On the sum of powers of terms of a linear recurrence sequence

Ana Paula Chaves ${ }^{\text {a, }, 1}$, Diego Marques ${ }^{\text {a,2 }}$, Alain Togbéb,3,*
${ }^{a}$ Departamento de Matemática, Universidade de Brasilia, Brasilia, 70910-900, Brazil
${ }^{b}$ Department of Mathematics, Purdue University North Central, 1401 S, U.S. 421, Westville, IN 46391, USA

Abstract

Let $\left(F_{n}\right)_{n \geq 0}$ be the Fibonacci sequence given by $F_{n+2}=F_{n+1}+F_{n}$, for $n \geq 0$, where $F_{0}=0$ and $F_{1}=1$. There are several interesting identities involving this sequence such as $F_{n}^{2}+F_{n+1}^{2}=F_{2 n+1}$, for all $n \geq 0$. In a very recent paper, Marques and Togbé proved that if $F_{n}^{s}+F_{n+1}^{s}$ is a Fibonacci number for all sufficiently large n, then $s=1$ or 2 . In this paper, we will prove, in particular, that if $\left(G_{m}\right)_{m}$ is a linear recurrence sequence (under weak assumptions) and $G_{n}^{s}+\cdots+G_{n+k}^{s} \in\left(G_{m}\right)_{m}$, for infinitely many positive integers n, then s is bounded by an effectively computable constant depending only on k and the parameters of G_{m}.

Keywords: Fibonacci, linear forms in logarithms, reduction method, linear recurrence sequence
2000 MSC: 11B39, 11J86

1. Introduction

A sequence $\left(G_{n}\right)_{n \geq 0}$ is a linear recurrence sequence with coefficients c_{0}, c_{1}, \ldots, c_{k-1}, with $c_{0} \neq 0$, if

$$
\begin{equation*}
G_{n+k}=c_{k-1} G_{n+k-1}+\cdots+c_{1} G_{n+1}+c_{0} G_{n} \tag{1}
\end{equation*}
$$

[^0]for all positive integer n. A recurrence sequence is therefore completely determined by the initial values G_{0}, \ldots, G_{k-1}, and by the coefficients $c_{0}, c_{1}, \ldots, c_{k-1}$. The integer k is called the order of the linear recurrence. The characteristic polynomial of the sequence $\left(G_{n}\right)_{n \geq 0}$ is given by
$$
G(x)=x^{k}-c_{k-1} x^{k-1}-\cdots-c_{1} x-c_{0}
$$

It is well-known that for all n

$$
\begin{equation*}
G_{n}=g_{1}(n) r_{1}^{n}+\cdots+g_{\ell}(n) r_{\ell}^{n} \tag{2}
\end{equation*}
$$

where r_{j} is a root of $G(x)$ and $g_{j}(x)$ is a polynomial over a certain number field, for $j=1, \ldots, \ell$. In this paper, we consider only integer recurrence sequences, i.e., recurrence sequences whose coefficients and initial values are integers. Hence, $g_{j}(n)$ is an algebraic number, for all $j=1, \ldots, \ell$, and $n \in \mathbb{Z}$.

A general Lucas sequence $\left(C_{n}\right)_{n \geq 0}$ given by $C_{n+2}=a C_{n+1}+b C_{n}$, for $n \geq 0$, where the values a, b, C_{0} and C_{1} are previously fixed, is an example of a linear recurrence of order 2 (also called binary). For instance, if $C_{0}=0$ and $C_{1}=a=b=1$, then $\left(C_{n}\right)_{n \geq 0}=\left(F_{n}\right)_{n \geq 0}$ is the well-known Fibonacci sequence:

$$
0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

The Fibonacci numbers are known for their amazing properties (see [8, pp. $53-56]$ and [1]). For example, we have

$$
\begin{equation*}
F_{n}^{2}+F_{n+1}^{2}=F_{2 n+1}, \text { for all } n \geq 0 \tag{3}
\end{equation*}
$$

Recently, Melham [5, 6, 7] have published a series of papers presenting identities that (according to him) can be regarded as higher order analogues of the above equality. Note that, in particular, the naive identity (3) (which can be easily proved by mathematical induction) tells us that the sum of the squares of two consecutive Fibonacci numbers is still a Fibonacci number. In a very recent paper, Marques and Togbé [3] searched for similar identities in higher powers, see [2] for a generalization. They proved that if $F_{n}^{s}+F_{n+1}^{s}$ is a Fibonacci number for all sufficiently large n, then $s=1$ or 2 . Several related problems arise, such as:

- What happens if the Fibonacci sequence is replaced by another linear recurrence sequence (e.g., Lucas or Tribonacci sequences)?
- What is about the sum of many powers of Fibonacci numbers?

The aim of this paper is to work on these kind of problems. More precisely, our main result is the following.

Theorem 1. Let $\left(G_{n}\right)_{n}$ be an integer linear recurrence sequence such that its characteristic polynomial has a simple positive root being the unique zero outside the unit circle. Let s, k, and b be positive integer numbers and $\epsilon_{j} \in$ $\{0,1\}$, with $1 \leq j \leq k-1$. Then, there exists an effectively computable constant C such that if

$$
G_{n}^{s}+\epsilon_{1} G_{n+1}^{s}+\cdots+\epsilon_{k-1} G_{n+k-1}^{s}+G_{n+k}^{s}
$$

belongs to the sequence $\left(b \cdot G_{n}\right)_{n}$, for infinitely many positive integers n, then $s<C$. The constant C depends only on k, b and the parameters of G_{n}.

Of course, there are also identities involving distinct powers of Fibonacci numbers such as

$$
5 F_{2 n+2}^{3}+3 F_{2 n+1}+3 F_{2 n}=F_{6(n+1)}, \text { for all } n \geq 1
$$

As an application of our method, we will prove that there is not a similar identity under some weak hypotheses. More precisely, we have

Theorem 2. Let $\ell, s_{1}, \ldots, s_{\ell}, a_{1}, \ldots, a_{\ell}$ be integers with $\ell>1$ and $s_{j} \geq 1$. Suppose that there exists $1 \leq t \leq \ell$ such that $a_{t} \neq 0$ and $s_{t}>s_{j}$, for all $j \neq t$. If either s_{t} is even or a_{t} is not a positive power of 5 , then the sum

$$
\begin{equation*}
a_{1} F_{n+1}^{s_{1}}+a_{2} F_{n+2}^{s_{2}}+\cdots+a_{\ell} F_{n+\ell}^{s_{\ell}} \tag{4}
\end{equation*}
$$

does not belong to the Fibonacci sequence for all sufficiently large n.
We organize this paper as follows. In Section 2, we will recall some useful properties such as a result of Matveev on linear forms in three logarithms, that we will use to prove Theorem 1. The third section is devoted to the proof of Theorem 1. In the last section, we combine our method with the useful fact that every non-zero integer power of $\alpha=(1+\sqrt{5}) / 2$ is irrational in order to prove Theorem 2.

2. Auxiliary results

In this section, we recall some results that will be very useful for the proof of the above theorems. Let $G(x)$ be the characteristic polynomial of a linear recurrence G_{n}. One can factor $G(x)$ over the set of complex numbers as

$$
G(x)=\left(x-r_{1}\right)^{m_{1}}\left(x-r_{2}\right)^{m_{2}} \cdots\left(x-r_{\ell}\right)^{m_{\ell}},
$$

where r_{1}, \ldots, r_{ℓ} are distinct non-zero complex numbers (called the roots of the recurrence) and m_{1}, \ldots, m_{ℓ} are positive integers. A root r_{j} of the recurrence is called a dominant root if $\left|r_{j}\right|>\left|r_{i}\right|$, for all $j \neq i \in\{1, \ldots, \ell\}$. The corresponding polynomial $g_{j}(n)$ is named the dominant polynomial of the recurrence. A fundamental result in the theory of recurrence sequences asserts that there exist uniquely determined non-zero polynomials $g_{1}, \ldots, g_{\ell} \in \mathbb{Q}\left(\left\{r_{j}\right\}_{j=1}^{\ell}\right)[x]$, with $\operatorname{deg} g_{j} \leq m_{j}-1$, for $j=1, \ldots, \ell$, such that

$$
\begin{equation*}
G_{n}=g_{1}(n) r_{1}^{n}+\cdots+g_{\ell}(n) r_{\ell}^{n}, \text { for all } n \tag{5}
\end{equation*}
$$

For more details, see [9, Theorem C.1].
In the case of the Fibonacci sequence, the above formula is known as Binet's formula:

$$
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}
$$

where $\alpha=(1+\sqrt{5}) / 2$ (the golden number) and $\beta=(1-\sqrt{5}) / 2=-1 / \alpha$. Equation (5) and some tricks will allow us to obtain linear forms in three logarithms and then determine lower bounds à la Baker for these linear forms. From the main result of Matveev [4], we deduce the following lemma.

Lemma 1. Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be real algebraic numbers and let b_{1}, b_{2}, b_{3} be nonzero integer rational numbers. Define

$$
\Lambda=b_{1} \log \alpha_{1}+b_{2} \log \alpha_{2}+b_{3} \log \alpha_{3} .
$$

Let D be the degree of the number field $\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ over \mathbb{Q} and let A_{1}, A_{2}, A_{3} be positive real numbers which satisfy

$$
A_{j} \geq \max \left\{D h\left(\alpha_{j}\right),\left|\log \alpha_{j}\right|, 0.16\right\}, \text { for } j=1,2,3
$$

Assume that $B^{\prime} \geq \max \left\{1, \max \left\{\left|b_{j}\right| A_{j} / A_{1} ; 1 \leq j \leq 3\right\}\right\}$. Define also

$$
C_{1}=6750000 \cdot e^{4}\left(20.2+\log \left(3^{5.5} D^{2} \log (e D)\right)\right)
$$

If $\Lambda \neq 0$, then

$$
-\log |\Lambda| \leq C_{1} D^{2} A_{1} A_{2} A_{3} \log \left(1.5 e D B^{\prime} \log (e D)\right)
$$

As usual, in the previous statement, the logarithmic height of an n-degree algebraic number α is defined as

$$
h(\alpha)=\frac{1}{n}\left(\log |a|+\sum_{j=1}^{n} \log \max \left\{1,\left|\alpha^{(j)}\right|\right\}\right),
$$

where a is the leading coefficient of the minimal polynomial of α (over \mathbb{Z}) and $\left(\alpha^{(j)}\right)_{1 \leq j \leq n}$ are the conjugates of α.

The next lemma plays an important role in the proof of Theorem 1, since it will allow us to prove that a certain linear form is a real number.

Lemma 2. Let $\left(G_{n}\right)_{n}$ be a linear recurrence having infinitely many positive terms and such that its characteristic polynomial has a simple positive dominant root. Then the dominant polynomial of $\left(G_{n}\right)_{n}$ is a positive constant.

Proof We know that

$$
G_{n}=g_{1}(n) r_{1}^{n}+\cdots+g_{\ell}(n) r_{\ell}^{n}
$$

where each r_{j} is a root of characteristic polynomial of G_{n}, with multiplicity m_{j}, and each $g_{j}(n)$ is a non-zero polynomial with degree $\leq m_{j}-1$. Suppose that r_{1} is the dominant root, since it is simple, we have immediately $m_{1}=1$ and then the degree of dominant polynomial is at most $m_{1}-1=0$, so it is a constant, say g_{1}. Now, dividing G_{n} by r_{1}^{n}, we get

$$
\begin{equation*}
\frac{G_{n}}{r_{1}^{n}}=g_{1}+\sum_{j=2}^{\ell} \frac{g_{j}(n)}{\kappa_{j}^{n}} \tag{6}
\end{equation*}
$$

where $\kappa_{j}=r_{1} / r_{j}$. Since $\left|\kappa_{j}\right|>1$, we have

$$
\lim _{n \rightarrow \infty} \frac{g_{j}(n)}{\kappa_{j}^{n}}=0, \text { for all } 2 \leq j \leq \ell
$$

and so

$$
0 \leq \limsup _{n \rightarrow \infty} \frac{G_{n}}{r_{1}^{n}}=g_{1}
$$

Therefore, $g_{1}>0$ as $g_{1} \neq 0$.

Now, we are ready to deal with the proofs of our results.

3. The proof of Theorem 1

First, note that in the statement of Theorem 1, we have

$$
\begin{equation*}
G_{n}^{s}+\epsilon_{1} G_{n+1}^{s}+\cdots+\epsilon_{k-1} G_{n+k-1}^{s}+G_{n+k}^{s}=b G_{t_{n}}, \text { for all } n \in \mathcal{N}, \tag{7}
\end{equation*}
$$

where $\left\{t_{n}: n \geq 0\right\}$ and \mathcal{N} are infinite subsets of positive integers. Suppose that there is a positive integer n_{0}, such that $G_{n} \leq 0$, for all $n>n_{0}$. If s is even, then the left-hand side of (7) is a positive sequence, but the right-hand side is non-positive when $t_{n}>n_{0}$, which is a contradiction. In the case of an odd s, we define $H_{n}=-G_{n}$, for all n. Thus (7) becomes

$$
H_{n}^{s}+\epsilon_{1} H_{n+1}^{s}+\cdots+\epsilon_{k-1} H_{n+k-1}^{s}+H_{n+k}^{s}=b H_{t_{n}}, \text { for all } n \in \mathcal{N},
$$

which is an equivalent identity, but with $H_{n}>0$, for all $n>n_{0}$. Summarizing, we may assume, without loss of generality, that $\left(G_{n}\right)_{n}$ has infinitely many positive terms.

According to equation (2), we have

$$
G_{n}=g_{1}(n) r_{1}^{n}+\cdots+g_{\ell}(n) r_{\ell}^{n}, \text { for } n \geq 1
$$

Assume that r_{1} is the simple dominant root. So $r_{1}>0$ and by Lemma 2, $g_{1}(n)=g_{1}>0$. Thus, for any $0 \leq t \leq k$, the multinomial theorem yields

$$
G_{n+t}^{s}=\sum_{\bar{\alpha} \in \mathcal{I}_{s}} \frac{s!}{\alpha_{1}!\cdots \alpha_{\ell}!} \prod_{j=1}^{\ell} g_{j}(n+t)^{\alpha_{j}} r_{1}^{\alpha_{1}(n+t)} \cdots r_{\ell}^{\alpha_{\ell}(n+t)}
$$

where $\mathcal{I}_{s}=\left\{\bar{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{\ell}\right) \in \mathbb{Z}^{\ell}: \alpha_{i} \geq 0\right.$ and $\left.\sum_{i=1}^{\ell} \alpha_{i}=s\right\}$. A straightforward computation shows that

$$
\frac{G_{n+t}^{s}}{r_{1}^{s n}}=g_{1}^{s} r_{1}^{t s}+\sum_{\bar{\alpha} \in \mathcal{I}_{s} \backslash\left\{s e_{1}\right\}} \frac{s!}{\alpha_{1}!\cdots \alpha_{\ell}!} \prod_{j=1}^{\ell} g_{j}(n+t)^{\alpha_{j}} \frac{r_{1}^{\alpha_{1} t} r_{2}^{\alpha_{2}(n+t)} \cdots r_{\ell}^{\alpha_{\ell}(n+t)}}{r_{1}^{\left(s-\alpha_{1}\right) n}},
$$

where $\mathfrak{e}_{1}=(1,0, \ldots, 0)$. Since $s-\alpha_{1}=\alpha_{2}+\cdots+\alpha_{\ell}>0$ and $g_{1}(n+t)=g_{1}$ (by Lemma 2), we can write

$$
\frac{G_{n+t}^{s}}{r_{1}^{s n}}=g_{1}^{s} r_{1}^{t s}+\sum_{\bar{\alpha} \in \mathcal{I}_{s} \backslash\left\{s s_{1}\right\}} \frac{s!}{\alpha_{1}!\cdots \alpha_{\ell}!} \prod_{j=2}^{\ell}\left(\frac{g_{j}(n+t)}{r_{1}^{n}}\right)^{\alpha_{j}} g_{1}^{\alpha_{1}} r_{1}^{\alpha_{1} t} r_{2}^{\alpha_{2}(n+t)} \cdots r_{\ell}^{\alpha_{\ell}(n+t)}
$$

As $\left|r_{j}\right|<1$ and $\lim _{n \rightarrow \infty} g_{j}(n+t) / r_{1}^{n}=0$, each term in the previous summation tends to zero as $n \rightarrow \infty$, because $\alpha_{j}>0$, for some $2 \leq j \leq \ell$. So,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{G_{n+t}^{s}}{r_{1}^{s n}}=g_{1}^{s} r_{1}^{t s} \tag{8}
\end{equation*}
$$

On the other hand, let \mathcal{N} be an infinite set of positive integers and let $\left(t_{n}\right)_{n} \subseteq \mathbb{N}$ be a sequence such that $\sum_{j=0}^{k} \epsilon_{j} G_{n+j}^{s}=b G_{t_{n}}$, for all $n \in \mathcal{N}$, where we set $\epsilon_{0}=\epsilon_{k}=1$. By the formula in (6), we have that $G_{m}=O\left(r_{1}^{m}\right)$, for all m (where as usual, O denotes the 'big-oh' Landal symbol). Thus the equality $\sum_{j=0}^{k} \epsilon_{j} G_{n+j}^{s}=b G_{t_{n}}$ yields $O\left(r_{1}^{n s}\right)=O\left(r_{1}^{t_{n}}\right)$ and so $t_{n}=O(n)$. Also, Equation (8) implies that

$$
\begin{equation*}
g_{1}^{s}\left(1+\epsilon_{1} r_{1}^{s}+\cdots+\epsilon_{k-1} r_{1}^{(k-1) s}+r_{1}^{k s}\right)=\lim _{\substack{n \rightarrow \infty \\ n \in \mathcal{N}}} \frac{b G_{t_{n}}}{r_{1}^{n s}} \tag{9}
\end{equation*}
$$

However,

$$
\frac{G_{t_{n}}}{r_{1}^{n s}}=g_{1} r_{1}^{t_{n}-n s}+g_{2}\left(t_{n}\right) \frac{r_{2}^{t_{n}}}{r_{1}^{n s}}+\cdots+g_{\ell}\left(t_{n}\right) \frac{r_{\ell}^{t_{n}}}{r_{1}^{n s}} .
$$

Now, we use that any exponential function of n dominates any polynomial function of n, together with the fact that $t_{n}=O(n)$ and $\left|r_{j}\right|<1$, for $j=$ $2, \ldots, \ell$, to conclude that

$$
\lim _{\substack{n \rightarrow \infty \\ n \in \mathcal{N}}} \frac{g_{j}\left(t_{n}\right)}{r_{1}^{n_{s}}} \cdot r_{j}^{t_{n}}=0, \text { for } j=2, \ldots, \ell
$$

So equation (9) becomes

$$
g_{1}^{s-1}\left(1+\epsilon_{1} r_{1}^{s}+\cdots+\epsilon_{k-1} r_{1}^{(k-1) s}+r_{1}^{k s}\right)=b \lim _{\substack{n \rightarrow \infty \\ n \in \mathcal{N}}} r_{1}^{t_{n}-n s} .
$$

Since $t_{n}-n s$ is an integer and $r_{1}>1$, then $t_{n}-n s$ must be constant with respect to n, say t, for all $n \in \mathcal{N}$ sufficiently large. Hence equation (9) yields

$$
\begin{equation*}
g_{1}^{s-1}\left(1+\epsilon_{1} r_{1}^{s}+\cdots+\epsilon_{k-1} r_{1}^{(k-1) s}+r_{1}^{k s}\right)=b r_{1}^{t} . \tag{10}
\end{equation*}
$$

Observe that equation (10) can be rewritten into the form

$$
e^{\Lambda}-1=r_{1}^{-k s}+\epsilon_{1} r_{1}^{-(k-1) s}+\cdots+\epsilon_{k-1} r_{1}^{-s}>0
$$

where

$$
\Lambda=(s-1) \log \left(1 / g_{1}\right)-(k s-t) \log r_{1}+\log b .
$$

As g_{1} and r_{1} are positive, then $\Lambda \in \mathbb{R}$ and the above inequality implies that $\Lambda>0$. Thus

$$
\Lambda<e^{\Lambda}-1=r_{1}^{-k s}+\epsilon_{1} r_{1}^{-(k-1) s}+\cdots+\epsilon_{k-1} r_{1}^{-s}<k r_{1}^{-s} .
$$

Therefore, we get

$$
\begin{equation*}
\log \Lambda<\log k-s \log r_{1} . \tag{11}
\end{equation*}
$$

In order to apply Lemma 1, we take

$$
\alpha_{1}=1 / g_{1}, \quad \alpha_{2}=r_{1}, \quad \alpha_{3}=b, \quad b_{1}=s-1, \quad b_{2}=-(k s-t), \quad b_{3}=1 .
$$

However, b_{1}, b_{2} and b_{3} must be non-zero. Since, we may suppose $s>1$, the only point that requires extra care is the verification of $b_{2} \neq 0$. In fact, if $b_{2}=0$, i.e., $k s=t$, then equation (10) gives

$$
g_{1}^{s-1} r_{1}^{k s}<g_{1}^{s-1}\left(1+\epsilon_{1} r_{1}^{s}+\cdots+\epsilon_{k-1} r_{1}^{(k-1) s}+r_{1}^{k s}\right)=b r_{1}^{t} .
$$

So, we get $b>g_{1}^{s-1}$ and Theorem 1 is proved with the choice of $C=$ $\log b / \log g_{1}+1$. Therefore, we assume that $k s \neq t$.

Note that $D=\left[\mathbb{Q}\left(g_{1}, r_{1}\right): \mathbb{Q}\right] \leq \ell$!, since $g_{1} \in \mathbb{Q}\left(\left\{r_{j}\right\}_{1 \leq j \leq \ell}\right)$. Now, set $h\left(\alpha_{1}\right)=h\left(1 / g_{1}\right)=h_{1}$. Since r_{1} is a root of $G(x)$, the minimal polynomial of r_{1} is a divisor of $G(x)$, we have

$$
h\left(\alpha_{2}\right) \leq\left(\log r_{1}\right) / \ell
$$

and finally $h\left(\alpha_{3}\right)=\log b$. Then, we take

$$
A_{1}=\ell!h_{1}+\left|\log g_{1}\right|+0.16, \quad A_{2}=(\ell-1)!\log r_{1}+0.16, \quad A_{3}=\ell!\log b+0.16
$$

Also, we get

$$
\begin{aligned}
B^{\prime} & \geq \max \left\{1, \max \left\{\left|b_{j}\right| A_{j} / A_{1} ; 1 \leq j \leq 3\right\}\right\} \\
& =\max \left\{s-1,|k s-t| \cdot\left(\frac{(\ell-1)!\log r_{1}+0.16}{\ell!h_{1}+\left|\log g_{1}\right|+0.16}\right)\right\}
\end{aligned}
$$

for s sufficiently large. Thus, we obtain

$$
\begin{align*}
-\log |\Lambda|< & 3.7 \cdot 10^{4} \cdot\left(20.2+\log \left(3^{5.5} \ell!^{2} \log (e \ell!)\right)\right) \ell!^{2}\left(\ell!h_{1}+\log g_{1}+0.16\right) \times \\
& \left((\ell-1)!\log r_{1}+0.16\right)(\ell!\log b+0.16) \cdot \log \left(1.5 e \ell!B^{\prime} \log (e \ell!)\right) . \tag{12}
\end{align*}
$$

Combining estimates (11) and (12), we get a constant $C>0$, which depends only on b, k and the parameters of G_{n}, such that $s<C$.

4. The proof of Theorem 2

For $1 \leq j \leq \ell$, the Binet's formula and the binomial formula imply

$$
F_{n+j}^{s_{j}}=\left(\frac{1}{\sqrt{5}}\right)^{s_{j}} \cdot \sum_{k=0}^{s_{j}}\binom{s_{j}}{k}(-1)^{(n+j+1) k} \alpha^{(n+j) s_{j}-2(n+j) k}
$$

Thus

$$
\frac{F_{n+j}^{s_{j}}}{\alpha^{(n+t) s_{t}}}=\left(\frac{1}{\sqrt{5}}\right)^{s_{j}} \cdot \sum_{k=0}^{s_{j}}\binom{s_{j}}{k}(-1)^{(n+j+1) k} \alpha^{\left(s_{j}-s_{t}\right) n+j s_{j}-t s_{t}-2(n+j) k} .
$$

Since $s_{t}>s_{j}$, for all $j \neq t$, we conclude that

$$
\lim _{n \rightarrow \infty} \frac{F_{n+j}^{s_{j}}}{\alpha^{(n+t) s_{t}}}=\left\{\begin{array}{rll}
0, & \text { if } j \neq t \\
(\sqrt{5})^{-s_{t}}, & \text { if } j=t
\end{array}\right.
$$

Suppose that Theorem 2 is false. Then, there exists a sequence $\left(t_{n}\right)_{n} \subseteq \mathbb{N}$ such that

$$
\begin{equation*}
a_{1} F_{n+1}^{s_{1}}+a_{2} F_{n+2}^{s_{2}}+\cdots+a_{\ell} F_{n+\ell}^{s_{\ell}}=F_{t_{n}} \tag{13}
\end{equation*}
$$

for infinitely many positive integers n. Thus,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{F_{t_{n}}}{\alpha^{(n+t) s_{t}}}=\limsup _{n \rightarrow \infty} \sum_{j=0}^{\ell} \frac{a_{j} F_{n+j}^{s_{j}}}{\alpha^{(n+t) s_{t}}}=a_{t}\left(\frac{1}{\sqrt{5}}\right)^{s_{t}} . \tag{14}
\end{equation*}
$$

On the other hand, a straightforward computation gives

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{F_{t_{n}}}{\alpha^{(n+t) s_{t}}}=\frac{1}{\sqrt{5}} \cdot \lim _{n \rightarrow \infty} \alpha^{t_{n}-(n+t) s_{t}} \tag{15}
\end{equation*}
$$

Since $|\alpha|>1$, combining (14) and (15), we get the identity

$$
\frac{\alpha^{\nu}}{\sqrt{5}}=a_{t}\left(\frac{1}{\sqrt{5}}\right)^{s_{t}}
$$

where $\nu=\lim _{n \rightarrow \infty}\left(t_{n}-(n+t) s_{t}\right)$. Thus $\alpha^{2 \nu} \in \mathbb{Q}$ and then $\nu=0$. Therefore the above identity becomes

$$
\begin{equation*}
(\sqrt{5})^{s_{t}-1}=a_{t} \tag{16}
\end{equation*}
$$

which is impossible for an even s_{t} (indeed, its left-hand side is irrational). Therefore, s_{t} is odd and a_{t} is a non-negative power of 5 . By hypothesis, one concludes that $s_{t}=1$. However, with $k \geq 2$, this leads to an absurdity as

$$
1 \leq \min \left\{s_{1}, s_{2}\right\}<s_{t}=1
$$

and completes the proof of Theorem 2.

Acknowledgement

The authors are grateful to the anonymous referee for providing useful comments to improve the manuscript.

References

References

[1] D. Kalman, R. Mena, The Fibonacci numbers exposed, Math. Mag. 76 (2003), no. 3, 167-181.
[2] F. Luca, R. Oyono, An exponential Diophantine equation related to powers of two consecutive Fibonacci numbers. Proc. Japan Acad. Ser. A, 87 (2011) p. 45-50.
[3] D. Marques, A. Togbé, On the sum of powers of two consecutive Fibonacci numbers. Proc. Japan Acad. Ser. A, 86 (2010) p. 174-176.
[4] E. M. Matveev, An explict lower bound for a homogeneous rational linear form in logarithms of algebraic numbers, II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), 125-180. English transl. in Izv. Math. 64 (2000), 1217-1269.
[5] R. S. Melham, Some analogs of the identity $F_{n}^{2}+F_{n+1}^{2}=F_{2 n+1}$. Fi bonacci Quart. 37 (1999), no. 4, 305-311.
[6] R. S. Melham, On certain combinations of higher powers of Fibonacci numbers, Fibonacci Quart. 48 (2010), no. 3, 256-259.
[7] R. S. Melham, More on combinations of higher powers of Fibonacci numbers, Fibonacci Quart. 48 (2010), no. 4, 307-311.
[8] A. S. Posamentier, I. Lehmann, The (fabulous) Fibonacci numbers, Prometheus Books, Amherst, NY, 2007.
[9] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge Tracts in Mathematics 87, Cambridge University Press, Cambridge, 1986.

[^0]: *Corresponding author
 Email addresses: apchaves@mat.unb.br (Ana Paula Chaves), diego@mat.unb.br (Diego Marques), atogbe@pnc.edu (Alain Togbé)
 ${ }^{1}$ Scholarship holder of Capes-Brazil
 ${ }^{2}$ Supported by FEMAT and CNPq-Brazil
 ${ }^{3}$ Supported in part by Purdue University North Central

