Formalising and Reusing of Proofs

Mauricio Ayala-Rincón

Grupo de Teoria da Computação, Universidade de Brasília (UnB)

Brasília D.F., Brazil

Research funded by

Brazilian Research Agencies: CNPq, CAPES and FAPDF

July 14th, 2012

イロト イポト イラト イ

Mauricio Ayala-Rincón http://ayala.mat.unb.br - GTC/UnB Formalising & Reusing Proofs LACREST Medellin 2012 1/41

Talk's Plan

Motivation: formalisation - proofs & deduction

Formalisations versus programs

- The Prototype Verification System PVS
- A case study: Security of Cryptographic Protocols

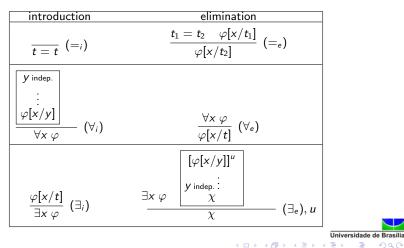
3 Reusing formalisations

・ 同・ ・ ヨ・

Mathematical proofs - logic & deduction

Table: RULES OF NATURAL DEDUCTION FOR PROPOSITIONAL LOGIC

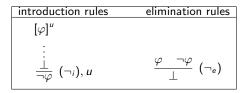
introduction rules	elimination rules	
$rac{arphi^{}\psi^{}\psi^{}}{arphi^{}\wedge\psi^{}}$ (\wedge_i)	$rac{arphi\wedge\psi}{arphi}~(\wedge_{e})$	
	$\left[\varphi\right]^{u} \qquad \left[\psi\right]^{v}$	
$\frac{\varphi}{\varphi \lor \psi} \ (\lor_i)$	$ \begin{array}{ccc} \vdots & \vdots \\ \varphi \lor \psi & \chi & \chi \\ \hline \chi & \chi \\ \hline \chi & \chi \end{array} $	(∨ _e), u, v
$[\varphi]^u$		
$\frac{\frac{1}{2}}{\frac{\psi}{\varphi \to \psi}} (\to_i), u$	$rac{arphi arphi ightarrow \psi}{\psi} \ (ightarrow e)$	
	$[\neg \varphi]^u$	
	$\frac{1}{\varphi}$ (\perp_e), u	

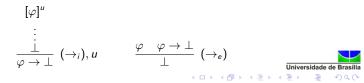

Mauricio Ayala-Rincón http://ayala.mat.unb.br - GTC/UnB Formalising & Reusing Proofs LACREST Medellin 2012 3/41

Universidade de Brasília

< ∃ >

Mathematical proofs - logic & deduction

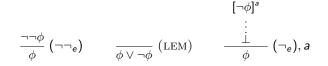

Table: Rules of Natural Deduction for Predicate logic with equality



Mauricio Ayala-Rincón http://ayala.mat.unb.br - GTC/UnB Formalising & Reusing Proofs LACREST Medellin 2012 4/41

Mathematical proofs - logic & deduction

Table: Encoding \neg - Rules of natural deduction for classical logic

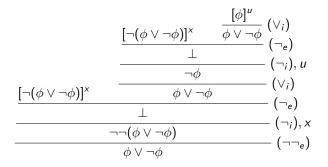

Mauricio Ayala-Rincón http://ayala.mat.unb.br - GTC/UnB Formalising & Reusing Proofs LACREST Medellin 2012 5/41

Motivation: formalisation - proofs & deduction Formalisations versus programs Reusing formalisations

Conclusions and Future Work

Mathematical proofs - logic & deduction

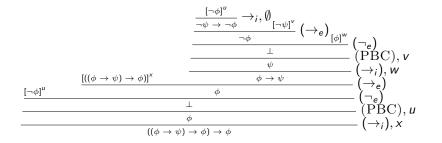
Interchangeable rules:



Mauricio Ayala-Rincón http://ayala.mat.unb.br - GTC/UnB Formalising & Reusing Proofs LACREST Medellin 2012 6/41

Mathematical proofs - logic & deduction

Examples of deductions. Assuming $(\neg \neg_e)$, LEM holds:


Universidade de Brasília

- 4 回 2 - 4 回 2 - 4 回 2

Mauricio Ayala-Rincón http://ayala.mat.unb.br - GTC/UnB Formalising & Reusing Proofs LACREST Medellin 2012 7/41

Mathematical proofs - logic & deduction

A derivation of Peirce's law, $((\phi \rightarrow \psi) \rightarrow \phi) \rightarrow \phi$:

Mauricio Ayala-Rincón http://ayala.mat.unb.br - GTC/UnB Formalising & Reusing Proofs LACREST Medellin 2012 8/41

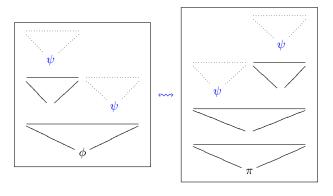
Universidade de Brasília

< ∃ >

3

A very little list of related work

- Reusing proofs (T.Kolbe & C.Walter, 1994): fixing successful proof strategies through learning methods;
- Reuse of proofs in software verification (Wolfgang Reif & Kurt Stenzel, 1993): reusing proofs and proof attempts after software modifications;
- Similarities and Reuse of Proofs in Formal Software Verification (Erica Melis & Axel Schairer, 1998): reusing subproofs;
- How mathematicians prove theorems?


Universidade de Brasília

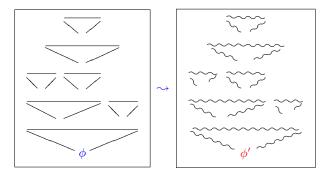
イロト イヨト イヨト イヨト

Motivation: formalisation - proofs & deduction

Formalisations versus programs Reusing formalisations Conclusions and Future Work

Learning from how mathematicians prove theorems

Figure: Inference of Lemmas

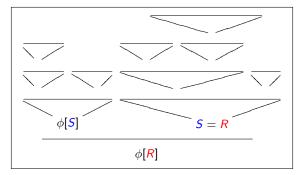


Mauricio Ayala-Rincón http://ayala.mat.unb.br - GTC/UnB Formalising & Reusing Proofs LACREST Medellin 2012 10/41

Motivation: formalisation - proofs & deduction

Formalisations versus programs Reusing formalisations Conclusions and Future Work

Learning from how mathematicians prove theorems


< ∃⇒

Mauricio Ayala-Rincón http://ayala.mat.unb.br - GTC/UnB Formalising & Reusing Proofs LACREST Medellin 2012 11/41

Motivation: formalisation - proofs & deduction

Formalisations versus programs Reusing formalisations Conclusions and Future Work

Learning from how mathematicians prove theorems

Figure: Equational reasoning

Mauricio Ayala-Rincón http://ayala.mat.unb.br - GTC/UnB Formalising & Reusing Proofs LACREST Medellin 2012 12/41

Universidade de Brasília

< ∃⇒

The Prototype Verification System - PVS A case study: Security of Cryptographic Protocols

Universidade de Brasília

イロト イヨト イヨト イヨト

The Prototype Verification System - PVS

PVS is a verification system, developed by the SRI International Computer Science Laboratory, which consists of

a specification language:

- based on higher-order logic;
- a type system based on Church's simple theory of types augmented with subtypes and dependent types.
- 2 an interactive theorem prover:
 - based on sequent calculus; that is, goals in PVS are sequents of the form Γ ⊢ Δ, where Γ and Δ are finite sequences of formulae, with the usual Gentzen semantics.

The Prototype Verification System - PVS A case study: Security of Cryptographic Protocols

Universidade de Brasília

・ロト ・日本 ・モート ・モート

GTC/Universidade de Brasília & PVS

- Term Rewriting Systems PVS library trs AR & Galdino UnB
- First-Order Unification PVS library unification AR & Avelar UnB
- Group theory PVS library groups Galdino UFG

All them available in the NASA LaRC PVS libraries: http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html

- Air traffic CD&R (KB2D → ACCoRD) AR & Galdino, Muñoz (NIA/NASA LaRC)
- Automating termination AR & Goodloe & Muñoz (NASA LaRC)
- Cryptography AR & Regô, Nantes & Fernández (King's College London)

The Prototype Verification System - PVS A case study: Security of Cryptographic Protocols

Universidade de Brasília

イロト イヨト イヨト イヨト

Formal methods in cryptography

- Why proving mathematically security requirements?
- Authentication protocol of Needham-Schroeder
 - was considered during 17 years to be secure.
 - but Lowe detected a "man-in-the-middle" vulnerability in this protocol [Lowe 95,6].
- Example: formalisation of the security of the Dolev-Yao two-party cascade protocol [Dolev-Yao 83].
 - Joint work with Rodrigo Nogueira [2010] and Yuri Santos Rêgo [2012].

The Prototype Verification System - PVS A case study: Security of Cryptographic Protocols

Universidade de Brasília

イロト イヨト イヨト イヨト

Cryptographic operations over monoids

• Any user $u \in U$ owns E_u and D_u .

- $\Sigma = E \cup D$
- Σ* set of words over Σ.
- Monoid freely generated by Σ and congruences:

$$E_u D_u = \lambda$$
 $D_u E_u = \lambda$, $\forall u \in U$ (1)

• $E_u(D_u(M)) = D_u(E_u(M)) = M, \forall M$ plain text.

The Prototype Verification System - PVS A case study: Security of Cryptographic Protocols

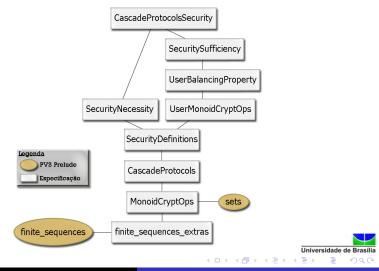
Universidade de Brasília

イロト イヨト イヨト イヨト

Formalisation of security for cascade protocols

Theorem (Characterisation of security)

A cascade protocol P is secure iff,


(i) it satisfies the initial security property and(ii) it is balanced.

Formalisation in PVS

Mauricio Ayala-Rincón http://ayala.mat.unb.br - GTC/UnB Formalising & Reusing Proofs LACREST Medellín 2012 17/41

The Prototype Verification System - PVS A case study: Security of Cryptographic Protocols

Structure of the PVS formalisation

Mauricio Ayala-Rincón http://ayala.mat.unb.br - GTC/UnB Formalising & Reusing Proofs LACREST Medellin 2012 18/41

Reusing proofs

Why?

- Formalising is an exhaustive process that takes years.
 - Our case study on the DY security takes more than two years!
 - Size of the specification: 1.651 lines (80 KB), but
 - Size of the Formalisation: 55.300 lines (3.8 MB)!
- Small changes in the specification, implies rebuilding proofs from scratch.
- As well, use of alternative data structures, implies rebuilding proofs from scratch.

Universidade de Brasília

イロト イヨト イヨト イヨト

Reusing proofs - changing data structures

• Instead sequences, use lists

< ∃ >

Mauricio Ayala-Rincón http://ayala.mat.unb.br - GTC/UnB Formalising & Reusing Proofs LACREST Medellin 2012 20/41

Reusing proofs

Definition (Isomrphism between poly-sorted signatures)

Let $\langle \mathcal{A}, \mathcal{F}, \mathcal{R} \rangle$ and $\langle \mathcal{B}, \mathcal{G}, \mathcal{P} \rangle$ be signatures consisting of families of sets $\mathcal{A} = \{A_1, \ldots, A_n\}$ and $\mathcal{B} = \{B_1, \ldots, B_n\}$, functions $\mathcal{F} = \{f_1, \ldots, f_k\}$ and $\mathcal{G} = \{g_1, \ldots, g_k\}$ and relations $\mathcal{R} = \{r_1, \ldots, r_l\}$ and $\mathcal{P} = \{p_1, \ldots, p_l\}$. An isomorphism between these structures, \imath is a bijective mapping from the families of sets, and from functions into functions and relations into relations, such that the following preservation properties hold:

- For all f ∈ F, and m-tuple of well-typed arguments for f, x₁,..., x_m, supposing f is an m-ary function, *i*(f(x₁,..., x_m)) = fⁱ(*i*(x₁),..., *i*(x_m));
- For all p ∈ P, and m-tuple of well-typed arguments for p, x₁,..., x_m, supposing p is an m-ary predicate,
 i(p(x₁,...,x_m)) if and only if *i*^h(*i*(x₁),...,*i*(x_m)).

Universidade de Brasília

ヘロン 人間 とくほど くほとう

Reusing proofs

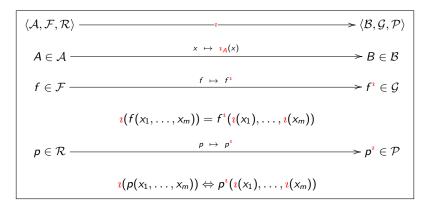
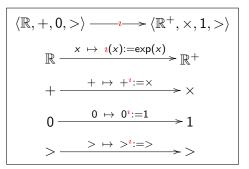



Figure: Isomorphism between poly-sorted signatures Universidade de Brasilia

Mauricio Ayala-Rincón http://ayala.mat.unb.br - GTC/UnB Formalising & Reusing Proofs LACREST Medellin 2012 22/41

Reusing proofs — Examples

٩

Universidade de Brasilia

Mauricio Ayala-Rincón http://ayala.mat.unb.br - GTC/UnB Formalising & Reusing Proofs LACREST Medellin 2012 23/41

Reusing proofs — Examples

i is the function *In*. Thus, one has two useful lemmas:

Lemma (isomorphism 1) $\imath \circ \imath$ is the identity in \mathbb{R} Lemma (isomorphism 2) $\imath \circ \imath$ is the identity in \mathbb{R}^+

Homeomorphic properties for the isomorphism and its inverse:

Lemma (preservation of +) $\forall x, y : \mathbb{R}$. $\iota(x + y) = \iota(x) + \iota(y)$ Lemma (preservation of >1) $\forall x, y : \mathbb{R}$. $x > y \Leftrightarrow \iota(x) > \iota(y)$

Lemma (preservation of ×) $\forall x, y : \mathbb{R}^+$. $\imath(x \times y) = \imath(x) \times \imath(y)$ Lemma (preservation of >2) $\forall x, y : \mathbb{R} + . x > y \Leftrightarrow \imath(x) > \imath(y)$

Universidade de Brasília

イロト イヨト イヨト イヨト

Reusing proofs — Examples

Theorem (additive inverse) $\forall x : \mathbb{R}. x + (-x) = 0$

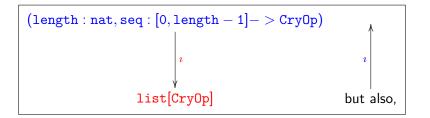
Theorem (In of mult. inverses) $\forall x : \mathbb{R}^+$. $\ln(x^{-1}) = -\ln(x)$

Mauricio Ayala-Rincón http://ayala.mat.unb.br - GTC/UnB Formalising & Reusing Proofs LACREST Medellin 2012 25/41

Reusing proofs — Examples

Theorem (multiplicative inverse) $\forall x : \mathbb{R}^+$. $x \times x^{-1} = 1$

can be proved as follows:


- $x \times x^{-1} = \exp \circ \ln(x \times x^{-1})$, by Lemma isomorphism 2;
- exp $\circ \ln(x \times x^{-1}) = \exp(\ln(x) + \ln(x^{-1}))$, by preservation of \times ;
- exp(ln(x) + ln(x⁻¹)) = exp(ln(x) + ln(x)), by Theorem of In of mult. inverses;
- $\exp(\ln(x) + -\ln(x)) = \exp(0)$, by Theorem of additive inverse;
- exp(0) = 1, by application of the isomorphism exp.

Universidade de Brasília

イロン 不同と 不同と 不同と

Reusing proofs — Case of study

Changing sequences for lists in the formalisation of security of cryptographic protocols, implies construction of several operators:

Mauricio Ayala-Rincón http://ayala.mat.unb.br - GTC/UnB Formalising & Reusing Proofs LACREST Medellin 2012 27/41

Universidade de Brasília

(4月) (4日) (4日)

Reusing proofs — Case of study

For illustration, consider reusing the proof of

Theorem(length of empty sequences) s'length = 0 IFF s = empty_seq

to prove that the following analogous result over lists.

Theorem(length of null list) length(l) = 0 IFF l = null

Mauricio Ayala-Rincón http://ayala.mat.unb.br - GTC/UnB Formalising & Reusing Proofs LACREST Medellín 2012 28/41

Universidade de Brasília

イロン イヨン イヨン イヨン

Reusing proofs — Case of study

Mauricio Ayala-Rincón http://ayala.mat.unb.br - GTC/UnB Formalising & Reusing Proofs LACREST Medellin 2012 29/41

Reusing proofs — Case of study

$$\begin{array}{c} (\texttt{length}:\texttt{nat},\texttt{seq}:[0,\texttt{length}-1]->\texttt{Cry0p}) \\ & \swarrow^{\imath} \\ \texttt{list[Cry0p]} \end{array}$$

Specification transformation from Sequences to lists:

```
$$\lambda(s : seq[CryOp]) RECURSIVE : list[CryOp] =
IF s'length = 0 THEN null
ELSE cons(s'seq(0), 2(s(1, s'length - 1))
ENDIF
MEASURE seq'length
```


Universidade de Brasília

- 4 回 2 - 4 □ 2 - 4 □

Reusing proofs — Case of study

Homeomorphic properties should be formalized as, for instance:

Lemma A1
$$\imath$$
(s'length) = length(\imath (s))
Lemma A2 \imath (s'seq) = $\lambda_{(i:[1,s'length])}.nth(i, \imath(s))$
Lemma A3 \imath (s'seq(k)) = ($\lambda_{(i:[1,s'length])}.nth(i, \imath(s)))\imath$ (k)

Observe, that one has: $\begin{aligned} &(\lambda_{(i:[1,s'length])}.nth(i,\imath(s)))\imath(k) \rightarrow_{\beta} \\ &(\lambda_{(i:[1,s'length])}.nth(i,\imath(s)))(k+1) \rightarrow_{\beta} nth(k+1,\imath(s)), \\ &\text{thus, by lemma A3, } \imath(s'seq(k)) = nth(k+1,\imath(s)). \end{aligned}$

Mauricio Ayala-Rincón http://ayala.mat.unb.br - GTC/UnB Formalising & Reusing Proofs LACREST Medellin 2012 31/41

Universidade de Brasília

・ロト ・日本 ・モート ・モート

Reusing proofs — Case of study

$$\begin{array}{c} (\texttt{length}:\texttt{nat},\texttt{seq}:[0,\texttt{length}-1]->\texttt{Cry0p}) \\ & \uparrow^{\imath} \\ & \texttt{list[Cry0p]} \end{array}$$

Specification transformation from lists to Sequences:

イロトイラトイミトイミト ミークへへ Mauricio Ayala-Rincón http://ayala.mat.unb.br - GTC/UnB Formalising & Reusing Proofs LACREST Medellin 2012 32/41

Universidade de Brasília

Reusing proofs — Case of study

Also, homeomorphic properties should be formalized, as for instance:

Lemma B1
$$i(length(1)) = (i(1))$$
'length
Lemma B2 $i(nth(k, 1)) = (i(1))$ 'seq $(i(k))$

Notice that
$$\begin{split} \lambda_{(i:[0,\texttt{length}(1)-1])}.\texttt{nth}(\texttt{i}+1,\texttt{l}))(\imath(\texttt{k})) &= \\ \lambda_{(i:[0,\texttt{length}(1)-1])}.\texttt{nth}(\texttt{i}+1,\texttt{l}))(\texttt{k}-1) \rightarrow_{\beta} \texttt{nth}(\texttt{k},\texttt{l}). \end{split}$$

Reusing proofs — Case of study

Formalisation of isomorphic properties is necessary:

Lemma isomorphism 1 $\forall s : seq[CryOp]. \imath \circ \imath(s) = s$ Lemma isomorphism 2 $\forall l : list[CryOp]. \imath \circ \imath(l) = l$

The presented properties are not exhaustive!

Universidade de Brasília

• • • • • • • • • • • • •

Reusing proofs — Case of study

Reusing Theorem s'length = 0 IFF s = empty_seq to prove Theorem length(1) = 0 IFF 1 = null:

$$length(1) = 0 \Leftrightarrow$$

 $i(length(1) = 0) \Leftrightarrow$
 $i(length(1)) = i(0) \Leftrightarrow$
 $i(length(1)) = 0 \Leftrightarrow$
 $i(1)'length = 0 IFF$
 $i(1) = empty_seq) \Leftrightarrow$
 $i(i(1) = empty_seq) \Leftrightarrow$
 $i(i(1)) = i(empty_seq) \Leftrightarrow$
 $l = i(empty_seq) \Leftrightarrow$
 $l = null$

appl. of isomorphism operator isomorphism properties isomorphism properties isomorphism properties reuse of Theorem application of isomorphism isomorphism properties isomorphism properties

イロト イヨト イヨト イヨト

Universidade de Brasília

Mauricio Ayala-Rincón http://ayala.mat.unb.br - GTC/UnB Formalising & Reusing Proofs LACREST Medellín 2012 35/41

Reusing proofs — Case of study

Summarizing, the approach to reuse formalizations through isomorphic transformations involves two main steps:

• Construction and formalization of isomorphisms:

- Construction of isomorphic transformations between data structures, functions and relations;
- **②** Formalization of isomorphic and homeomorphic properties;
- 2 Reuse of proofs.

Once the first step is completed, proofs by reusing formalizations of equational and relational theorems follow the sketches in Fig. 6 and 7, respectively.

Universidade de Brasília

イロト イヨト イヨト イヨト

Reusing proofs — Case of study

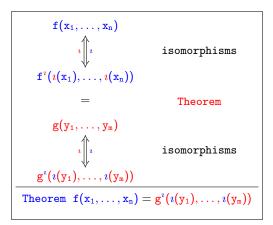


 Figure: General sketch of reusing equational proofs by isomorphisms

 Universidade de Brasilia

 Universidade de Brasilia

Mauricio Ayala-Rincón http://ayala.mat.unb.br - GTC/UnB Formalising & Reusing Proofs LACREST Medellin 2012 37/41

Reusing proofs — Case of study

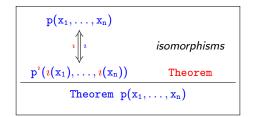


Figure: General sketch for reusing relational proofs by isomorphisms

Mauricio Ayala-Rincón http://ayala.mat.unb.br - GTC/UnB Formalising & Reusing Proofs LACREST Medellin 2012 38/41

Universidade de Brasília

イロト イヨト イヨト イヨト

Conclusions

- Reusing proofs is not straightforward.
- Building poly-sorted isomorphisms works well, but is an exhaustive task.
- Although this, after specifying isomorphism operators and having proved all mundane isomorphic properties complex proofs can be reused.

Future Work

- As a case study the formalisation of security of the Dolev-Yao model is being translated to other data structures.
 - More abstract approaches are possible: starting from mathematical properties proved over algebraic structures trying to work independently of any data structure.
 - The size of the formalisation should be big enough in order to have a relatively small part related with isomorphisms. For example, the formalisation on D-Y security has size ca 80 KB and 3.8 MB specification and formalisation, respectively.

Universidade de Brasília

イロト イヨト イヨト イヨト

• Several related academic projects involving generation of PVS livraries are to be supervised in the GTC at the UnB.

References

D. Dolev and A. C. Yao.

On the Security of Public Key Protocols.

IEEE Transactions on Information Theory, 29(2):198-208, 1983.

G. Lowe.

An Attack on the Needham-Schroeder Public-Key Authentication Protocol. Information Processing Letters, 56(3):131–133, 1995.

G. Lowe.

Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using FDR. Software - Concepts and Tools, 17(3):93–102, 1996.

R.B. Nogueira, M. Ayala-Rincón, A. Nascimento, and F. L.C. de Moura. Formalization of security proofs using PVS in the Dolev-Yao model. In Computability in Europe, 2010.

Y.S. Rêgo and M. Ayala-Rincón.

Formalization in PVS of Balancing Properties Necessary for the Security of the Dolev-Yao Cascade Protocol Model

Universidade de Brasília

・ロッ ・回 ・ ・ ヨッ ・

SBL 2011 full version available, 2012.