
A Genetic Approach with a Simple Fitness Function
for Sorting Unsigned Permutations by Reversals

José Luis Soncco Álvarez
Department of Computer Science

University of Brasilia
Brasilia, D.F., Brazil

Email: josesoal@hotmail.com

Mauricio Ayala-Rincón
Departments of Computer Science and
Mathematics, University of Brasilia

Brasilia, D.F., Brazil
Email: ayala@unb.br

Abstract—Sorting unsigned permutations by reversals is an
important and difficult problem in combinatorial processing
of permutations with important applications in bio-informatics
for the interpretation of the evolutionary relationship between
organisms. Since it was shown that the problem is NP-hard
many approximation and a few evolutionary algorithms were
proposed. In this paper we propose a new genetic algorithm
approach that uses modified crossover and mutation operators
adapted to the problem. Instead previous genetic algorithmic
approaches, the proposed algorithm uses a very simple fitness
function that can be linearly computed in the size of the
permutation and updated in constant time, for each individual
in each generation. In order to compare the accuracy of the
computed solutions, an 1.5 approximation ratio algorithm was
developed by fixing Christie’s approximation method. The results
showed that on average the proposed genetic approach produces
competitive results in relation with the ones given by the 1.5-
approximation algorithm. Additionally, it has been observed that
for permutations of all sizes, that were randomly generated, it was
alway possible to compute better solutions with the genetic than
with the approximate approach and that the difference obtained
for these cases is greater than the ones obtained in the cases
in which the genetic approach has a worse behavior than the
approximate one.

I. INTRODUCTION

The evolutionary relationship of two organisms can be de-
termined by comparing two biological sequences, but classical
algorithms only take into account local mutations (deletions,
insertions and substitutions) and do not consider global re-
arrangements (reversals, transpositions, translocations, etc).
Reversals are the most commonly observed mechanisms of
genome rearrangements to transform one genome into another.

The order of genes in a genome can be represented as a
permutation π = (π1, π2, . . . , πn) of the set {1...n} where n
is the number of genes. There are two types of permutations:
signed and unsigned permutations. On signed permutations,
each πi has a positive or negative sign reflecting its orientation
within the genome.

Given two permutations we wish to determine the minimum
number of reversals to transform one permutation into another,
that is the reversal distance between two permutations. If one
of the permutations is the identity permutation (permutation
sorted in increasing order), the problem is known as sorting
by reversals.

For the problem of sorting signed permutation, initially, Ke-
cecioglu and Sankoff [1] conjectured that the problem was NP-
hard and proposed a 2-approximation algorithm. Afterwards,
Bafna and Pevzner [2] improved the radio to 1.5, by using
the data structure of breakpoint graphs. Finally, Hannenhalli
and Pevzner [3] gave an exact polynomial (O(n4)) algorithm.
Further, more efficient algorithms have been introduced (e.g.,
[4], [5]).

For unsigned permutations, that are the ones treated in this
paper, the problem was shown to be NP-hard by Caprara [6].
Before the complexity was known, Kececioglu and Sankoff
[1] gave a 2-approximation algorithm. Later on, the radio was
improved to 1.5 by Christie [7] and then to 1.375 by Berman,
Hannenhalli and Karpinski [8]. The last approximation algo-
rithm is of theoretical interest being its practical implemen-
tation of great difficulty. Thus, in this paper we have fixed
some imprecisions in Christie 1.5-approximation approach,
that were not pointed out by other authors dealing with this
approximation algorithm as a control mechanism for genetic
solutions. The resulting 1.5-approximation algorithm has been
directly implemented in order to have an accurate mechanism
of control of the solutions computed by the proposed genetic
approach.

Because of its complexity, exploration of evolutionary al-
gorithms for the problem of sorting unsigned permutations
by reversals is of great interest. Auyeung and Abraham [9]
suggested a genetic algorithmic (GA) approach to solve the
problem of sorting unsigned permutations by reversals based
on mapping unsigned permutations of size n into a subset
of the 2n possible signed versions of the permutations. For
a given unsigned permutation, a set of signed permutations is
generated by randomly assigning either a positive or a negative
signal to each component of the permutation. An exact sorting
solution of a signed version of a permutation corresponds to
an approximate sorting solution of the unsigned permutation.
The fitness function of each signed permutation is given by
its exact reversal distance that is computed by Hannenhalli’s
et al. method. Using GA techniques this combinatorial space
is explored. Subsequently improvements to Auyeung’s et al
method were published in [10], but without changing the
central premisses of this approach. More recently, Ghaf-
farizadeh, Ahmadi and Flann [11] used a modified version of

the standard GA using individuals of different sizes to reduce
the runtime of the algorithm. All these approaches have been
reported to improve the results obtained applying Christie’s
1.5-approximation algorithm, but no mention was given on
the imprecisions presented neither in Christie’s original paper
nor in its subsequently published erratum.

In this paper we propose a new GA approach, which
initially, uses individuals of the same ”size” to find a good
solution and, after that, the mutation operator is used gener-
ating permutations of different ”sizes” in order to improve
the first computed solution. The distinguished feature of
this GA approach, is that individuals correspond to partial
approximate sorting by reversal solutions. Since incomplete
solutions need to be compared, a simple fitness function is
given by the addition of the number of ”breakpoints” in the
current permutation plus the number of reversals that were
applied in order to obtain the current unsigned permutation.
This fitness function can either be computed from scratch in
linear time or updated in constant time in the size of the
permutation. In this way, the expensive runtime necessary
to compute the fitness function applied in the approaches in
[9], [10], [11] is avoided. In order to compare the computed
sorting solutions, Christie’s 1.5-approximation algorithm was
adequately implemented fixing some cases that were not
considered in [7]. Although Berman’s et al algorithm has
a better approximation ratio, its implementation is not of
practical interest, as previously mentioned, because it requires
a great deal of effort without producing a competitive runtime
mechanism of control. Experiments showed that on average the
results obtained though the proposed GA approach are similar
to the ones obtained through the 1.5-approximation algorithm.
For all size of permutations checked, cases for which the GA
approach works better and worse than the 1.5-approximation
algorithm were found, but in average the computed sorting
solutions are in favor of the GA approach.

The paper is organized in the following sections: in Section
II, the necessary notations and notions as well as the 1.5-
approximation algorithm implemented as control are given; in
Section III, the proposed GA approach is presented; in Section
IV, experiments and results are given; in Section V, the method
and the results are discussed and; finally concluding remarks
are discussed in Section VI.

II. BACKGROUND

A. Terminology

All definitions and terminology presented below, were in-
troduced by Bafna and Pevzner in their seminal paper [2].

Given a permutation π = (π1, π2, . . . , πn) in the symmetry
group Sn, we extend its definition by adding initial and final
pivots π0 = 0 and πn+1 = n + 1. A reversal ρ(i, j) of an
interval [i, j], for 1 ≤ i ≤ j ≤ n, transforms the extended
permutation π into π′ = (π0, . . . , πi−1, πj, . . . , πi, . . . , πn+1).
For example, consider the permutation

π = (0, 3,1,5,2, 4, 6)

The reversal ρ(2, 4) transforms π into

π′ = (0, 3,2,5,1, 4, 6)

Note that the reversal reverts the interval [2, 4] of π.
Given two permutations π and σ, the reversal distance

problem is the problem of finding a shortest sequence of
reversals needed to transform π into σ. The reversal distance
between π and σ is the minimum number of reversals required
to transform π into σ.

By simple algebraic properties of symmetry groups, the
reversal distance between π and σ is equal to the reversal
distance between σ−1π and the identity permutations, that is
denoted as id. In fact, notice that if ρ1 . . . ρk, is a sequence of
(reversal) permutations, then it holds that πρ1 . . . ρk = σ, if
and only if (σ−1π)ρ1 . . . ρk = σ−1σ = id. Thus, the problem
of sorting by reversals corresponds to find the reversal distance
between a permutation π and the identity permutation id, that
is denoted as d(π).

Let i ∼ j denote the property |i − j| = 1. Given two
consecutive elements πi and πj of π, for 0 < i < n + 1
and either j = i− 1 or j = i+ 1,

• they are said to be adjacent if πi ∼ πj and
• they are said to form a breakpoint if πi � πj .

Observe that the identity permutation is the unique permu-
tation without breakpoints. The number of breakpoints in π is
denoted by b(π).

Let ρ be a reversal that transforms π into π′, then b(π) −
b(π′) ∈ {−2,−1, 0, 1, 2}.

Given a permutation π, one defines a cycle graph (also
called as breakpoint graph) , G(π) as a undirected edge-
colored graph derived from the adjacency and breakpoint
relations in π with n+2 vertices labeled by 0, 1, . . . , n, n+1.
Two vertices i and j are joined by a black edge if (i, j) is a
breakpoint of π. Two vertices i and j are joined by a gray
edge if i ∼ j and i, j are not consecutive in π. An example
of a cycle graph is shown in Fig.1.

Fig. 1. Cycle graph G(π) for the permutation π = (7, 2, 1, 3, 4, 5, 6)

Note that for all permutations π, G(π) can be completely
decomposed into disjoint cycles of alternated colored edges,
since each node has an equal number of black and gray
incident edges. However, there are probably many different
cycle decompositions of G(π) of alternated colored edges. For
simplicity, cycles of alternating colored edges will be called
either alternating cycles or simply cycles.

B. 1.5-Approximation algorithm for sorting by reversals

The development of the 1.5-approximation algorithm re-
quires another graph, called reversal graph, that is used in
order to find the sequence of sorting reversals. Given a permu-
tation π, and a particular cycle decomposition C of the cycle
graph, the reversal graph R(C) is constructed correspondingly
to the cycle decomposition C following the method presented
in [7].

Each vertex i of the reversal graph represents a possible
reversal embedded in the gray edge (i, i+1) of the cycle graph.
A vertex of the reversal graph is colored either blue or red.
The color of a vertex is blue if applying the associated reversal
does not eliminate breakpoints, otherwise it is colored red.
Two vertices are joined by an edge, if the grey edges that they
represent in the cycle graph are interleaved. Two vertices are
interleaved if the positions of the elements of the grey edges
that they represent are interleaved; i.e., given the positions
(a, b) and (c, d) of two gray edges, they are interleaved if a <
c < b < d. Also, two vertices are interleaved if the rightmost
positions of the black edges that belong to the gray edges
that they represent are interleaved; i.e., given the rightmost
positions (a, b) and (c, d) of black edges that belongs to two
grey edges, they are interleaved if a < c < b < d.

During the implementation of Christie’s algorithm, it was
found a counterexample to one of the most fundamental
lemmas (Lemma 4.1), that should describe how the reversal
graph can be used in order to update in a straightforward
manner its structure after applying reversals corresponding to
its vertices. The properties presented in this lemma are the
basic ones that guarantee the soundness of the approximation
algorithm. Lemma 4.1 as given in [7] is presented below.

Lemma 4.1 ([7]): Let u be a vertex of R(C) that arises from
a cycle of C. Then Ru(C), that is the reversal graph obtained
after applying the reversion corresponding to vertex u, can be
derived directly from R(C) by making the following changes
to R(C):

(i) The colour of a vertex v is flipped if and only if {u,v}
is an edge in R(C).

(ii) For all pairs of vertices v and w in R(C), such that {u,v}
and {u,w} are edges in R(C), then {v,w} is and edge in
Ru(C) if and only if it is not an edge in R(C).

(iii) If u is a red vertex then it becomes an isolated blue
vertex, and otherwise it is unchanged.

As counterexample for the well-functioning of the updat-
ing proposed in this lemma, consider the permutation π =
(7, 2, 1, 3, 4, 5, 6) whose cycle graph was shown in Fig.1 and
whose reversal graph is shown in Fig.2.

Let the vertex 0 of the reversal graph, that corresponds to
the revesal ρ(1, 3), be the vertex u of the Lemma 4.1, then
after applying part (ii) we obtain the resulting reversal graph
shown in Fig.3

The cycle graph after applying the reversal represented by
the vertex 0 is shown in Fig.4.

The resulting reversal graph should correspond to the result-
ing cycle graph, but it can be observed that in the resulting

Fig. 2. Reversal graph of the counterexample π = (7, 2, 1, 3, 4, 5, 6)

Fig. 3. The resulting reversal graph

reversal graph there is an edge between the vertices 7 and
9. And this relationship between these vertices does not exist
since it does not correspond to the resulting reversal cycle
graph. Thus, Lemma 4.1 fails to determine how reversal
graphs should be updated after applying reversals, which is
fundamental for the soundness of the approximation algorithm.
In general, this kind of counterexample is possible if and only
if two grey edges share the same vertex and the same black
edge as was the case for vertex 7 in Fig.4.

Among other necessary modifications, the necessary adjusts
were made in item (ii) of the Lemma 4.1. obtaining the
following sound lemma.

Lemma 4.1 (modified): Let u be a vertex of R(C) that arises
from a cycle of C. Then Ru(C) can be derived from R(C) by
making the following changes to R(C):

(i) The colour of a vertex v is flipped if and only if {u,v}
is an edge in R(C).

(ii) For all pairs of vertices v and w in R(C), such that {u,v}
and {u,w} are edges in R(C), then {v,w} is and edge in
Ru(C) if and only if it is not an edge in R(C) and
the edges that represent the vertices v and w, do not
share exactly one vertex and one black edge in the
cycle graph.

(iii) If u is a red vertex, then it becomes an isolated blue
vertex, and otherwise it is unchanged.

Fig. 4. Cycle graph after applying the reversal represented by vertex 0

Applying the modified version of the Lemma 4.1, the
resulting reversal graph corresponds to the resulting cycle
graph, in general. For the counterexample, the correct resulting
reversal graph is shown in Fig.5.

Fig. 5. The correct resulting reversal graph.

III. THE GA APPROACH FOR SORTING BY REVERSAL
UNSIGNED PERMUTATIONS

Our method uses a modified version of the standard genetic
algorithm. The search space consists only of reversals that
eliminate 0, 1 or 2 breakpoints. Each individual of the popu-
lation initially has size 0, after each generation the size of each
individual of the population is increased by one. In this first
part of the algorithm, it is only applied the modified crossover
operator, until we find a valid solution that totally eliminates
all breakpoints, at this point we only have a population with
individuals of the same size. Once an initial solution is found,
the mutation operator is applied to the population, decreasing
the size of each individual, in order to improve the solution
initially found.

There are three important operators in the modified version
of the standard genetic algorithm, adapted to the problem
of sorting by reversals: the increment operator, the modified
crossover, the modified mutation, that are described below.

The increment operator is the responsible for increasing,
in every generation, each individual in the population with
a new gene. This new gene is a selected reversal that
eliminates 0, 1 or 2 breakpoints.
The modified crossover chooses the best individuals of the
population and duplicate them for replacing individuals
with worse fitness. This is done with the aim of providing
more opportunities to the individuals that represent good
solutions.

The modified mutation is applied after finding a valid
solution, and it is intended to improve the solution already
found. After applying this operator, the length of the
individuals is reduced and the population remains with
individuals of different size.

The selection operator sorts the individuals of the population
by their fitness value, which is the sum of the number of
breakpoints and the length of the solution. This can be either
computed in time O(n), where n is the size of the permutation,
or updated in constant time, for each individual.

The pseudo-code of our proposed genetic algorithm is
shown in Algorithm 1.

Algorithm 1: Modified Genetic Algorithm
Input: A permutation π
Output: A sequence of reversals to sort permutation π

1 generate initial population;
2 evaluate fitness of initial population;
3 for i = 2 to number of generations do
4 selection;
5 save the best solution if found;
6 crossover;
7 if valid solution found then
8 mutation;

9 increment new genes;
10 evaluate fitness of current population;

We consider n as the increased size of the initial permu-
tation. We fixed the initial population size as n log n, each
individual contains initially only a reversal that eliminates 0,
1 or 2 breakpoints. The reversals are taken from the breakpoint
graph of the initial permutation.

The algorithm used to sort the population, in the selec-
tion, is the quicksort that is well-known to take runtime in
Θ(n (log n)2) since we have to order n log n elements.

In each generation the increment of new genes takes runtime
in Θ(n2 log n), the crossover takes runtime in O(n2 log n) and
the mutation takes time in O(n2 log n) as well.

The genetic algorithm finishes after n generations, then the
overall time complexity is O(n3logn).

IV. EXPERIMENTS AND RESULTS

In order to compare properly the 1.5-approximation algo-
rithm with the proposed GA approach, experiments were per-
formed with (n log n) permutations generated randomly with
size i = 10, 20, ...150. Both algorithms were implemented in
C language and executed in OS X platforms with Intel core
I5, I7 processors and other similar platforms.

For each size i of permutations, 100 permutations were
randomly generated. Then, it was calculated the average over
these 100 permutations for both algorithms. We also calculated
the best result for the genetic algorithm and the worst result
against the genetic algorithm.The results of this experiment
are shown in Table I.

TABLE I
COMPARISON OF THE 1.5-APPROXIMATION AND THE GA APPROACH

n Size of pop. Avg. 1.5-approx. Avg. GA Best Result (1.5-approx. vs GA) Worst Result (1.5-approx. vs GA)
10 33 5.95 5.87 3 (9 vs 6) 0 (5 vs 5)
20 86 13.46 13.41 2(15 vs 13) -1(14 vs 15)
30 147 21.59 21.81 4(25 vs 21) -2(18 vs 20)
40 212 30.31 30.71 5(35 vs 30) -1(30 vs 31)
50 282 39.36 39.99 3(41 vs 38) -2(38 vs 40)
60 354 48.32 48.94 6(52 vs 46) -2(48 vs 50)
70 429 57.13 58.17 4(59 vs 55) -3(54 vs 57)
80 505 66.8 67.92 6(71 vs 65) -3(64 vs 67)
90 584 75.94 77.11 6(80 vs 74) -3(74 vs 77)

100 664 85.44 86.5 6(87 vs 81) -3(80 vs 83)
110 745 94.67 96.02 9(99 vs 90) -4(90 vs 94)
120 828 104.03 105.56 7(106 vs 99) -4(94 vs 98)
130 912 113.77 115.13 7(118 vs 111) -5(108 vs 113)
140 998 123.59 124.65 8(129 vs 121) -5(116 vs 121)
150 1084 132.88 134.34 7(139 vs 132) -4(129 vs 133)

V. DISCUSSION

Due to the high combinatorial and computational com-
plexity of the problem of sorting by reversals unsigned per-
mutations, it is very difficult to adapt genetic algorithms to
this problem, so we had found it necessary to modify the
standard model of genetic algorithms profiting in this way
of a population given by partial solutions of the problem
for which a simple fitness function was computed from the
notion of breakpoints and the number of applied reversals.
In other previous proposals such as the ones presented in [9]
and [10], this was made through a mapping of the problem of
sorting by reversals for unsigned permutations to correspond-
ing signed permutations among the set of 2n possible signed
permutations. Although this scenario is more suitable in order
to apply standard genetic algorithm approaches, especially
because crossover and mutation operators arise in a natural
manner, these approaches are more runtime expensive than the
proposed here, because the complexity involved in updating
the fitness function.

Since we only explore a valid and restricted search space,
that is the one given by reversals that remove only 0,1, or 2
breakpoints, our algorithm often converges to premature so-
lutions. Although it computes solutions where all breakpoints
are eliminated, they are not necessarily optimal solutions. This
problem was solved after incorporating the mutation operator
to improve solutions already found.

From the experiments that were performed we can see
that our proposed GA approach computes similar results
on average to the ones obtained by application of the 1.5-
approximation algorithm. It is worth mentioning that in the
majority of the cases, the best solution found by our GA
proposal is better than the worst solution found.

VI. CONCLUSION

Sorting permutations by reversals is an important problem
in bio-informatics to help understanding the evolutionary
relationship between different organisms. In this paper we
proposed a new modified genetic algorithm for sorting by
reversals unsigned permutations, that is well-known to be

an NP-hard problem. In order to control the computed so-
lutions, it was necessary to implement an 1.5-approximation
algorithm that was guaranteeing to achieve properly its 1.5-
approximation ratio after fixing some fundamental impreci-
sions in its original conception. Experimental results showed
that our GA method produces similar results to the ones given
by the1.5-approximation algorithm, and that our modified GA
approach is a promising methodology for solving the problem.
A distinguished feature of the proposed approach is that it uses
a simplified fitness function that can be linearly computed
and updated in constant time, in contrast to the complexity
of the fitness function applied in previous GA approaches
to resolve this problem, that were based on computing exact
sorting solutions for associated signed permutations.

Several questions arise when one is dealing with permuta-
tions. The combinatorial complexity of permutations makes it
unclear whether randomly generation of permutations is in fact
a good choice in order to evaluate the behavior of this kind of
algorithmic approaches over a representative sample of this so-
phisticated data structure. Additional experiments are proposed
building permutations in a more controlled manner; namely,
since the number of necessary reversion to order permutations
of size n is less than n, another way to build interesting
samples of input permutations of size n is through applications
of linear sequences of randomly selected reversions applied
to the identity permutation. Additional experiments will be
done for samples of permutations generated in this controlled
manner.

Using the number of breakpoints as a measure to compare
permutations in our GA approach, was motivated from the
early work of Bafna and Pevzner [2] in which the notion
of breakpoint was coined and the data structure of break-
point graph was introduced in order to present approximate
solutions. From this point of view, the proposed approach
is not a standard GA approach. Thus, as a future work, we
will combine our current approach with other GA methods
and approximation algorithms, in order to further improve the
accuracy of the computed results. Good alternatives would be
the 1.5-approximation algorithm since it has been checked

that it obtains solutions very close to the optimal ones for
small or nearly sorted permutations. Also GA methods based
on translating the problem to signed permutations are of
interest when this translation is not applied in each step or
generation, but instead, only when mutations and crossover
operations can be used to avoid premature convergence. Also,
experiments will be done with a larger number of generations,
but keeping the linear order, to increase the runtime of the
mutation operator.

ACKNOWLEDGMENT

The authors would like to thank the Brazilian Coordination
for the Improvement of Higher Education Personnel from
the Ministry of Education CAPES and the Brazilian National
Counsel of Technological and Scientific Development from
the Ministry of Science and Technology CNPq for grants
that made possible the involvement in this interesting field
of research.

REFERENCES

[1] J. Kececioglu and D. Sankoff, “Exact and approximation algorithms for
the inversion distance between two chromosomes,” in Combinatorial
Pattern Matching, ser. Lecture Notes in Computer Science,
A. Apostolico, M. Crochemore, Z. Galil, and U. Manber, Eds. Springer
Berlin / Heidelberg, 1993, vol. 684, pp. 87–105, 10.1007/BFb0029799.
[Online]. Available: http://dx.doi.org/10.1007/BFb0029799

[2] V. Bafna and P. Pevzner, “Genome rearrangements and sorting by
reversals,” in Foundations of Computer Science, 1993. Proceedings.,
34th Annual Symposium on, nov 1993, pp. 148 –157.

[3] S. Hannenhalli and P. Pevzner, “Transforming cabbage into turnip:
polynomial algorithm for sorting signed permutations by reversals,” in
Proceedings of the twenty-seventh annual ACM symposium on Theory of
computing, ser. STOC ’95. New York, NY, USA: ACM, 1995, pp. 178–
189. [Online]. Available: http://doi.acm.org/10.1145/225058.225112

[4] P. Berman and S. Hannenhalli, “Fast sorting by reversal,” in CPM, ser.
Lecture Notes in Computer Science, D. S. Hirschberg and E. W. Myers,
Eds., vol. 1075. Springer, 1996, pp. 168–185.

[5] D. A. Bader, B. M. E. Moret, and M. Yan, “A linear-time algorithm
for computing inversion distance between signed permutations with an
experimental study,” in WADS, ser. Lecture Notes in Computer Science,
F. K. H. A. Dehne, J.-R. Sack, and R. Tamassia, Eds., vol. 2125.
Springer, 2001, pp. 365–376.

[6] A. Caprara, “Sorting by reversals is difficult,” in Proceedings of the first
annual international conference on Computational molecular biology,
ser. RECOMB ’97. New York, NY, USA: ACM, 1997, pp. 75–83.
[Online]. Available: http://doi.acm.org/10.1145/267521.267531

[7] D. A. Christie, “A 3/2-approximation algorithm for sorting by reversals,”
in Proceedings of the ninth annual ACM-SIAM symposium on Discrete
algorithms, ser. SODA ’98. Philadelphia, PA, USA: Society for
Industrial and Applied Mathematics, 1998, pp. 244–252. [Online].
Available: http://dl.acm.org/citation.cfm?id=314613.314711

[8] P. Berman, S. Hannenhalli, and M. Karpinski, “1.375-approximation
algorithm for sorting by reversals,” in Proceedings of the 10th
Annual European Symposium on Algorithms, ser. ESA ’02. London,
UK, UK: Springer-Verlag, 2002, pp. 200–210. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647912.740832

[9] A. Auyeung and A. Abraham, “Estimating genome reversal distance by
genetic algorithm,” in Evolutionary Computation, 2003. CEC ’03. The
2003 Congress on, vol. 2, dec. 2003, pp. 1157 – 1161 Vol.2.

[10] M. Zhongxi and Z. Tao, “An improved genetic algorithm for problem of
genome rearrangement,” Wuhan University Journal of Natural Sciences,
vol. 11, pp. 498–502, 2006, 10.1007/BF02836651. [Online]. Available:
http://dx.doi.org/10.1007/BF02836651

[11] A. Ghaffarizadeh, K. Ahmadi, and N. Flann, “Sorting unsigned permu-
tations by reversals using multi-objective evolutionary algorithms with
variable size individuals,” in Evolutionary Computation (CEC), 2011
IEEE Congress on, june 2011, pp. 292 –295.

