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Abstract

Let (Fn)n≥0 be the Fibonacci sequence given by Fn+2 = Fn+1 +Fn, for n ≥ 0,
where F0 = 0 and F1 = 1. There are several interesting identities involving
this sequence such as F 2

n+F 2
n+1 = F2n+1, for all n ≥ 0. In a very recent paper,

Marques and Togbé proved that if F s
n + F s

n+1 is a Fibonacci number for all
sufficiently large n, then s = 1 or 2. In this paper, we will prove, in particular,
that if (Gm)m is a linear recurrence sequence (under weak assumptions) and
Gs
n + · · · + Gs

n+k ∈ (Gm)m, for infinitely many positive integers n, then s is
bounded by an effectively computable constant depending only on k and the
parameters of Gm.
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1. Introduction

A sequence (Gn)n≥0 is a linear recurrence sequence with coefficients c0,
c1,...,ck−1, with c0 6= 0, if

Gn+k = ck−1Gn+k−1 + · · ·+ c1Gn+1 + c0Gn, (1)
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for all positive integer n. A recurrence sequence is therefore completely deter-
mined by the initial values G0, ..., Gk−1, and by the coefficients c0, c1, ..., ck−1.
The integer k is called the order of the linear recurrence. The characteristic
polynomial of the sequence (Gn)n≥0 is given by

G(x) = xk − ck−1x
k−1 − · · · − c1x− c0.

It is well-known that for all n

Gn = g1(n)rn1 + · · ·+ g`(n)rn` , (2)

where rj is a root of G(x) and gj(x) is a polynomial over a certain number
field, for j = 1, ..., `. In this paper, we consider only integer recurrence
sequences, i.e., recurrence sequences whose coefficients and initial values are
integers. Hence, gj(n) is an algebraic number, for all j = 1, ..., `, and n ∈ Z.

A general Lucas sequence (Cn)n≥0 given by Cn+2 = aCn+1 + bCn, for
n ≥ 0, where the values a, b, C0 and C1 are previously fixed, is an example
of a linear recurrence of order 2 (also called binary). For instance, if C0 = 0
and C1 = a = b = 1, then (Cn)n≥0 = (Fn)n≥0 is the well-known Fibonacci
sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

The Fibonacci numbers are known for their amazing properties (see [8, pp.
53-56] and [1]). For example, we have

F 2
n + F 2

n+1 = F2n+1, for all n ≥ 0. (3)

Recently, Melham [5, 6, 7] have published a series of papers presenting
identities that (according to him) can be regarded as higher order analogues
of the above equality. Note that, in particular, the naive identity (3) (which
can be easily proved by mathematical induction) tells us that the sum of the
squares of two consecutive Fibonacci numbers is still a Fibonacci number.
In a very recent paper, Marques and Togbé [3] searched for similar identities
in higher powers, see [2] for a generalization. They proved that if F s

n + F s
n+1

is a Fibonacci number for all sufficiently large n, then s = 1 or 2. Several
related problems arise, such as:

- What happens if the Fibonacci sequence is replaced by another linear
recurrence sequence (e.g., Lucas or Tribonacci sequences)?

- What is about the sum of many powers of Fibonacci numbers?
The aim of this paper is to work on these kind of problems. More precisely,
our main result is the following.



On the sum of powers of terms of a linear recurrence sequence 3

Theorem 1. Let (Gn)n be an integer linear recurrence sequence such that
its characteristic polynomial has a simple positive root being the unique zero
outside the unit circle. Let s, k, and b be positive integer numbers and εj ∈
{0, 1}, with 1 ≤ j ≤ k − 1. Then, there exists an effectively computable
constant C such that if

Gs
n + ε1G

s
n+1 + · · ·+ εk−1G

s
n+k−1 +Gs

n+k

belongs to the sequence (b ·Gn)n, for infinitely many positive integers n, then
s < C. The constant C depends only on k, b and the parameters of Gn.

Of course, there are also identities involving distinct powers of Fibonacci
numbers such as

5F 3
2n+2 + 3F2n+1 + 3F2n = F6(n+1), for all n ≥ 1.

As an application of our method, we will prove that there is not a similar
identity under some weak hypotheses. More precisely, we have

Theorem 2. Let `, s1, ..., s`, a1, ..., a` be integers with ` > 1 and sj ≥ 1.
Suppose that there exists 1 ≤ t ≤ ` such that at 6= 0 and st > sj, for all
j 6= t. If either st is even or at is not a positive power of 5, then the sum

a1F
s1
n+1 + a2F

s2
n+2 + · · ·+ a`F

s`
n+` (4)

does not belong to the Fibonacci sequence for all sufficiently large n.

We organize this paper as follows. In Section 2, we will recall some useful
properties such as a result of Matveev on linear forms in three logarithms,
that we will use to prove Theorem 1. The third section is devoted to the
proof of Theorem 1. In the last section, we combine our method with the
useful fact that every non-zero integer power of α = (1 +

√
5)/2 is irrational

in order to prove Theorem 2.

2. Auxiliary results

In this section, we recall some results that will be very useful for the proof
of the above theorems. Let G(x) be the characteristic polynomial of a linear
recurrence Gn. One can factor G(x) over the set of complex numbers as

G(x) = (x− r1)m1(x− r2)m2 · · · (x− r`)m` ,
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where r1, ..., r` are distinct non-zero complex numbers (called the roots of the
recurrence) and m1, ...,m` are positive integers. A root rj of the recurrence is
called a dominant root if |rj| > |ri|, for all j 6= i ∈ {1, ..., `}. The correspond-
ing polynomial gj(n) is named the dominant polynomial of the recurrence. A
fundamental result in the theory of recurrence sequences asserts that there
exist uniquely determined non-zero polynomials g1, ..., g` ∈ Q({rj}`j=1)[x],
with deg gj ≤ mj − 1, for j = 1, ..., `, such that

Gn = g1(n)rn1 + · · ·+ g`(n)rn` , for all n. (5)

For more details, see [9, Theorem C.1].
In the case of the Fibonacci sequence, the above formula is known as

Binet’s formula:

Fn =
αn − βn

α− β
,

where α = (1 +
√

5)/2 (the golden number) and β = (1 −
√

5)/2 = −1/α.
Equation (5) and some tricks will allow us to obtain linear forms in three
logarithms and then determine lower bounds à la Baker for these linear forms.
From the main result of Matveev [4], we deduce the following lemma.

Lemma 1. Let α1, α2, α3 be real algebraic numbers and let b1, b2, b3 be non-
zero integer rational numbers. Define

Λ = b1 logα1 + b2 logα2 + b3 logα3.

Let D be the degree of the number field Q(α1, α2, α3) over Q and let A1, A2, A3

be positive real numbers which satisfy

Aj ≥ max{Dh(αj), | logαj|, 0.16}, for j = 1, 2, 3.

Assume that B′ ≥ max{1,max{|bj|Aj/A1; 1 ≤ j ≤ 3}}. Define also

C1 = 6750000 · e4(20.2 + log(35.5D2 log(eD))).

If Λ 6= 0, then

− log |Λ| ≤ C1D
2A1A2A3 log(1.5eDB′ log(eD)).
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As usual, in the previous statement, the logarithmic height of an n-degree
algebraic number α is defined as

h(α) =
1

n
(log |a|+

n∑
j=1

log max{1, |α(j)|}),

where a is the leading coefficient of the minimal polynomial of α (over Z)
and (α(j))1≤j≤n are the conjugates of α.

The next lemma plays an important role in the proof of Theorem 1, since
it will allow us to prove that a certain linear form is a real number.

Lemma 2. Let (Gn)n be a linear recurrence having infinitely many positive
terms and such that its characteristic polynomial has a simple positive dom-
inant root. Then the dominant polynomial of (Gn)n is a positive constant.

Proof We know that

Gn = g1(n)rn1 + · · ·+ g`(n)rn` ,

where each rj is a root of characteristic polynomial of Gn, with multiplicity
mj, and each gj(n) is a non-zero polynomial with degree ≤ mj − 1. Suppose
that r1 is the dominant root, since it is simple, we have immediately m1 = 1
and then the degree of dominant polynomial is at most m1 − 1 = 0, so it is
a constant, say g1. Now, dividing Gn by rn1 , we get

Gn

rn1
= g1 +

∑̀
j=2

gj(n)

κnj
, (6)

where κj = r1/rj. Since |κj| > 1, we have

lim
n→∞

gj(n)

κnj
= 0, for all 2 ≤ j ≤ `,

and so

0 ≤ lim sup
n→∞

Gn

rn1
= g1.

Therefore, g1 > 0 as g1 6= 0.

�
Now, we are ready to deal with the proofs of our results.
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3. The proof of Theorem 1

First, note that in the statement of Theorem 1, we have

Gs
n + ε1G

s
n+1 + · · ·+ εk−1G

s
n+k−1 +Gs

n+k = bGtn , for all n ∈ N , (7)

where {tn : n ≥ 0} and N are infinite subsets of positive integers. Suppose
that there is a positive integer n0, such that Gn ≤ 0, for all n > n0. If s is
even, then the left-hand side of (7) is a positive sequence, but the right-hand
side is non-positive when tn > n0, which is a contradiction. In the case of an
odd s, we define Hn = −Gn, for all n. Thus (7) becomes

Hs
n + ε1H

s
n+1 + · · ·+ εk−1H

s
n+k−1 +Hs

n+k = bHtn , for all n ∈ N ,

which is an equivalent identity, but with Hn > 0, for all n > n0. Summa-
rizing, we may assume, without loss of generality, that (Gn)n has infinitely
many positive terms.

According to equation (2), we have

Gn = g1(n)rn1 + · · ·+ g`(n)rn` , for n ≥ 1.

Assume that r1 is the simple dominant root. So r1 > 0 and by Lemma 2,
g1(n) = g1 > 0. Thus, for any 0 ≤ t ≤ k, the multinomial theorem yields

Gs
n+t =

∑
α∈Is

s!

α1! · · ·α`!
∏̀
j=1

gj(n+ t)αjr
α1(n+t)
1 · · · rα`(n+t)

` ,

where Is = {α = (α1, ..., α`) ∈ Z` : αi ≥ 0 and
∑`

i=1 αi = s}. A straightfor-
ward computation shows that

Gs
n+t

rsn1
= gs1r

ts
1 +

∑
α∈Is\{se1}

s!

α1! · · ·α`!
∏̀
j=1

gj(n+ t)αj
rα1t

1 r
α2(n+t)
2 · · · rα`(n+t)

`

r
(s−α1)n
1

,

where e1 = (1, 0, ..., 0). Since s− α1 = α2 + · · · + α` > 0 and g1(n + t) = g1

(by Lemma 2), we can write

Gs
n+t

rsn1
= gs1r

ts
1 +

∑
α∈Is\{se1}

s!

α1! · · ·α`!
∏̀
j=2

(
gj(n+ t)

rn1

)αj

gα1
1 rα1t

1 r
α2(n+t)
2 · · · rα`(n+t)

` .
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As |rj| < 1 and limn→∞ gj(n + t)/rn1 = 0, each term in the previous
summation tends to zero as n→∞, because αj > 0, for some 2 ≤ j ≤ `. So,

lim
n→∞

Gs
n+t

rsn1
= gs1r

ts
1 . (8)

On the other hand, let N be an infinite set of positive integers and let
(tn)n ⊆ N be a sequence such that

∑k
j=0 εjG

s
n+j = bGtn , for all n ∈ N , where

we set ε0 = εk = 1. By the formula in (6), we have that Gm = O(rm1 ), for
all m (where as usual, O denotes the ‘big-oh’ Landal symbol). Thus the
equality

∑k
j=0 εjG

s
n+j = bGtn yields O(rns1 ) = O(rtn1 ) and so tn = O(n). Also,

Equation (8) implies that

gs1(1 + ε1r
s
1 + · · ·+ εk−1r

(k−1)s
1 + rks1 ) = lim

n→∞
n∈N

bGtn

rns1

. (9)

However,
Gtn

rns1

= g1r
tn−ns
1 + g2(tn)

rtn2
rns1

+ · · ·+ g`(tn)
rtn`
rns1

.

Now, we use that any exponential function of n dominates any polynomial
function of n, together with the fact that tn = O(n) and |rj| < 1, for j =
2, ..., `, to conclude that

lim
n→∞
n∈N

gj(tn)

rns1

· rtnj = 0, for j = 2, ..., `.

So equation (9) becomes

gs−1
1 (1 + ε1r

s
1 + · · ·+ εk−1r

(k−1)s
1 + rks1 ) = b lim

n→∞
n∈N

rtn−ns1 .

Since tn − ns is an integer and r1 > 1, then tn − ns must be constant with
respect to n, say t, for all n ∈ N sufficiently large. Hence equation (9) yields

gs−1
1 (1 + ε1r

s
1 + · · ·+ εk−1r

(k−1)s
1 + rks1 ) = brt1. (10)

Observe that equation (10) can be rewritten into the form

eΛ − 1 = r−ks1 + ε1r
−(k−1)s
1 + · · ·+ εk−1r

−s
1 > 0,

where
Λ = (s− 1) log(1/g1)− (ks− t) log r1 + log b.
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As g1 and r1 are positive, then Λ ∈ R and the above inequality implies that
Λ > 0. Thus

Λ < eΛ − 1 = r−ks1 + ε1r
−(k−1)s
1 + · · ·+ εk−1r

−s
1 < kr−s1 .

Therefore, we get
log Λ < log k − s log r1. (11)

In order to apply Lemma 1, we take

α1 = 1/g1, α2 = r1, α3 = b, b1 = s− 1, b2 = −(ks− t), b3 = 1.

However, b1, b2 and b3 must be non-zero. Since, we may suppose s > 1, the
only point that requires extra care is the verification of b2 6= 0. In fact, if
b2 = 0, i.e., ks = t, then equation (10) gives

gs−1
1 rks1 < gs−1

1 (1 + ε1r
s
1 + · · ·+ εk−1r

(k−1)s
1 + rks1 ) = brt1.

So, we get b > gs−1
1 and Theorem 1 is proved with the choice of C =

log b/ log g1 + 1. Therefore, we assume that ks 6= t.
Note that D = [Q(g1, r1) : Q] ≤ `!, since g1 ∈ Q({rj}1≤j≤`). Now, set

h(α1) = h(1/g1) = h1. Since r1 is a root of G(x), the minimal polynomial of
r1 is a divisor of G(x), we have

h(α2) ≤ (log r1)/`

and finally h(α3) = log b. Then, we take

A1 = `!h1 + | log g1|+ 0.16, A2 = (`− 1)! log r1 + 0.16, A3 = `! log b+ 0.16.

Also, we get

B′ ≥ max{1,max{|bj|Aj/A1; 1 ≤ j ≤ 3}}

= max

{
s− 1, |ks− t| ·

(
(`− 1)! log r1 + 0.16

`!h1 + | log g1|+ 0.16

)}
,

for s sufficiently large. Thus, we obtain

− log |Λ| < 3.7 · 104 · (20.2 + log(35.5`!2 log(e`!)))`!2(`!h1 + log g1 + 0.16)×
((`− 1)! log r1 + 0.16)(`! log b+ 0.16) · log(1.5e`!B′ log(e`!)).

(12)

Combining estimates (11) and (12), we get a constant C > 0, which depends
only on b, k and the parameters of Gn, such that s < C.

�
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4. The proof of Theorem 2

For 1 ≤ j ≤ `, the Binet’s formula and the binomial formula imply

F
sj
n+j =

(
1√
5

)sj
·
sj∑
k=0

(
sj
k

)
(−1)(n+j+1)kα(n+j)sj−2(n+j)k.

Thus

F
sj
n+j

α(n+t)st
=

(
1√
5

)sj
·
sj∑
k=0

(
sj
k

)
(−1)(n+j+1)kα(sj−st)n+jsj−tst−2(n+j)k.

Since st > sj, for all j 6= t, we conclude that

lim
n→∞

F
sj
n+j

α(n+t)st
=

{
0, if j 6= t

(
√

5)−st , if j = t

Suppose that Theorem 2 is false. Then, there exists a sequence (tn)n ⊆ N
such that

a1F
s1
n+1 + a2F

s2
n+2 + · · ·+ a`F

s`
n+` = Ftn , (13)

for infinitely many positive integers n. Thus,

lim sup
n→∞

Ftn
α(n+t)st

= lim sup
n→∞

∑̀
j=0

ajF
sj
n+j

α(n+t)st
= at

(
1√
5

)st
. (14)

On the other hand, a straightforward computation gives

lim
n→∞

Ftn
α(n+t)st

=
1√
5
· lim
n→∞

αtn−(n+t)st . (15)

Since |α| > 1, combining (14) and (15), we get the identity

αν√
5

= at

(
1√
5

)st
,

where ν = limn→∞(tn − (n+ t)st). Thus α2ν ∈ Q and then ν = 0. Therefore
the above identity becomes

(
√

5)st−1 = at, (16)
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which is impossible for an even st (indeed, its left-hand side is irrational).
Therefore, st is odd and at is a non-negative power of 5. By hypothesis, one
concludes that st = 1. However, with k ≥ 2, this leads to an absurdity as

1 ≤ min{s1, s2} < st = 1

and completes the proof of Theorem 2.

�
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