
A DIOPHANTINE EQUATION RELATED TO THE SUM OF POWERS OF

TWO CONSECUTIVE GENERALIZED FIBONACCI NUMBERS

ANA PAULA CHAVES AND DIEGO MARQUES

Abstract. Let (Fn)n≥0 be the Fibonacci sequence given by Fm+2 = Fm+1 +Fm, for m ≥ 0,
where F0 = 0 and F1 = 1. There are several interesting identities involving this sequence such
as F 2

m +F 2
m+1 = F2m+1, for all m ≥ 0. In 2011, Luca and Oyono [8] proved that if F s

m +F s
m+1

is a Fibonacci number, with m ≥ 2, then s = 1 or 2. One of the most known generalization

of the Fibonacci sequence, is the k-generalized Fibonacci sequence (F
(k)
n )n which is defined

by the initial values 0, 0, . . . , 0, 1 (k terms) and such that each term afterwards is the sum of
the k preceding terms. In this paper, we generalize Luca and Oyono’s method to prove that
the Diophantine equation

(F (k)
m )s + (F

(k)
m+1)s = F (k)

n

has no solution in positive integers n,m, k and s, if 3 ≤ k ≤ min{m, log s}.

1. Introduction

Let (Fn)n≥0 be the Fibonacci sequence given by Fn+2 = Fn+1 +Fn, for n ≥ 0, where F0 = 0
and F1 = 1. A few terms of this sequence are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . . .

The Fibonacci numbers are well-known for possessing wonderful and amazing properties
(consult [7] together with their very extensive annotated bibliography for additional references
and history).

Among the several pretty algebraic identities involving Fibonacci numbers, we are interested
in the following one

F 2
n + F 2

n+1 = F2n+1, for all n ≥ 0. (1.1)

In particular, this naive identity (which can be proved easily by induction) tell us that the sum
of the square of two consecutive Fibonacci numbers is still a Fibonacci number. In order to
check if the sum of higher powers of two consecutive Fibonacci numbers could also belong to
this sequence, Marques and Togbé [9] showed that, for a fixed s, if F sm + F sm+1 is a Fibonacci
number for infinitely many m, then s = 1 or 2. In 2011, Luca and Oyono [8] solved this
problem completely, showing that the Diophantine equation

F sm + F sm+1 = Fn (1.2)

has no solutions (m,n, s) with m ≥ 2 and s ≥ 3.

Let k ≥ 2 and denote F (k) := (F
(k)
n )n≥−(k−2), the k-generalized Fibonacci sequence whose

terms satisfy the recurrence relation

F
(k)
n+k = F

(k)
n+k−1 + F

(k)
n+k−2 + · · ·+ F (k)

n , (1.3)

with initial conditions 0, 0, . . . , 0, 1 (k terms) and such that the first nonzero term is F
(k)
1 = 1.

The above sequence is one among the several generalizations of Fibonacci numbers. Such
a sequence is also called k-step Fibonacci sequence, the Fibonacci k-sequence, or k-bonacci
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sequence. Clearly for k = 2, we obtain the well-known Fibonacci numbers F
(2)
n = Fn, for

k = 3, the Tribonacci numbers F
(3)
n = Tn and for k = 4, the Tetranacci numbers F

(3)
n = Qn.

The aim of this paper is to study a generalization of the equation (1.2) in the k-generalized
Fibonacci context. More precisely, we have the following result

Theorem 1.1. The Diophantine equation

(F (k)
m )s + (F

(k)
m+1)s = F (k)

n (1.4)

has no solution in positive integers m,n, k and s, with 3 ≤ k ≤ {m, log s}.

We recall that for −(k−2) ≤ m ≤ 1 there are trivial solutions to the Eq. (1.4) for all k ≥ 2.
Our method follows roughly the following steps: First, we use Matveev’s result [11] on

linear forms in logarithms to obtain an upper bound for s in terms of m. When m is small,
say m ≤ 1394, we use Dujella and Pethö’s result [12] to decrease the range of possible values
and then let the computer check the non existence of solutions in this case. To the case where
m ≥ 1395, we use again linear forms in logarithms to obtain an upper bound for s, now in
terms of k, which, combined with the hypothesis k < log s, gives us an absolute upper bound
for s. In the final step, we use continued fractions to lower the bounds and then let the
computer cover the range of possible values, showing that there are no solutions also in this
case, which completes the proof.

2. Auxiliary results

We know that the characteristic polynomial of (F
(k)
n )n is

ψk(x) := xk − xk−1 − · · · − x− 1

and it is irreducible over Q[x] with just one zero outside the unit circle. That single zero is
located between 2(1 − 2−k) and 2 (as can be seen in [10]). Also, it was proved in [1, Lemma
1] that

αn−2 ≤ F (k)
n ≤ αn−1, for all n ≥ 1, (2.1)

where α is the dominant root of ψk(x).
Recall that for k = 2, one has the useful Binet’s formula

Fn =
αn − βn√

5
,

where α = (1 +
√

5)/2 = −β−1. There are many closed formulas representing these k-
generalized Fibonacci numbers, as can be seen in [3, 4, 5, 6]. However, we are interested
in the simplified “Binet-like” formula due to G. Dresden [2, Theorem 1] :

F (k)
n =

k∑
i=1

αi − 1

2 + (k + 1)(αi − 2)
αn−1
i , (2.2)

for α = α1, . . . , αk being the roots of ψk(x). Also, the contribution of the roots inside the unit
circle in formula (2.2) is almost trivial. More precisely, it was proved in [2] that

|En(k)| < 1

2
, (2.3)

where En(k) := F
(k)
n − g(α, k)αn−1 and g(x, y) := (x− 1)/(2 + (y + 1)(x− 2)).

We shall use a few times a result due to Matveev [11], which states the following
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Theorem 2.1 (Matveev). Let α1, . . . , αt real algebraic numbers, b1, . . . , bt nonzero integers

and Λ := αb11 · · ·α
bt
t − 1. Let D = [Q(α1, . . . , αt) : Q] and A1, . . . , At positive real numbers

satisfying

Aj ≥ max{Dh(αj), | logαj |, 0.16}, for j = 1, . . . , t.

Let B ≥ max{|b1|, . . . , |bt|}. Also define

Ct,D := 1.4× 30t+3 × t4.5 ×D2(1 + logD).

If Λ 6= 0, then

|Λ| > exp(−Ct,D(1 + logB)A1 · · ·At) .

Where for an algebraic number η we write h(η) for its logarithmic (or Weil’s) height whose
formula is

h(η) =
1

d

(
log |a0|+

d∑
i=1

log(max{|η(i)|, 1})

)
,

with d being the degree of η over Q, and

f(X) := a0

d∏
i=1

(X − η(i)) ∈ Z[X]

the minimal primitive polynomial over the integers having positive leading coefficient and
η = η(1).

Another result which will play an important role in our proof is due to Dujella and Pethö
[12]

Lemma 2.2. Let M be a positive integer, let p/q be a convergent of the continued fraction of
the irrational γ such that q > 6M , and let µ be some real number. Let ε :=‖ µq ‖ −M ‖ γq ‖.
If ε > 0, then there is no solution to the inequality

0 < nγ − s+ µ < AB−n

in positive integers n and s with

log(Aq/ε)

logB
≤ n ≤M .

The next theorem about continued fractions is due to Legendre, and will help us to finish
the demonstration.

Theorem 2.3. Let ξ be a real number. If a rational number a/b is such that∣∣∣ξ − a

b

∣∣∣ < 1

2b2
,

then it is a convergent of ξ.

Now, we are ready to deal with the proof of Theorem 1.1.



4 ANA PAULA CHAVES AND DIEGO MARQUES

3. Proof of Theorem 1.1

First, observe that by using the estimates in (2.1), we obtain

αn−1 > F (k)
n = (F (k)

m )s + (F
(k)
m+1)s > α(m−2)s + α(m−1)s

= α(m−2)s(1 + αs) > α(m−1)s,

and

αn−2 < F (k)
n = (F (k)

m )s + (F
(k)
m+1)s < α(m−1)s + αms

= α(m−1)s(1 + αs)

< αms+1,

where we used that 1 +αs < αs+1 for all k ≥ 3, which is an immediate consequence of αs(α−
1) > (7/4)3 × (7/4 − 1) = 1029/256 > 1 . Now, the estimate αn−2 < F

(k)
n < αn−1 together

with the previous estimates yield (m− 1)s+ 1 < n < ms+ 3. In conclusion, we have proved
that if (m,n, k, s) is a solution of Eq. (1.4), then n ∈ {(m− 1)s+ 2, (m− 1)s+ 1, . . . ,ms+ 2}.

3.1. An inequality for s in terms of m. Using formula (2.2), we rewrite (1.4) as

(F
(k)
m+1)s − gαn−1 = (F (k)

m )s − En(k) . (3.1)

Since |En(k)| < 1/2, we have that (F
(k)
m+1)s − gαn−1 ∈ [(F

(k)
m )s − 1/2, (F

(k)
m )s + 1/2], which

is positive. Now applying the absolute value and the triangle inequality in (3.1), we obtain

|gαn−1 − (F
(k)
m+1)s| < 1

2
+ (F (k)

m )s < 2(F (k)
m )s .

Dividing by (F
(k)
m+1)s to get ∣∣∣∣∣ gαn−1

(F
(k)
m+1)s

− 1

∣∣∣∣∣ < 2

(
F

(k)
m

F
(k)
m+1

)s
. (3.2)

In order to give an upper bound to the right side of (3.2), we use that

F
(k)
m+1 = F (k)

m + F
(k)
m−1 + · · ·+ F

(k)
m−k+1 = 2F (k)

m − F (k)
m−k .

Thus, for k ≥ 3

F
(k)
m+1

F
(k)
m

= 2−
F

(k)
m−k

F
(k)
m

≥ 2− 1

k
> 1.65 . (3.3)

Now, using estimate (3.3) in (3.2), we get our first key inequality:∣∣∣∣∣ gαn−1

(F
(k)
m+1)s

− 1

∣∣∣∣∣ < 2

1.65s
. (3.4)

In a first application of Matveev’s result, take t := 3, γ1 := F
(k)
m+1 , γ2 := α , γ3 := g, e

b1 := −s , b2 := n− 1 , b3 := 1. Now, consider

Λ1 := gαn−1(F
(k)
m+1)−s − 1 ,
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which is positive (an immediate consequence of what we observed right after (3.1)). The
algebraic number field containing γ1, γ2 and γ3 is K := Q(α), whose degree is D := [K : Q] = k.
For the value of B, note that

max{|b1|, |b2|, |b3|} = max{s, n− 1, 1} = max{s, n− 1} ,

but since s+ 2 ≤ (m− 1)s+ 2 ≤ n, then s < s+ 1 ≤ n− 1, and we can take B := n− 1. Now
we need to estimate the logarithmic heights h(γ1), h(γ2) and h(γ3).

Since h(γ1) = logF
(k)
m+1 < m log 2, and max{Dh(γ1), | log γ1|, 0.16} < km log 2 , we can take

A1 := km log 2. Similarly, since h(γ2) = h(α) = logα/k < log 2/k , where we used the fact
that α is the only root of ψk(x) outside the unit circle, and max{Dh(γ2), | log γ2|, 0.16} < log 2 ,
we can take A2 := log 2.

For h(γ3), we have

h(γ3) = h(g) =
1

d

(
log |a0|+

k∑
i=1

log(max{|gi|, 1})

)
.

First, note that applying the conjugation (over K) on g = g(α, k), we obtain gi = g(αi, k) for
all 1 ≤ i ≤ k , and since [Q(α) : Q(g)] = 1, we have d = k. Put

G(x) =

k∏
i=1

(
x− αi − 1

2 + (αi − 2)(k + 1)

)
∈ Q[x] .

The leading coefficient a0 of the minimal polynomial of g over the integers divides
∏k
i=1(2 +

(αi − 2)(k + 1)). But,∣∣∣∣∣
k∏
i=1

(2 + (αi − 2)(k + 1))

∣∣∣∣∣ = (k + 1)k

∣∣∣∣∣
k∏
i=1

(
2− 2

k + 1
− αi

)∣∣∣∣∣ = (k + 1)k
∣∣∣∣ψk (2− 2

k + 1

)∣∣∣∣ ,
Since

|ψk(y)| < max{yk, yk−1 + · · ·+ y + 1} < 2k ,

for all 0 < y < 2, we get the following upper bound for a0:

a0 ≤ (k + 1)k
∣∣∣∣ψk (2− 2

k + 1

)∣∣∣∣ < 2k(k + 1)k .

For all k ≥ 3, we have 2(k+ 1) < k3 and then log |a0| < k(log(k+ 1) + log 2) < 3k log k. Now,
we need to estimate |gi|. If 2 ≤ i ≤ k, we have |αi| < 1, which gives us

|2 + (k + 1)(αi − 2)| ≥ (k + 1)|2− αi| − 2 > k − 1 ≥ 2 .

Hence, ∣∣∣∣ αi − 1

2 + (k + 1)(αi − 2)

∣∣∣∣ ≤ |αi|+ 1

2
< 1 ⇒ |gi| < 1 .

In the case of the dominant root, α, is easy to see that |g| < 1, as follows

g =
α− 1

2 + (k + 1)(α− 2)
<

1

2− k + 1

2k−1

≤ 1 ,
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where we used in the above inequality that k+1 ≤ 2k−1 for k ≥ 3. Therefore, max{|gi|, 1} = 1,
and we finally obtain

h(γ3) =
1

k

(
log |a0|+

k∑
i=1

log (max{|gi|, 1})

)
<

1

k
(3k log k) < 3 log k .

So we can take A3 := 3k log k. Now, applying Theorem (2.1) to get a lower bound for |Λ1|,

|Λ1| > exp(−1.4× 303+3 × 34.5 × k2 × (1 + log k)(1 + log(n− 1))

×(3k log k)(log 2)(km log 2))

⇒ |Λ1| > exp(−2.064× 1011 × k4m log k(2 log k)(1 + log(n− 1))) .

Using the previous estimates for n in terms of s and m, is easy to see that n ≥ 8, where the
inequality 1 + log(n+ 1) < 2 log(n− 1) holds, and n− 1 ≤ ms+ 1. Then,

|Λ1| > exp(−8.256× 1011 ×mk4(log k)2 log(ms+ 1)) .

Comparing the above inequality with (3.4), we get

2

1.65s
> exp(−8.256× 1011 ×mk4(log k)2 log(ms+ 1)) .

Now, taking logarithms in the previous inequality, we have

log 2− s log 1.65 > −8.256× 1011 ×mk4(log k)2 log(ms+ 1) ,

which leads to

s < 16.7× 1011 ×mk4(log k)2 log(ms+ 1) .

Since m, s ≥ 3, then logm, log s ≥ 1 and so log(ms+ 1) < log(ms)2 < 4 logm log s. Thus, we
obtain

s

log s
< 66.8× 1011 ×m5(logm)3 , (3.5)

where we also used the hypothesis k ≤ m .
Now, we are going to use the following argument showed by Luca and Oyono [8], for x > e,

x

log x
< A ⇒ x < 2A logA , (3.6)

whenever A ≥ 3. Thus, taking A := 66.8× 1011 ×m5(logm)3, inequality (3.5) yields

s < 2× (66.8× 1011 ×m5(logm)3) log(66.8× 1011 ×m5(logm)3)

< 133.6× 1011 ×m5(logm)3(29.54 + 5 logm+ 3 log logm)

< 133.6× 1011 ×m5(logm)3(34.9 logm) ,

In the last chain of inequalities, we have used that log logm < logm and 29.54 + 8 logm <
34.9 logm holds for all m ≥ 3. Hence, we have the following result.

Lemma 3.1. If (m,n, k, s) is a nontrivial solution in positive integers of Eq. (1.4) with
3 ≤ k ≤ min{m, log s}, then

s < 4.7× 1014 ×m5(logm)4 . (3.7)
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3.2. The case of small m. Following our plan, we next consider the cases when m ∈ [3, 1394],
and after finding an upper bound for n, the next step is to reduce it and then let the computer
handle with the possible solutions. To do that, first observe that in this case

s < 4.7× 1014 × (1394)5(log 244)4 ⇒ s < 6.75× 1033 .

Thus, we obtain the following upper bounds for k and n:

n ≤ ms+ 2 ⇒ n < 1394× 6.75× 1033 + 2 ⇒ n < 9.41× 1036 ,

k ≤ log s ⇒ k ≤ log(6.75× 1033) ⇒ k ≤ 77 .

Also note that n < ms + 2, gives us s > (n − 2)/1394. Now, in order to use the reduction
method due to Dujella and Pethö [12], take

Γ1 := (n− 1) logα− log

(
1

g

)
− s logF

(k)
m+1 . (3.8)

Then Λ1 = eΓ1 − 1 > 0, since Λ1 > 0, and from (3.4) we have

0 < Γ1 < eΓ1 − 1 = Λ1 <
2

1.65s
.

Dividing both sides of the previous inequality by logF
(k)
m+1, and using that s > (n− 2)/1394,

we obtain

0 < n

(
logα

logF
(k)
m+1

)
− s−

(
log(α/g)

logF
(k)
m+1

)
< 2.01× (1.65)−

n
1394 .

With,

γm,k :=
logα

logF
(k)
m+1

, µm,k := − log(α/g)

logF
(k)
m+1

, A := 2.01 and B := (1.65)
1

1394 ,

the previous inequality yields

0 < nγm,k − s− µm,k < AB−n . (3.9)

Let us show that γm,k is an irrational number. Indeed, if γm,k ∈ Q, we have αq =
(
F

(k)
m+1

)p
for

some p, q ∈ Q, with q > 0. Conjugating this relation (over K), taking the product and then
the absolute value, we get ∣∣∣∣∣

k∏
i=1

αi

∣∣∣∣∣
q

=
(
F

(k)
m+1

)kp
6= 1 .

On the other hand, we already know that this module is equal to one, since α, α2, · · · , αk are the
roots of ψk(x), which contradicts the relation above. Thus, γm,k 6∈ Q. Take M := 9.41× 1036.
Let qt,m,k be the denominator of the t-th convergent to γm,k. To do the following calculation,
we have used the Mathematica 9 software on a OSX 10.8.4, 1.8 GHz Intel Core i5 with 4GB of
RAM. Calculating the smallest value of q700,m,k, for 4 ≤ m ≤ 1394 and 3 ≤ k ≤ min{m, 77},
we have that q700,m,k > 2.1 × 10425 > 6M , and for the same range, ε700,m,k > 1.8 · 10−189,
which means that ε700,m,k is always positive (this is not true for ε600,m,k). Hence, by Lemma
2.2, there are no integer solutions for (3.9) when⌊

max
3≤k≤77

3≤m≤1394

log(Aq700,m,k/ε700,m,k)

logB

⌋
≤ n ≤ 9.41× 1036
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⇒

⌊
log(2.01 · 2.1× 10425/1.8 · 10−189)

log((1.65)
1

1394 )

⌋
≤ n ≤ 9.41× 1036

⇒ 1515054 ≤ n ≤ 9.41× 1036 .

Therefore, we have n ≤ 1515053 and consequently s ≤ 757526, since s ≤ (n − 2)/(m − 1).
Also, using that k ≤ log s, we get k ≤ 13. A computer search with Mathematica revealed no
solutions to the equation (1.1) in the range 3 ≤ m ≤ 1394, 3 ≤ k ≤ 13, 21 ≤ s ≤ 757526 and
(m− 1)s+ 2 ≤ n ≤ ms+ 2. This finishes the case m ∈ [3, 1394].

3.3. Finding absolute upper bounds. From now on, we assume that m ≥ 1395. Set

Xm :=
|Em(k)|s
gαm−1

.

Lemma 3.1 gives us

Xm <
|Em(k)|4.7× 1011 ×m5(logm)4

gαm−1
<

1

α(m−1)/2
, (3.10)

where we used that

4.7× 1011 ×m5(logm)4 <

(
7

4

)m−1
2

< α
m−1

2 ,

holds for m ≥ 1395. In particular, Xm < α−697 < (7/4)−697 < 2.3× 10−30. Similarly,

Xm+1 =
|Em+1(k)|s
gαm+1

<
(1/2)4.7× 1011 ×m5(logm)4

(1/2)αm+1
<

1

α(m−1)/2
.

We now write

(F (k)
m )s = gsα(m−1)s

(
1 +

Em(k)

gαm−1

)s
and (F

(k)
m+1)s = gsαms

(
1 +

Em+1(k)

gαm

)s
. (3.11)

If Em(k) > 0, then

1 <

(
1 +

Em(k)

gαm−1

)s
=

(
1 +
|Em(k)|
gαm−1

)s
< e(s|Em(k)|/gαm−1) < 1 + 2Xm ,

because ex < 1 + 2x, for 0 < x < 1.25, while if Em(k) < 0, then

1 >

(
1 +

Em(k)

gαm−1

)s
=

(
1− |Em(k)|

gαm−1

)s
= exp

(
s log

(
1− |Em(k|

gαm−1

))
> 1− 2Xm ,

now because log(1 − x) > −2x, for 0 < x < 0.79 . The same inequalities are true if we

replace m by m + 1. Combining these two facts with (3.11), we can see how (F
(k)
m )s is well

approximated by gsα(m−1)s, as follows

(F (k)
m )s = gsα(m−1)s

(
1 + Em(k)

gαm−1

)s
< gsα(m−1)s(1 + 2Xm)

⇒ (F
(k)
m )s − gsα(m−1)s < 2Xmgsα(m−1)s , (3.12)

(F (k)
m )s = gsα(m−1)s

(
1 + Em(k)

gαm−1

)s
> gsα(m−1)s(1− 2Xm)

⇒ (F
(k)
m )s − gsα(m−1)s > −2Xmgsα(m−1)s , (3.13)



THE DIOPHANTINE EQUATION (F
(k)
n )s + (F

(k)
n+1)s = F

(k)
m 9

thus

|(F (k)
m )s − gsα(m−1)s| < 2Xmgsα(m−1)s and |(F (k)

m+1)s − gsαms| < 2Xm+1g
sαms . (3.14)

We now go back to (1.4) and rewrite it as

gαn−1 + En(k) = F (k)
n = (F (k)

m )s + (F
(k)
m+1)s = gsα(m−1)s + gsαms

+
(

(F (k)
m )s − gsα(m−1)s

)
+

(
(F

(k)
m+1)s − gsαms

)
,

which gives us

|gαn−1 − gsα(m−1)s(1 + αs)| ≤ |((F (k)
m )s − gsα(m−1)s)|

+|((F (k)
m+1)s − gsαms)|+ |En(k)|

< 2Xmgsα(m−1)s + 2Xm+1g
sαms +

1

2
.

Dividing both sides by gsαms,

|g1−sαn−(ms+1) − (1 + α−s)| < 1

2gsαms
+ 0.38Xm + 2Xm+1 (3.15)

where (3.15) holds since αs > (7/4)3 > 5.35, and then 2/αs < 2/5.35 < 0.38. Now, we need a

lower bound to 2gsαms in terms of α
m−1

2 :

2gsαms−
m−1

2 > 2

(
1

2

)s
×
(

7

4

)2s

×
(

7

4

)(m−2)s−m−1
2

> 2

(
49

32

)3

×
(

7

4

)607

> 3× 10147 > 103 ,

therefore (2gsαms)−1 < 0.001/α(m−1)/2. Using it in (3.15) jointly with (3.10), we obtain

|g1−sαn−(ms+1) − (1 + α−s)| < 0.001

α
m−1

2

+
0.38

α
m−1

2

+
2

α
m
2

<
2.39

α
m−1

2

, (3.16)

Hence, we conclude that

|g1−sαn−(ms+1) − 1| < 1

αs
+

2.39

α
m−1

2

<
3.39

αl
, (3.17)

where we put l := min{s, m−1
2 }. Having in mind to use Matveev’s result once more, we now

set

Λ2 := g1−sαn−(ms+1) − 1 , (3.18)

but before this, we must show that Λ2 6= 0. Indeed, if Λ2 = 0, then conjugating over Q(α)
and taking the product of all conjugates, we have(

k∏
i=1

|gi|

)s−1

=

∣∣∣∣∣
k∏
i=1

(gi)
s−1

∣∣∣∣∣ =

∣∣∣∣∣
k∏
i=1

αi

∣∣∣∣∣
n−(ms+1)

= 1 ,

but on the other hand, we saw that |gi| < 1 for all 1 ≤ i ≤ k which contradicts the above
identity. Thus, Λ2 6= 0.



10 ANA PAULA CHAVES AND DIEGO MARQUES

So, we take t = 2, λ1 := g, λ2 := α and c1 := 1−s, c2 := n−(ms+1). Again, K := Q(α) and
D := [K : Q] = k. Now, to choose the value of B ≥ max{|c1|, |c2|} = max{s−1, |n−(ms+1)|},
observe that

n ≥ (m− 1)s+ 2 ⇒ n− (ms+ 1) ≥ −(s− 1)

n ≤ ms+ 2 ⇒ n− (ms+ 1) ≤ s− 1 .

Hence |n− (ms+ 1)| < s− 1, and we can take B := s− 1. As in the previous application of
Theorem 2.1, we can take A1 := 3k log k and A2 := log 2. We thus get that

|Λ2| > exp(−1.4× 305 × 24.5 × k2(1 + log k)(1 + log(s− 1))

×(3k log k)(log 2))

> exp(−7.74× 108 × k3 log k(1 + log(s− 1))) .

Combining the last inequality with (3.17) we obtain

3.39

αl
> exp(−7.74× 108 × k3 log k(1 + log(s− 1)))

⇒ l <
log 3.39

logα
+

7.74

logα
× 108 × k3 log k(1 + log(s− 1))

⇒ l < 1.4× 109 × k3 log k(1 + log(s− 1)) . (3.19)

If l = s, then (3.19) becomes

s < 1.4× 109 × k3 log k(1 + log(s− 1)) ,

and using that k < log s,

s < 1.4× 109 × (log s)3 log log s(1 + log(s− 1)) ,

which is valid only for s ≤ 9.55× 1015.
If l = (m− 1)/2, we use Lemma 3.1 and (3.19) to get

m− 1

2
< 1.4× 109 × k3 log k(1 + log(4.7× 1014 ×m5(logm)4))

< 1.4× 109 × k3 log k(34.79 + 5 logm+ 4 log logm) ,

thus,
m

logm
< 3.7× 1010 × k3 log k , (3.20)

where we used that, for m ≤ 1395, the inequality log logm < 0.31 logm holds, giving 34.79 +
5 logm+ 4 log logm < 34.79 + 6.24 logm < 13 logm, and that m− 1 > m/1.004. Now, using
again (3.6), we gain an upper bound for m in terms of k:

m < 2(3.7× 1010 × k3 log k) log(3.7× 1010 × k3 log k)

< 1.93× 1012k3(log k)2 . (3.21)

Again, by Lemma 3.1, now combined with (3.21), we have an upper bound for s in terms of
k, which will give us, as in the previous case, an absolute upper bound for s:

s < 4.7× 1011 × (1.93× 1012k3(log k)2)5 × (log(1.93× 1012k3(log k)2))4

< 1.26× 1073 × k5(log k)10(28.29 + 3 log k + 2 log log k)4

⇒ s < 5.33× 1078 × k5(log k)14 ,
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and since k ≤ log s, we have

s < 5.33× 1078 × (log s)5(log log s)14 ,

which is true only for s < 7.31× 10100, so k < log(7.31× 10100) < 232.
In both cases, we have s < 7.31 × 10100 and k < 232, which are still very high to let

the computer do the calculation. In order to reduce these bounds, we use a criterion due to
Legendre (Theorem 2.3) about the convergents in a continued fraction. To use it, we go back
to (3.17) to get, using that s ≥ 20 and m ≥ 1394, the following upper bound:

|Λ2| <
1

αs
+

2.39

α(m−1)/2
<

1

α20
+

2.39

α697
< 1.38× 10−5. (3.22)

Set,

Γ2 := (s− 1) log(g−1)− (ms+ 1− n) logα .

Note that Λ2 = eΓ2 − 1, then by the previous inequality, we have

1.38× 10−5 > |Λ2| = |eΓ2 − 1| ≥ |eΓ2 | − 1 ⇒ e|Γ2| < 1.38× 10−5 + 1. (3.23)

Now, since

|Γ2| ≤ e|Γ2||eΓ2 − 1| < (1.38× 10−5 + 1)|Λ2| < (1.38× 10−5 + 1)

(
1

αs
+

2.39

α(m−1)/2

)
,

we have

|(s− 1) log(g−1)− (ms+ 1− n) logα| < (1.38× 10−5 + 1)

(
1

αs
+

2.39

α(m−1)/2

)
then dividing it by (s− 1) logα,∣∣∣∣ log(g−1)

logα
− ms+ 1− n

s− 1

∣∣∣∣ < (1.38× 10−5 + 1)

(s− 1) logα

(
1

αs
+

2.39

α(m−1)/2

)
. (3.24)

Assume next that s ≥ 292. Then αs > (7/4)292 > 2.58× 1068s and, since m ≥ 1395, we have

α(m−1)/2 > (7/4)697 > 2.58× 1068s, which in (3.24) gives us∣∣∣∣ log(g−1)

logα
− ms+ 1− n

s− 1

∣∣∣∣ < 1

4.2× 1067(s− 1)2
. (3.25)

By Theorem 2.3, inequality (3.25) implies that the rational number (ms+ 1− n)/(s− 1) is a

convergent to βk = (log(g−1))/(logα). Let [a
(k)
0 , a

(k)
1 , a

(k)
2 , . . .] be the continued fraction of βk

and p
(k)
t /q

(k)
t its t-th convergent. Assume that (ms + 1 − n)/(s − 1) = p

(k)
tk
/q

(k)
tk

for some tk.

Then s − 1 = dkq
(k)
tk

, for some positive integer dk, so s − 1 ≥ q
(k)
tk

. On the other hand, using
again the Mathematica software, we get that

min
k∈{3,232}

q
(k)
250 > 4.87× 10118 > 7.31× 10100 − 1 > s− 1,

therefore 1 ≤ tk ≤ 250, for all 3 ≤ k ≤ 232. Also using Mathematica, we observe that

atk+1 ≤ max{a(k)
t } < 4.15 × 1067 , for k ∈ {3, 232} and t ∈ {1, 251}. From the properties of
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continued fractions, we have∣∣∣∣βk − ms+ 1− n
s− 1

∣∣∣∣ =

∣∣∣∣∣βk − p
(k)
tk

q
(k)
tk

∣∣∣∣∣ >
1

(atk+1 + 2)(q
(k)
tk

)2

≥
d2
k

4.15× 1067(s− 1)2

≥ 1

4.15× 1067(s− 1)2
,

which contradicts (3.25). So, s ≤ 291, and k <∈ {3, 4, 5}.

3.4. The final step. Let’s go back to (3.16). Divide it across by (1 + α−s) to obtain,

|αn−(ms+1)g1−s(1 + α−s)−1 − 1| < 2.39

α(m−1)/2
. (3.26)

Now, set t := ms+ 1− n. Using inequality (3.22), we get the following relations

g1−sα−t − 1 < 1.38× 10−5

⇒ t >
(s− 1) log g−1

logα
− log(1 + 1.38× 10−5)

logα
> 0.68s− 0.69 ,

and,

g1−sα−t − 1 > −1.38× 10−5

⇒ t <
(s− 1) log g−1

logα
− log(1− 1.38× 10−5)

logα
< 1.27s− 1.26 .

Therefore, t ∈ [b0.68s+ 0.31c, b1.27s− 1.26c]. A computational search for the range 20 ≤ s ≤
291, 3 ≤ k ≤ 5 and t in the previous interval, returned

min

{∣∣∣∣ α−tg1−s

(1 + α−s)
− 1

∣∣∣∣} > 0.0003 ⇒ 2.39

α(m−1)/2
> 0.0003⇒ m ≤ 33 ,

which contradicts the fact that m ≥ 1394. Hence, the theorem is proved.
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