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Fibonacci and Lucas numbers of the form 2a + 3b + 5c

By Diego Marques∗) and Alain Togbé∗∗)

Abstract: In this paper, we find all Fibonacci and Lucas numbers written in the form

2a + 3b + 5c, in nonnegative integers a, b, c, with max{a, b} ≤ c.
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1. Introduction Let (Fn)n≥0 be the Fi-

bonacci sequence given by Fn+2 = Fn+1 + Fn, for

n ≥ 0, where F0 = 0 and F1 = 1. These numbers are

well-known for possessing amazing properties (con-

sult [5] together with its very extensive annotated

bibliography for additional references and history).

We cannot go very far in the lore of Fibonacci num-

bers without encountering its companion Lucas se-

quence (Ln)n≥0 which follows the same recursive pat-

tern as the Fibonacci numbers, but with initial values

L0 = 2 and L1 = 1.

The problem of finding for Fibonacci and Lucas

numbers of a particular form has a very rich history.

Maybe the most outstanding result on this subject

is due to Bugeaud, Mignotte and Siksek [1, Theorem

1] who showed that 0, 1, 8, 144 and 1, 4 are the only

Fibonacci and Lucas numbers, respectively, of the

form yt, with t > 1 (perfect power). Other related

papers searched for Fibonacci numbers of the forms

px2 + 1, px3 + 1 [13], k2 + k + 2 [7], pa ± pb + 1

[8], pa ± pb [9], yt ± 1 [2] and qkyt [3]. Also, in

1993, Pethő and Tichy proved that there are only

finitely many Fibonacci numbers of the form pa +

pb + pc, with p prime. However, their proof uses

the finiteness of solutions of S-unit equations, and

as such is ineffective. Very recently, the authors [10]

found all Fibonacci and Lucas numbers of the form

ya + yb + yc, with 2 ≤ y ≤ 9.

In this paper, we are interested in Fibonacci and

Lucas numbers which are sum of three perfect powers

of some prescribed distinct bases. More precisely, our

results are the following
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Theorem 1.1. The only solutions of the Dio-

phantine equation

(1) Fn = 2a + 3b + 5c

in integers n, a, b, c, with 0 ≤ max{a, b} ≤ c are

(n, a, b, c) ∈ {(4, 0, 0, 0), (6, 1, 0, 1)}.

Theorem 1.2. The only solutions of the Dio-

phantine equation

(2) Ln = 2a + 3b + 5c

in integers n, a, b, c, with 0 ≤ max{a, b} ≤ c are

(n, a, b, c) ∈ {(2, 0, 0, 0), (4, 0, 0, 1), (7, 0, 1, 2)}.

2. Auxiliary results First, we recall the

well-known Binet’s formulae for Fibonacci and Lu-

cas sequences:

Fn =
αn − βn

α− β
and Ln = αn + βn,

where α = (1 +
√

5)/2 and β = (1−
√

5)/2 = −1/α.

These formulas allow to deduce the bounds

αn−2 ≤ Fn ≤ αn−1 and αn−1 ≤ Ln ≤ 2αn,

which hold for all n ≥ 1.

The next tools are related to the transcendental

approach to solve Diophantine equations. First, we

use a lower bound for a linear form logarithms à la

Baker and such a bound was given by the following

result of Matveev [11].

Lemma 1. Let γ1, . . . , γs be real algebraic

numbers and let b1, . . . , bs be nonzero rational inte-

ger numbers. Let D be the degree of the number field

Q(γ1, . . . , γs) over Q and let Aj be a positive real

number satisfying

Aj ≥ max{Dh(γj), | log γj |, 0.16} for j = 1, . . . , s.

Assume that

B ≥ max{|b1|, . . . , |bs|}.

If γb11 · · · γbss 6= 1, then
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|γb11 · · · γbss −1| ≥ exp(−C(s,D)(1+logB)A1 · · ·As),

where C(s,D) := 1.4 · 30s+3 · s4.5 ·D2(1 + logD).

As usual, in the above statement, the logarith-

mic height of an s-degree algebraic number γ is de-

fined as

h(γ) =
1

`
(log |a|+

∑̀
j=1

log max{1, |γ(j)|}),

where a is the leading coefficient of the minimal poly-

nomial of γ (over Z) and (γ(j))1≤j≤` are the conju-

gates of γ (over Q).

After finding an upper bound on n which is gen-

eral too large, the next step is to reduce it. For that,

we need a variant of the famous Baker-Davenport

lemma, which is due to Dujella and Pethő [4]. For a

real number x, we use ‖ x ‖= min{|x − n| : n ∈ N}
for the distance from x to the nearest integer.

Lemma 2. Suppose that M is a positive inte-

ger. Let p/q be a convergent of the continued fraction

expansion of the irrational number γ such that q >

6M and let ε =‖ µq ‖ −M ‖ γq ‖, where µ is a real

number. If ε > 0, then there is no solution to the

inequality

0 < mγ − n+ µ < AB−m

in positive integers m,n with

log(Aq/ε)

logB
≤ m < M.

See Lemma 5, a.) in [4]. Now, we are ready to

deal with the proofs of our results.

3. Proof of the Theorem 1.1 By combin-

ing Binet formula together with (2), we get

(3)
αn

√
5
− 5c = 2a + 3b +

βn

√
5
> 0,

because |β| < 1 while 2a ≥ 1. Thus

αn5−c√
5
− 1 =

2a

5c
+

3b

5c
+

βn

5c
√

5

yields ∣∣∣∣αn5−c√
5
− 1

∣∣∣∣ < 3

50.3c
,

where we used that 2 <
√

5, 3 < 50.7 and c ≥
max{a, b}. Therefore,

(4) |eΛF − 1| < 3

50.3c
,

where ΛF = n logα − c log 5 + log(1/
√

5). By (3),

ΛF > 0 and in particular eΛF 6= 1. In order to apply

Lemma 1, we take s := 3,

γ1 := α, γ2 := 5, γ3 := 1/
√

5

and

b1 := n, b2 := −c, b3 := 1.

For this choice we have D = 2, h(γ1) =

(logα)/2 < 0.25, h(γ2) = log 5 < 1.61 and h(γ3) =

log
√

5 < 0.81. In conclusion, A1 := 0.5, A2 := 3.22

and A3 := 1.62 are suitable choices. We also obtain

the estimate

αn−2 < Fn = 2a + 3b + 5c < 2 · 5c.

which yields n < 3.4c+ 3.5 (here we used that 2a +

3b ≤ 2c + 3c < 5c). Thus we can choose B := 3.4c+

3.5 > max{n, c}. By Lemma 1,

(5) |eΛF − 1| > exp(−3.5 · 109(1 + log(3.4c+ 3.5))).

We now combine (4) and (5) to get

c < 7.3 · 109(1 + log(3.4c+ 3.5))

and so c < 3 · 1011 and n < 1.1 · 1012.

Also, 0 < ΛF < eΛF − 1 < 3/50.3c and this can

be written as

0 < n logα− c log 5 + log(1/
√

5) < 3 · (1.6)−c.

Since c > (n − 3.5)/3.4 > 0.3n − 1.1, we obtain (di-

viding by log 5)

(6) 0 < nγ − c+ µ < 3 · (1.1)−n,

with γ := logα/ log 5 and µ := log(1/
√

5)/ log 5 =

−1/2.

We claim that γ is irrational. In fact, if γ = p/q,

then α2q ∈ Q, which is an absurdity. Let qn be the

denominator of the n-th convergent of the continued

fraction of γ. Taking M := 1.1 · 1012, we have

q29 = 971159673756047 > 6M

and then ε :=‖ µq29 ‖ −M ‖ γq29 ‖= 0.4999 . . ..

Note that the conditions to apply Lemma 2 are ful-

filled for A = 3 and B = 1.1, and hence there is no

solution to inequality (6) (and then no solution to

the Diophantine equation (2)) for n in the range[⌊
log(Aq29/ε)

logB

⌋
+ 1,M

)
= [381, 1.1 · 1012).

Thus n ≤ 380 and the estimate 5c < Fn ≤ F380

yields c ≤ 180.

Note that ν5(Fn − 2a − 3b) = c. In order to get

an upper bound for this 5-adic valuation, we need to
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exclude the trivial cases when Fn − 2a − 3b = 0 (e.g.

(n, a, b) = (5, 1, 1)), because clearly they don’t give

any solution. Thus, Mathematica returns ν5(Fn −
2a − 3b) ≤ 10, for n ≥ 380, 0 ≤ max{a, b} ≤ 180.

Therefore c ≤ 10 and then n ≤ 37.

Finally, we use Mathematica to find the solu-

tions of Eq. (1) in the range 0 ≤ max{a, b} ≤ c ≤ 10

and n ≤ 37. Fastly, the program returns us

(n, a, b, c) ∈ {(4, 0, 0, 0), (6, 1, 0, 1)}.

This completes the proof.

4. Proof of the Theorem 1.2 By combin-

ing Binet formula together with (2), we get

αn − 5c = 2a + 3b − βn > 0

and similarly as in the proof of previous theorem, we

obtain

|eΛL − 1| < 3

50.3c
,

where ΛL := n logα− c log 5. The estimates ΛL > 0

and ΛL < eΛL − 1 lead to

(7) log |ΛL| < log 3− 0.48c.

Now, we will determine a lower bound for ΛL.

We remark that the bounds available for linear forms

in two logarithms are substantially better than those

available for linear forms in three logarithms. Here

we choose to use a result due to Laurent [6, Corollary

2] with m = 24 and C2 = 18.8. First let us intro-

duce some notations. Let α1, α2 be real algebraic

numbers, with |αj | ≥ 1, b1, b2 be positive integer

numbers and

Λ = b2 logα2 − b1 logα1.

Let Aj be real numbers such that

logAj ≥ max{h(αj), | logαj |/D, 1/D}, j ∈ {1, 2},

where D is the degree of the number field Q(α1, α2)

over Q. Define

b′ =
b1

D logA2
+

b2
D logA1

.

Laurent’s result asserts that if α1, α2 are multiplica-

tively independent, then

log |Λ| ≥ −18.8 ·D4 (max{log b′ + 0.38,m/D, 1})2

· logA1 logA2.

We then take

D = 2, b1 = c, b2 = n, α1 = 5, α2 = α.

We choose logA1 = 1.61 and logA2 = 0.25. So we

get

b′ =
c

0.5
+

n

3.22
< 3.1c+ 0.8,

where we used n < 3.4c+2.5, which is obtained from

αn−1 < Ln < 2 · 5c.
As α and y are multiplicatively independent, by

Corollary 2 of [6] we get

(8)

log |ΛL| ≥ −121 · (max{log(3.1c+ 0.8) + 0.38, 11})2
.

Now, we combine the estimates (7) and (8) to obtain

(9)

c < 252.1 · (max{log(3.1c+ 0.8) + 0.38, 11})2
+ 2.3.

Therefore inequality (9) gives c ≤ 36382 and so n ≤
123704.
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