂ = (sσ̂)|π = x.

3.2 Soundness

After establishing the termination of the specified function unification algorithm, its correctness is
formalized and applied in order to prove the Theorem 1 of existence of mgu’s that is specified as:
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unification: LEMMA unifiable(s,t) => EXISTS theta: mgu(theta)(s,t)

This lemma is proved applying the two lemmas below. The first one states that the substitution given
by the function unification algorithm is, in fact, a unifier and the second one that it is an mgu.

unification_algorithm_gives_unifier: LEMMA

unifiable(s,t) => member(unification_algorithm(s, t), U(s, t))

unification_algorithm_gives_mg_subs: LEMMA

member(rho, U(s, t)) => unification_algorithm(s, t) <= rho

The formalization of the lemma unification algorithm gives unifier is done by induction
on the cardinality of the set of variables occurring in s and t. For proving this lemma three auxiliary
lemmas are necessary:

• the lemma vars ext sub of frst diff decrease described in the previous subsection, which
guarantees that the set of variables decreases;
• ext_sub_of_frst_diff_unifiable: LEMMA

FORALL (s: term, t: term | unifiable(s, t) & s /= t):

LET sig = sub_of_frst_diff(s, t) IN unifiable(ext(sig)(s), (ext(sig)(t)))

which states that the instantiations of two different and unifiable terms sσ̂ and tσ̂ with the substi-
tution σ that resolves the first conflict between these terms, are still unifiable; and

• the lemma unifier o, presented at the beginning of this section, which states that for any unifier
θ of sσ̂ and tσ̂ , θ ◦σ is a unifier of s and t.

The formalization of the lemma unification algorithm gives mg subs is done by induction
on the cardinality of the set of variables occurring in s and t too. For proving this lemma two auxiliary
lemmas are applied: the lemma vars ext sub of frst diff decrease and the lemma presented be-
low, which states that for each unifier ρ of s and t, two different and unifiable terms, and given σ the
substitution that resolves the first difference between these terms, there exist θ such that θ ◦σ = ρ .

sub_of_frst_diff_unifier_o: LEMMA FORALL (s:term, t:term | unifiable(s, t) & s /= t):

member(rho, U(s, t)) =>

LET sig = sub_of_frst_diff(s, t) IN EXISTS theta: rho = comp(theta, sig)

In the remaining of this section the formalization of sub of frst diff unifier o will be ex-
plained.

It should be proved that θ ◦σ and ρ map each variable x in their domain, that should be the same set
of variables, into the same terms. The formalization starts by a skolemization and then, in order to provide
a name, p, for the position in which the first difference between terms s and t is detected, an application
of the PVS proof command “name” is done. In this way the additional premise resolving diff(s,

t) = p is included.

{-1} resolving_diff(s, t) = p [-2] sub_of_frst_diff(s, t) = sig

[-3] member(rho, U(s, t))

|-------

[1] EXISTS theta: rho = comp(theta, sig)

The proof strategy is to instantiate the existential formula in the consequent with ρ itself, having in
mind that if ρ ∈U(s, t) then ρ ∈U(s|q, t|q), for any valid position q of s and t, and in particular, for the
position of the first detected difference p. It is known that at position p, either s|p or t|p should be a
variable; so the strategy is to analyze both possible cases. The sequent below is obtained in the case in
which s|p is a variable. In this sequent x is an arbitrary variable.
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{-1} vars?(subtermOF(s, p)) [-2] ext(rho)(subtermOF(s, p)) =

ext(rho)(subtermOF(t, p)) [-3] resolving_diff(s, t) = p

[-4] sub_of_frst_diff(s, t) = sig [-5] ext(rho)(s) = ext(rho)(t)

|-------

[1] rho(x) = ext(rho)(sig(x))

The variable x in the consequent of this sequent appears after an application of the PVS proof com-
mand “decompose-equality” that simplifies equality between substitutions into equality of the application
of the substitutions to any variable: ρ ◦σ = ρ , whenever for any x (xσ)ρ̂ = xρ .

The proof is obtained by case analysis: when x = s|p and when x 6= s|p,

• In the former case, the formula x = subtermOF(s, p) is added to the antecedents.
Note that (s|p)σ̂ = t|p, that is ext(sig)(subtermOF(s, p)) = subtermOF(t, p), by defini-
tion of sub of frst diff, and (s|p)ρ̂ = (t|p)ρ̂ . Then, one can conclude that (s|p)ρ̂ = ((s|p)σ̂)ρ̂ .
But, in this case, x = s|p; thus, one can complete this branch of the proof expanding the definition
of sub of frst diff with an application of the proof command “expand” and making simplifi-
cations with the commands “replace” and “assert”.

• In the latter case, the sequent to be considered is presented below. Notice that the negated equality
that characterizes this case is positively presented as a consequent of the sequent.

[-1] vars?(subtermOF(s, p)) [-2] ext(rho)(subtermOF(s, p)) =

ext(rho)(subtermOF(t, p)) [-3] resolving_diff(s, t) = p

[-4] sub_of_frst_diff(s, t) = sig [-5] ext(rho)(s) = ext(rho)(t)

|-------

{1} x = subtermOF(s, p) [2] rho(x) = ext(rho)(sig(x))

In this case, note that x does not belong to the domain of substitution σ , because the domain of σ

is the singleton {s|p}. Then xσ = x. Therefore the equality xρ = (xσ)ρ̂ is true, which is sufficient
to complete this branch of the proof.

At this point, two cases remain to be considered: the case where t|p is a variable, that is formalized
in a way entirely analogous to the previous case, and the case where neither s|p nor t|p are variables.

In the latter case, again one should apply that at a conflicting position of two unifiable terms it is
impossible that none of the subterms is a variable. This result was already formalized as a lemma called
resolving diff vars. Then using this lemma and instantiating appropriately one obtains the sequent:

{-1} p = resolving_diff(s, t) => vars?(subtermOF(s, p)) OR vars?(subtermOF(t, p))

[-2] resolving_diff(s, t) = p

|-------

[1] vars?(subtermOF(t, p)) [2] vars?(subtermOF(s, p))

In this sequent the contradiction is already established, and can be captured with a simple application
of the PVS proof command “assert”. The proof of the main lemma used in this branch of the proof,
resolving diff vars, previously mentioned, follows by induction on the structure of the term s as
explained below.

If s is a variable, the position p should be the root position empty seq and at this position, the term
s|ε is a variable. If s is an application, the proof follows by expanding the definition of resolving diff

and considering the three possible cases, namely:

1. s is a constant. Then the position of the first difference should be ε and t should be a variable,
since the terms are unifiable.
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2. s is a non constant application and t is a variable. Similar to the previous case.

3. s is a non constant application and t is an application. The position p cannot be the root position.
The sequent corresponding to this case is presented below.

{-1} p = add_first(k, resolving_diff(subtermOF(s, #(k)), subtermOF(t, #(k))))

[-2] FORALL (x: below[args(s)‘length]):

FORALL (t: term | unifiable(args(s)‘seq(x), t) & args(s)‘seq(x) /= t,

p: position | positionsOF(args(s)‘seq(x))(p) & positionsOF(t)(p)):

p = resolving_diff(args(s)‘seq(x), t) =>

vars?(subtermOF(args(s)‘seq(x), p)) OR vars?(subtermOF(t, p))

|-------

[1] vars?(t) [2] length(args(s)) = 0

[3] vars?(subtermOF(s, p)) [4] vars?(subtermOF(t, p))

In this sequent the induction hypotesis, that is the antecedent formula [-2], should be instantiated
with k - 1, in order to capture the subterm of s|k, i.e., the (k− 1)-th element of the sequence
of arguments of the root symbol of s, args(s)‘seq(k - 1). Then, the position p equals the
concatenation of k with the first difference between terms s|k and t|k, here denoted as p = k ◦ q.
By induction hypotesis either (s|k)|q or (t|k)|q is a variable. But (s|k)|q = s|k◦q and (t|k)|q = t|k◦q,
which concludes the proof.

3.3 Verification of unification algorithms

This methodology of proof of the existence of mgu’s can be applied in order to formalize the com-
pleteness of unification algorithms à la Robinson, as presented in detail in [1] for a greedy unification
algorithm. This is illustrated in the theory robinsonunification also available inside trs as well as in a
more recent efficient specification robinsonunificationEF (see the trs hierarchy in Fig. 1).

The main functions in the theory robinsonunification are: first diff, link of frst diff and
robinson unification algorithm whose roles are analogous respectively to the ones of the func-
tions resolving diff, sub of frst diff and unification algorithm. These functions are spec-
ified in such a way that whenever unsolvable differences are detected (by the function first diff) the
substitution “fail” is returned. This substitution is built explicitly as the substitution with the singleton
domain {xx} and image ff(xx), where xx and ff are, respectively, a constant and a unary function.
In this way, the substitution fail is discriminated from any other possible unifier which is built by the
function robinson unification algorithm for all pair of terms.

The function link of frst diff, presented below, either builds the resolving link substitution for
the first difference whose position is detected by first diff or returns fail. According to these two
options, the function robinson unification algorithm, also presented below, either builds the mgu
or returns fail.

link_of_frst_diff(s : term , (t : term | s /= t )) : Sub =

LET k : position = first_diff(s,t) IN

LET sp = subtermOF(s,k) , tp = subtermOF(t,k) IN

IF vars?(sp)

THEN IF NOT member(sp, Vars(tp))

THEN (LAMBDA (x : (V)) : IF x = sp THEN tp ELSE x ENDIF)

ELSE fail ENDIF

ELSE IF vars?(tp) THEN

IF NOT member(tp, Vars(sp))
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THEN (LAMBDA (x : (V)) : IF x = tp THEN sp ELSE x ENDIF)

ELSE fail ENDIF

ELSE fail ENDIF ENDIF

robinson_unification_algorithm(s, t : term) : RECURSIVE Sub =

IF s = t THEN identity

ELSE LET sig = link_of_frst_diff(s,t) IN

IF sig = fail THEN fail

ELSE LET sigma = robinson_unification_algorithm(ext(sig)(s) , ext(sig)(t)) IN

IF sigma = fail THEN fail ELSE comp(sigma, sig) ENDIF

ENDIF ENDIF

MEASURE Card(union(Vars(s), Vars(t)))

The theory robinsonunification consists of 47 lemmas from which 24 are TCCs. The specification
file has 249 lines and its size is 8.6 KB, and the whole proof file has 12091 lines and 739 KB and was
described in detail in [1].

The subtheory robinsonunificationEF includes an “efficient” version of the unification algorithm in
which after resolving each conflicting position between two terms the next conflict is searched starting
from the position of conflict previously resolved instead from the root position of the instantiated terms
as it is done in the theories unification and robinsonunification. The main functions found in this
improved version of the algorithm are next position and robinson unification algorithm aux.

The function next position takes as arguments two terms and a valid position π of both terms,
and returns the next conflicting position. Once all differences between the terms occurring in previous
positions to π (left-most, outer-most) and at position π itself have been resolved, the next conflict should
occur in a position to the right, and therefore there is no need to scan again the instantiated terms starting
from the root position.

The function robinson unification algorithm aux also takes as arguments two terms and a
position of these terms, and returns a substitution, but now in the process of unification the next conflict
position is fetched from the first position of conflict, using the function next position.

next_position(s, t : term,

p : position | positionsOF(s)(p) AND positionsOF(t)(p)):

RECURSIVE position =

IF p = empty_seq THEN empty_seq

ELSE LET pi0 = delete(p,length(p) - 1) IN

IF f(subtermOF(s,pi0)) /= f(subtermOF(t,pi0)) THEN pi0

ELSE LET pi = add_last(delete(p, length(p) - 1), last(p) + 1) IN

IF positionsOF(s)(pi) THEN

IF subtermOF(s, pi) /= subtermOF(t, pi) THEN pi

ELSE next_position(s,t, pi) ENDIF

ELSE IF pi0 /= empty_seq THEN next_position(s, t, pi0)

ELSE empty_seq ENDIF

ENDIF ENDIF ENDIF

MEASURE IF p = empty_seq THEN lex2(0,0)

ELSE lex2(length(p),

arity(f(subtermOF(s, delete(p,length(p) - 1)))) - last(p))

ENDIF

robinson_unification_algorithm_aux(s, t : term, p : position |

positionsOF(s)(p) AND positionsOF(t)(p)) : RECURSIVE Sub =

IF subtermOF(s,p) = subtermOF(t,p) THEN
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LET pi = next_position(s, t, p) IN

IF pi = empty_seq THEN identity

ELSE robinson_unification_algorithm_aux(s,t,pi)

ENDIF

ELSE LET sig = link_of_frst_diff(subtermOF(s,p),subtermOF(t,p)) IN

IF sig = fail THEN fail

ELSE LET pi = next_position(ext(sig)(s), ext(sig)(t),

p o first_diff(subtermOF(s,p),subtermOF(t,p))) IN

IF pi = empty_seq THEN sig

ELSE LET sigma = robinson_unification_algorithm_aux(

ext(sig)(s), ext(sig)(t), pi) IN

IF sigma = fail THEN fail ELSE comp(sigma, sig) ENDIF

ENDIF ENDIF ENDIF

MEASURE lex2(Card(union(Vars(s), Vars(t))), Card(right_pos(s,p)))

Formalization of correctness of this specification requires several additional effort and, in particular,
specialized inductive proof that are based on the more elaborated measures necessaries for the previous
two functions.

4 Related work

Correctness of unification algorithms has been the center of several formalizations in a variety of theorem
provers. Starting from a formalization in LCF [18], other formal proofs have been given, for example, in
Isabelle/HOL, Coq [20, 4, 16], ALF [5] and ACL2 [21].

The earlier LCF formalization of the unification algorithm was given by Paulson [18]. Paulson’s
approach was followed by Konrad Slind in the theory Unify formalized in Isabelle/HOL from which
an improved version called Unification is available now. Unlike other approaches, in Slind’s formal-
ization as in the presented here idempotence of the computed unifiers is unnecessary to prove neither
termination nor correctness of the specified unification algorithm. In contrast with our textbook style
termination proof, which is based on the fact that the number of different variables occurring in the terms
being unified decreases after each step of the unification algorithm (Section 3.1), the termination proof
of the theory Unify is based on separated proofs of non-nested and nested termination conditions and
the unification algorithm is specified taking as basis a specification of terms built by a binary combinator
operator (Comb).

Recent Coq formalizations of unification algorithms were presented in [4] and [16]. The formaliza-
tion in [4] is part of a library called CoLoR, and the most significant difference is that here substitutions
are specified as finite maps from unrestricted variables into general terms, whereas in CoLoR they are
specified as functions from type variables to a generalized term structure. In [16], Kothari and Caldwell
presented a specification of a unification algorithm for equalities in the language of simple types. This
kind of unification has direct applications in type inference algorithms. This unification algorithm is
proved correct by showing that it satisfies four axioms: that the computed mgu is a unifier; that it is in
fact a most general unifier; that its domain is restricted to the set of free variables in the input equational
problem and that the theorem of existence of mgu’s holds. In a later work, the same authors showed that
three additional axioms, being one of them idempotence of mgu’s, are also satisfied. Since simple types
are built in a language of symbols for basic types and a unique binary operator symbol, (→), the current
approach can be directly applied to the restricted language of simple types treated in [16]. An additional
fact that makes the current formalization closer to the usual theory of unification as presented in well-
known textbooks (e.g., [17, 2]), is the decision to specify terms as a data type built from variables and
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the operator app that builds terms as an application of a function symbol (of a given arity) to a sequence
of terms with the right length. In this way, substitutions were specified as a function from variables to
terms and the construction of the homomorphic extension results straightforward.

Earlier related work in Coq includes [20], where an algorithm similar to Robinson’s one was extracted
from a formalization that uses a generalized notion of terms, that uses binary constructors in the style of
Manna and Waldinger, whose translation to the usual notation is not straightforward. More recently, in
[7], a certified resolution algorithm for the propositional calculus is extracted from a Coq specification
that requires unification of propositional expressions.

In [5] a formalization of a first-order unification algorithm is given. The main difference with the
current formalization is that here one defines the application of a substitution to a term only by recursion
on the term, and there the author defines the application of a substitution to a term in two ways: by
recursion on the term (parallel application) and by recursion on the substitution (sequential application).
Thus, for a given substitution and a given term, the application of the substitution to the term might
result in different terms, depending on whether one follows the definition of the parallel application or
the sequential application. However, both applications give the same result for idempotent substitutions.
In other words, unlike the current approach, idempotence of the computed unifiers is necessary to prove
the correctness of the specified unification algorithm.

In [21] a formalization of the correctness of an implementation of an O(n2) run-time unification al-
gorithm in ACL2 is presented. The specification is based on Corbin and Bidoit’s development [8] as
presented in [2] in which terms are represented as directed acyclic graphs (DAGs). The merit of this
formalization is that by taking care of an specific data structure such as DAGs for representing terms, the
correctness proof results much more elaborated than the current one. But in the current paper, the focus is
to have a natural mechanical proof of the existence of mgu’s, that is the strictly necessary in a formaliza-
tion of the correctness of the Critical Pair Knuth-Bendix theorem. Although the representation of terms
is sophisticated (via DAGs), the referred formalization diverges from textbooks proofs of correctness of
the unification algorithm in which it is first-order restricted. In fact, instead representing second-order
objects such as substitutions as functions from the domain of variables to the range of terms, they are
specified as first-order association lists. In our approach, taking the decision to specify substitutions as
functions allows us to apply all the theory of functions available in the higher-order proof assistant PVS,
which makes our formalization very close to the ones available in textbooks.

As mentioned in the introduction, as part of the PVS theory trs presented in [11] there are formal-
izations of non-trivial results on rewriting, such as the well-known Knuth-Bendix Critical Pair Theorem,
that requires the theorem of existence of mgu’s. The style of formalization of existence of mgu’s can be
followed in order to verify the soundness and completeness of unification algorithms à la Robinson, as il-
lustrated in [1] for a greedy algorithm. The proof methodology used to prove termination and soundness
in the formalization of the theorem of existence of mgu’s is adapted in order to verify the correctness of
unification algorithms as described in [1].

5 Conclusions and Future Work

A formalization developed in the language of the proof assistant PVS of the theorem of existence of
mgu’s was presented. This formalization is close to textbooks proofs and was applied to present a
complete formalization of the well-know Knuth-Bendix Critical Pair theorem. The methodology of
proof can be directly applied in order to certify the correctness of first-order unification algorithms à la
Robinson.
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As future work, it is of great interest the extraction of certified unification algorithms alone or in
several contexts of its possible applications such as the ones of first order resolution and of type inference.
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