Fibonacci and Lucas numbers of the form $2^{a}+3^{b}+5^{c}$

By Diego Marques*) and Alain Togbé**)

Abstract

In this paper, we find all Fibonacci and Lucas numbers written in the form $2^{a}+3^{b}+5^{c}$, in nonnegative integers a, b, c, with $\max \{a, b\} \leq c$.

Key words: Fibonacci; Lucas; linear forms in logarithms; reduction method.

1. Introduction Let $\left(F_{n}\right)_{n \geq 0}$ be the Fibonacci sequence given by $F_{n+2}=F_{n+1}+F_{n}$, for $n \geq 0$, where $F_{0}=0$ and $F_{1}=1$. These numbers are well-known for possessing amazing properties (consult [5] together with its very extensive annotated bibliography for additional references and history). We cannot go very far in the lore of Fibonacci numbers without encountering its companion Lucas sequence $\left(L_{n}\right)_{n \geq 0}$ which follows the same recursive pattern as the Fibonacci numbers, but with initial values $L_{0}=2$ and $L_{1}=1$.

The problem of finding for Fibonacci and Lucas numbers of a particular form has a very rich history. Maybe the most outstanding result on this subject is due to Bugeaud, Mignotte and Siksek [1, Theorem 1] who showed that $0,1,8,144$ and 1,4 are the only Fibonacci and Lucas numbers, respectively, of the form y^{t}, with $t>1$ (perfect power). Other related papers searched for Fibonacci numbers of the forms $p x^{2}+1, p x^{3}+1[13], k^{2}+k+2[7], p^{a} \pm p^{b}+1$ $[8], p^{a} \pm p^{b}[9], y^{t} \pm 1[2]$ and $q^{k} y^{t}[3]$. Also, in 1993, Pethő and Tichy proved that there are only finitely many Fibonacci numbers of the form $p^{a}+$ $p^{b}+p^{c}$, with p prime. However, their proof uses the finiteness of solutions of S-unit equations, and as such is ineffective. Very recently, the authors [10] found all Fibonacci and Lucas numbers of the form $y^{a}+y^{b}+y^{c}$, with $2 \leq y \leq 9$.

In this paper, we are interested in Fibonacci and Lucas numbers which are sum of three perfect powers of some prescribed distinct bases. More precisely, our results are the following

[^0]Theorem 1.1. The only solutions of the Diophantine equation

$$
\begin{equation*}
F_{n}=2^{a}+3^{b}+5^{c} \tag{1}
\end{equation*}
$$

in integers n, a, b, c, with $0 \leq \max \{a, b\} \leq c$ are

$$
(n, a, b, c) \in\{(4,0,0,0),(6,1,0,1)\}
$$

Theorem 1.2. The only solutions of the Diophantine equation

$$
\begin{equation*}
L_{n}=2^{a}+3^{b}+5^{c} \tag{2}
\end{equation*}
$$

in integers n, a, b, c, with $0 \leq \max \{a, b\} \leq c$ are

$$
(n, a, b, c) \in\{(2,0,0,0),(4,0,0,1),(7,0,1,2)\}
$$

2. Auxiliary results First, we recall the well-known Binet's formulae for Fibonacci and Lucas sequences:

$$
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \text { and } L_{n}=\alpha^{n}+\beta^{n}
$$

where $\alpha=(1+\sqrt{5}) / 2$ and $\beta=(1-\sqrt{5}) / 2=-1 / \alpha$. These formulas allow to deduce the bounds

$$
\alpha^{n-2} \leq F_{n} \leq \alpha^{n-1} \text { and } \alpha^{n-1} \leq L_{n} \leq 2 \alpha^{n}
$$ which hold for all $n \geq 1$.

The next tools are related to the transcendental approach to solve Diophantine equations. First, we use a lower bound for a linear form logarithms à la Baker and such a bound was given by the following result of Matveev [11].

Lemma 1. Let $\gamma_{1}, \ldots, \gamma_{s}$ be real algebraic numbers and let b_{1}, \ldots, b_{s} be nonzero rational integer numbers. Let D be the degree of the number field $\mathbb{Q}\left(\gamma_{1}, \ldots, \gamma_{s}\right)$ over \mathbb{Q} and let A_{j} be a positive real number satisfying
$A_{j} \geq \max \left\{D h\left(\gamma_{j}\right),\left|\log \gamma_{j}\right|, 0.16\right\}$ for $j=1, \ldots, s$. Assume that

$$
B \geq \max \left\{\left|b_{1}\right|, \ldots,\left|b_{s}\right|\right\}
$$

If $\gamma_{1}^{b_{1}} \cdots \gamma_{s}^{b_{s}} \neq 1$, then
$\left|\gamma_{1}^{b_{1}} \cdots \gamma_{s}^{b_{s}}-1\right| \geq \exp \left(-C(s, D)(1+\log B) A_{1} \cdots A_{s}\right)$, where $C(s, D):=1.4 \cdot 30^{s+3} \cdot s^{4.5} \cdot D^{2}(1+\log D)$.

As usual, in the above statement, the logarithmic height of an s-degree algebraic number γ is defined as

$$
h(\gamma)=\frac{1}{\ell}\left(\log |a|+\sum_{j=1}^{\ell} \log \max \left\{1,\left|\gamma^{(j)}\right|\right\}\right)
$$

where a is the leading coefficient of the minimal polynomial of $\gamma($ over $\mathbb{Z})$ and $\left(\gamma^{(j)}\right)_{1 \leq j \leq \ell}$ are the conjugates of $\gamma($ over $\mathbb{Q})$.

After finding an upper bound on n which is general too large, the next step is to reduce it. For that, we need a variant of the famous Baker-Davenport lemma, which is due to Dujella and Pethő [4]. For a real number x, we use $\|x\|=\min \{|x-n|: n \in \mathbb{N}\}$ for the distance from x to the nearest integer.

Lemma 2. Suppose that M is a positive integer. Let p / q be a convergent of the continued fraction expansion of the irrational number γ such that $q>$ $6 M$ and let $\epsilon=\|\mu q\|-M\|\gamma q\|$, where μ is a real number. If $\epsilon>0$, then there is no solution to the inequality

$$
0<m \gamma-n+\mu<A B^{-m}
$$

in positive integers m, n with

$$
\frac{\log (A q / \epsilon)}{\log B} \leq m<M
$$

See Lemma 5, a.) in [4]. Now, we are ready to deal with the proofs of our results.
3. Proof of the Theorem 1.1 By combining Binet formula together with (2), we get

$$
\begin{equation*}
\frac{\alpha^{n}}{\sqrt{5}}-5^{c}=2^{a}+3^{b}+\frac{\beta^{n}}{\sqrt{5}}>0 \tag{3}
\end{equation*}
$$

because $|\beta|<1$ while $2^{a} \geq 1$. Thus

$$
\frac{\alpha^{n} 5^{-c}}{\sqrt{5}}-1=\frac{2^{a}}{5^{c}}+\frac{3^{b}}{5^{c}}+\frac{\beta^{n}}{5^{c} \sqrt{5}}
$$

yields

$$
\left|\frac{\alpha^{n} 5^{-c}}{\sqrt{5}}-1\right|<\frac{3}{5^{0.3 c}}
$$

where we used that $2<\sqrt{5}, 3<5^{0.7}$ and $c \geq$ $\max \{a, b\}$. Therefore,

$$
\begin{equation*}
\left|e^{\Lambda_{F}}-1\right|<\frac{3}{5^{0.3 c}} \tag{4}
\end{equation*}
$$

where $\Lambda_{F}=n \log \alpha-c \log 5+\log (1 / \sqrt{5})$. By (3), $\Lambda_{F}>0$ and in particular $e^{\Lambda_{F}} \neq 1$. In order to apply

Lemma 1 , we take $s:=3$,

$$
\gamma_{1}:=\alpha, \gamma_{2}:=5, \gamma_{3}:=1 / \sqrt{5}
$$

and

$$
b_{1}:=n, b_{2}:=-c, b_{3}:=1
$$

For this choice we have $D=2, h\left(\gamma_{1}\right)=$ $(\log \alpha) / 2<0.25, h\left(\gamma_{2}\right)=\log 5<1.61$ and $h\left(\gamma_{3}\right)=$ $\log \sqrt{5}<0.81$. In conclusion, $A_{1}:=0.5, A_{2}:=3.22$ and $A_{3}:=1.62$ are suitable choices. We also obtain the estimate

$$
\alpha^{n-2}<F_{n}=2^{a}+3^{b}+5^{c}<2 \cdot 5^{c} .
$$

which yields $n<3.4 c+3.5$ (here we used that $2^{a}+$ $\left.3^{b} \leq 2^{c}+3^{c}<5^{c}\right)$. Thus we can choose $B:=3.4 c+$ $3.5>\max \{n, c\}$. By Lemma 1,
(5) $\left|e^{\Lambda_{F}}-1\right|>\exp \left(-3.5 \cdot 10^{9}(1+\log (3.4 c+3.5))\right)$.

We now combine (4) and (5) to get

$$
c<7.3 \cdot 10^{9}(1+\log (3.4 c+3.5))
$$

and so $c<3 \cdot 10^{11}$ and $n<1.1 \cdot 10^{12}$.
Also, $0<\Lambda_{F}<e^{\Lambda_{F}}-1<3 / 5^{0.3 c}$ and this can be written as

$$
0<n \log \alpha-c \log 5+\log (1 / \sqrt{5})<3 \cdot(1.6)^{-c}
$$

Since $c>(n-3.5) / 3.4>0.3 n-1.1$, we obtain (dividing by $\log 5)$

$$
\begin{equation*}
0<n \gamma-c+\mu<3 \cdot(1.1)^{-n} \tag{6}
\end{equation*}
$$

with $\gamma:=\log \alpha / \log 5$ and $\mu:=\log (1 / \sqrt{5}) / \log 5=$ $-1 / 2$.

We claim that γ is irrational. In fact, if $\gamma=p / q$, then $\alpha^{2 q} \in \mathbb{Q}$, which is an absurdity. Let q_{n} be the denominator of the n-th convergent of the continued fraction of γ. Taking $M:=1.1 \cdot 10^{12}$, we have

$$
q_{29}=971159673756047>6 M
$$

and then $\epsilon:=\left\|\mu q_{29}\right\|-M\left\|\gamma q_{29}\right\|=0.4999 \ldots$ Note that the conditions to apply Lemma 2 are fulfilled for $A=3$ and $B=1.1$, and hence there is no solution to inequality (6) (and then no solution to the Diophantine equation (2)) for n in the range

$$
\left[\left\lfloor\frac{\log \left(A q_{29} / \epsilon\right)}{\log B}\right\rfloor+1, M\right)=\left[381,1.1 \cdot 10^{12}\right)
$$

Thus $n \leq 380$ and the estimate $5^{c}<F_{n} \leq F_{380}$ yields $c \leq 180$.

Note that $\nu_{5}\left(F_{n}-2^{a}-3^{b}\right)=c$. In order to get an upper bound for this 5 -adic valuation, we need to
exclude the trivial cases when $F_{n}-2^{a}-3^{b}=0$ (e.g. $(n, a, b)=(5,1,1))$, because clearly they don't give any solution. Thus, Mathematica returns $\nu_{5}\left(F_{n}-\right.$ $\left.2^{a}-3^{b}\right) \leq 10$, for $n \geq 380,0 \leq \max \{a, b\} \leq 180$. Therefore $c \leq 10$ and then $n \leq 37$.

Finally, we use Mathematica to find the solutions of Eq. (1) in the range $0 \leq \max \{a, b\} \leq c \leq 10$ and $n \leq 37$. Fastly, the program returns us

$$
(n, a, b, c) \in\{(4,0,0,0),(6,1,0,1)\}
$$

This completes the proof.
4. Proof of the Theorem 1.2 By combining Binet formula together with (2), we get

$$
\alpha^{n}-5^{c}=2^{a}+3^{b}-\beta^{n}>0
$$

and similarly as in the proof of previous theorem, we obtain

$$
\left|e^{\Lambda_{L}}-1\right|<\frac{3}{5^{0.3 c}},
$$

where $\Lambda_{L}:=n \log \alpha-c \log 5$. The estimates $\Lambda_{L}>0$ and $\Lambda_{L}<e^{\Lambda_{L}}-1$ lead to

$$
\begin{equation*}
\log \left|\Lambda_{L}\right|<\log 3-0.48 c \tag{7}
\end{equation*}
$$

Now, we will determine a lower bound for Λ_{L}. We remark that the bounds available for linear forms in two logarithms are substantially better than those available for linear forms in three logarithms. Here we choose to use a result due to Laurent [6, Corollary 2] with $m=24$ and $C_{2}=18.8$. First let us introduce some notations. Let α_{1}, α_{2} be real algebraic numbers, with $\left|\alpha_{j}\right| \geq 1, b_{1}, b_{2}$ be positive integer numbers and

$$
\Lambda=b_{2} \log \alpha_{2}-b_{1} \log \alpha_{1}
$$

Let A_{j} be real numbers such that

$$
\log A_{j} \geq \max \left\{h\left(\alpha_{j}\right),\left|\log \alpha_{j}\right| / D, 1 / D\right\}, j \in\{1,2\}
$$

where D is the degree of the number field $\mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right)$ over \mathbb{Q}. Define

$$
b^{\prime}=\frac{b_{1}}{D \log A_{2}}+\frac{b_{2}}{D \log A_{1}}
$$

Laurent's result asserts that if α_{1}, α_{2} are multiplicatively independent, then

$$
\begin{aligned}
\log |\Lambda| \geq & -18.8 \cdot D^{4}\left(\max \left\{\log b^{\prime}+0.38, m / D, 1\right\}\right)^{2} \\
& \cdot \log A_{1} \log A_{2}
\end{aligned}
$$

We then take

$$
D=2, b_{1}=c, b_{2}=n, \alpha_{1}=5, \alpha_{2}=\alpha
$$

We choose $\log A_{1}=1.61$ and $\log A_{2}=0.25$. So we get

$$
b^{\prime}=\frac{c}{0.5}+\frac{n}{3.22}<3.1 c+0.8
$$

where we used $n<3.4 c+2.5$, which is obtained from $\alpha^{n-1}<L_{n}<2 \cdot 5^{c}$.

As α and y are multiplicatively independent, by Corollary 2 of [6] we get
(8)
$\log \left|\Lambda_{L}\right| \geq-121 \cdot(\max \{\log (3.1 c+0.8)+0.38,11\})^{2}$.
Now, we combine the estimates (7) and (8) to obtain (9)
$c<252.1 \cdot(\max \{\log (3.1 c+0.8)+0.38,11\})^{2}+2.3$.
Therefore inequality (9) gives $c \leq 36382$ and so $n \leq$ 123704.

Acknowledgement The first author is grateful to CNPq, DPP-UnB and FEMAT-Brazil for the financial support. The second author is supported in part by Purdue University North Central.

References

[1] Y. Bugeaud, M. Mignotte, S. Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas powers, Annals of Math. 163 (2006), 969-1018.
[2] Y. Bugeaud, M. Mignotte, F. Luca, S. Siksek, Fibonacci numbers at most one away from a perfect power, Elem. Math. 63 (2008), 65-75.
[3] Y. Bugeaud, M. Mignotte, S. Siksek, Sur les nombres de Fibonacci de la forme $q^{k} y^{t}$. C. R. Math. Acad. Sci. Paris 339 (2004), no. 5, 327330.
[4] A. Dujella, A. Pethő, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), 291-306.
[5] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley, New York, 2001.
[6] M. Laurent, Linear forms in two logarithms and interpolation determinants II, Acta Arith. 133.4 (2008), 325-348.
[7] F. Luca, Fibonacci numbers of the form $k^{2}+$ $k+2$. Applications of Fibonacci numbers, Vol. 8 (Rochester, NY, 1998), 241-249, Kluwer Acad. Publ., Dordrecht, 1999.
[8] F. Luca, L. Szalay, Fibonacci numbers of the form $p^{a} \pm p^{b}+1$. Fibonacci Quart. 45 (2007), no. 2, 98103.
[9] F. Luca, P. Stănică, Fibonacci numbers of the form $p^{a} \pm p^{b}$. Proceedings of the Eleventh International Conference on Fibonacci Numbers and their Applications. Congr. Numer. 194 (2009), 177-183.
[10] D. Marques, A. Togbé, Terms of a linear recurrence sequence which are sum of powers of a fixed integer, Preprint.
[11] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers, II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), 125-180. English translation in Izv. Math. 64 (2000), 1217-1269.
[12] A. Pethő, R. F. Tichy, S-unit equations, linear recurrences and digit expansions, Publ. Math. Debrecen 42 (1993), 145-154.
[13] N. Robbins, Fibonacci numbers of the forms $p X^{2} \pm 1, p X^{3} \pm 1$, where p is prime. Applications of Fibonacci numbers (San Jose, CA, 1986), 7788, Kluwer Acad. Publ., Dordrecht, 1988.

[^0]: 2010 Mathematics Subject Classification. Primary 11B39, 11J86.
 *) Departamento de Matemática, Universidade de Brasília, Brasília-DF, Brazil
 ${ }^{* *)}$ Department of Mathematics, Purdue University North Central, 1401 S, U.S. 421, Westville, IN 46391, USA

