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Abstract

For k > 2, the k-generalized Fibonacci sequence (Fék))n is defined by the
initial values 0,0, ...,0,1 (k terms) and such that each term afterwards is the
sum of the k£ preceding terms. In 2005, Noe and Post conjectured that the
only solutions of Diophantine equation F,Sf) = F,y), with £ > k > 1,n >
(+1, m>k+1are

(m,n, 0, k) =(7,6,3,2) and (12,11,7,3).

In this paper, we confirm this conjecture.
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1. Introduction

Let k& > 2 and denote F*) .= (Fék))nz_(k_m, the k-generalized Fibonacci
sequence whose terms satisfy the recurrence relation

k k k k
FT(LJr)k:F1§+)k71+Fr(L+)k72+”'+F7§)7 (1)
with initial conditions 0,0, ...,0,1 (k terms) and such that the first nonzero
term is Fl(k) =1
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The above sequence is one among the several generalizations of Fibonacci
numbers. Such a sequence is also called k-step Fibonacci sequence, the Fi-
bonacci k-sequence, or k-bonacci se%uence. Clearly for k = 2, we obtain the
well-known Fibonacci numbers FT(? = F,,, and for k£ = 3, the Tribonacci
numbers FT(L?’) =1T,.

Several authors have worked on problems involving k-generalized Fi-
bonacci sequences. For instance, Toghé and the author [13] proved that
only finitely many terms of a linear recurrence sequence whose character-
istic polynomial has a simple positive dominant root can be repdigits (i.e.,
numbers with only one distinct digit in its decimal expansion). As an appli-
cation, since the characteristic polynomial of the recurrence in (1), namely
¥ — k=1 — ... — 2 —1, has just one root o such that |« > 1 (see for instance
[24]), then there exist only finitely many terms of F'®) which are repdigits,
for all £ > 2. F. Luca [12] and the author [15] proved that 55 and 44 are
the largest repdigits in the sequences F® and F®), respectively. Moreover,
the author conjectured that there are no repdigits, with at least two digits,
belonging to F®) for k > 3. In a recent work, Bravo and Luca [3] confirmed
this conjecture.

Here, we are interested in the problem of determining the intersection
of two k-generalized Fibonacci sequences. It is important to notice that
Mignotte (see [17]) showed that if (u,),>0 and (vy,),>0 are two linearly recur-
rence sequences then, under some weak technical assumptions, the equation

Up = U

has only finitely many solutions in positive integers m,n. Moreover, all such
solutions are effectively computable (we refer the reader to [1, 20, 21, 23] for
results on the intersection of two recurrence sequences). Thus, it is reasonable
to think that the intersection F*) N F® is a finite set for all 2 < k < £. In
2005, Noe and Post [18] gave a heuristic argument to show that the expected
cardinality of this intersection must be small. Furthermore, they raised the
following conjecture

Conjecture 1 (Noe-Post). The Diophantine equation

R = F©, )
with 0 >k >2,n>0+1and m > k+ 1, has only the solutions:
(m,n, 0, k) =(7,6,3,2) and (12,11,7,3). (3)

That 1is,
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13=F% =F? and 504 = FY = F)

Since the first nonzero terms of F® are 1,1,2,...,2¢1, then the above
conjecture can be rephrased as

Conjecture 2. Let 2 < k < ¢ be positive integer numbers. Then

{0,1,2,13}, if (k, £) = (2,3)
F® A FO {0,1,2,4,504}, if (k, £) = (3,7)
{0717278}7 Zf k=2and? >3

{0,1,2,...,2* 1) otherwise

We remark that this intersection was confirmed for (k, () = (2, 3), by the
author [14]. Also, Noe and Post used computational methods to study this
intersection (see Section 5). Let us state their result as a lemma, since we
shall use it throughout our work.

Lemma 1. The only solutions (m,n, ¢, k) in positive integers of Diophantine
equation (2), with £ >k > 1,n >+ 1, m > k+ 1 and max{m,n, k,(} <
22000 " qre listed in (3).

In this paper, we shall use transcendental tools to prove the Noe-Post
conjecture. For the sake of preciseness, we stated it as a theorem.

Theorem 1. Conjecture 1 is true.

Let us give a brief overview of our strategy for proving Theorem 1. First,
we use a Dresden formula [6, Formula (2)] to get an upper bound for a
linear form in three logarithms related to equation (2). After, we use a lower
bound due to Matveev to obtain an upper bound for m and n in terms of
¢. Very recently, Bravo and Luca solved the equation F® = om and for
that they used a nice argument combining some estimates together with the
Mean Value Theorem (this can be seen in pages 72 and 73 of [2]). In our
case, we must use two times this Bravo and Luca approach to prove our main
theorem. In the final section, we present a program for checking the “small”
cases. The computations in the paper were performed using Mathematica®.

We remark some differences between our work and the one by Bravo and
Luca. In their paper, the equation FW = 2m was studied. By applying a
key method, they get directly an upper bound for [2™ — 2"72|. In our case,

the equation Ff,f ) = 723) needs a little more work, because it is necessary
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to apply two times their method to get an upper bound for [2"~2 — 2m~2|,
Moreover, they used a reduction argument due to Dujella and Petho to solve
small cases. In our work, we use a Noe and Post program to deal with these
cases. Our presentation is therefore organized in a similar way that the one
in the papers [2, 3], since we think that those presentations are intuitively
clear.

2. Upper bounds for m and n in terms of £
In this section, we shall prove the following result

Lemma 2. If (m,n,(,k) is a solution in positive integers of Diophantine
equation (2), with { >k >2,n> ¢+ 1 and m >k + 1. Then

n<m<44-10"%log® (.

Before proceeding further, we shall recall some facts and properties of
these sequences which will be used after.
We know that the characteristic polynomial of (F,gk))n is

Up(z) =af —a" 1 - -1

and it is irreducible over Q[x] with just one zero outside the unit circle. That
single zero is located between 2(1 —27%) and 2 (as can be seen in [24]). Also,
in a recent paper, G. Dresden [6, Theorem 1] gave a simplified “Binet-like”

formula for F, T(Lk) :

k
i—1
P g

for a = ay,...,a; being the roots of ¢p(x). There are many other ways
of representing these k-generalized Fibonacci numbers, as can be seen in
7, 8,9, 10]. Also, it was proved in [3, Lemma 1] that

a2 < F,(Lk) <a" ! foralln>1, (5)

where « is the dominant root of ¥ (z). Also, the contribution of the roots
inside the unit circle in formula (4) is almost trivial. More precisely, it was
proved in [6] that

1

|F'r(Lk) - g(Oé, k)an_l| < 57

(6)
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where we adopt throughout the notation g(z,y) := (z—1)/(2+(y+1)(z—2)).
As a last tool to prove Lemma 2, we still use a lower bound for a linear

form logarithms a la Baker and such a bound was given by the following
result of Matveev (see [16] or Theorem 9.4 in [4]).

Lemma 3. Let vy, ..., be real algebraic numbers and let by, ..., by be nonzero
rational integer numbers. Let D be the degree of the number field Q(v1, ..., V)
over Q and let A; be a positive real number satisfying

A; > max{Dh(v;),|log~;|,0.16} forj=1,.. t.
Assume that
B > max{|by], ..., |b¢] }-
If 3yt -t # 1, then
Iyt oabt 1] > exp(—1.4- 3073 - 45 . D3(1 4+ log D)(1 4 log B)A, - - - A,).

As usual, in the above statement, the logarithmic height of an s-degree alge-
braic number v is defined as

1 : |
h(y) = —(log|a| + > logmax{L, |y[}),

7j=1
where a is the leading coefficient of the minimal polynomial of v (over Z)
and (79)),<;<, are the conjugates of v (over Q).

2.1. The proof of Lemma 2
First, the inequality n < m follows from the facts that the sequences
(F,EZ))n and (F,(LE))K are nondecreasing together with (2), n > ¢+ 1 and m >

k + 1. By the way, to find an upper bound for m in terms of n, we combine
(2) and (5) to obtain
L s gt > FO = W) > 2 5 (2)™ 2 and so 2n > m,  (7)

m

where in the last inequality we used that o > 3/2 > V2.
Now, we use (6) to get

1 1
[P’ = gl K)am | < 5 and |F0 — (9, O8] < 3,
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where « and ¢ are the dominant roots of the recurrences (F,Sf ))m and (FT(LE)),L,
respectively. Combining these inequalities, we obtain

|g(¢’£)¢n—1 - g(Oé, k)am_1| <1 (8)

and so

g<¢7 E)an_l 1 4
‘W g(og7 k’)am—l < am—1’ <9>

where we used that g(a, k) > 1/4, since a > 3/2 (for k > 2) and 2 + (k +
1)(av — 2) < 2. Thus (9) becomes

~1]<

4
leh — 1] < — (10)

am—1 )

where A := (n — 1)log ¢ + log(g(p,¢)/g(a, k)) — (m — 1) log a.
Now, we shall apply Lemma 3. To this end, take ¢ := 3,

9(¢,0)
gl k)’

Mi=¢, V2= V3=

and
bi:=n—1, by:=1, bg:=m — 1.
For this choice, we have D = [Q(«,¢) : Q] < Kkl < (2. Also h(y1) =

(logp)/t < (log2)/¢ < 0.7/¢ and similarly h(y3) < 0.7/k. In [2, p. 73], an
estimate for h(g(a, k)) was given. More precisely, it was proved that

h(g(a, k)) < log(k + 1) + log4.

Analogously,
h(g(¢,?)) < log(f+ 1) + log4.

Thus
h(v2) < h(g(¢,0)) + h(g(a, k) <log(¢+ 1) +log(k + 1) 4+ 2log4,

where we used the well-known facts that h(zy) < h(z) + h(y) and h(x) =
h(z~'). Also, in [2] was proved that |g(a;, k)| <2, for all i =1,... k.

Since ¢ > k and m > n, we can take A; = Az := 0.7¢, Ay := 2(?log(4(+4)
and B :=m — 1.

Before applying Lemma 3, it remains us to prove that e # 1. Suppose,
towards a contradiction, the contrary, i.e., g(a, k)a™ ! = g(¢, £)¢p" ' € Q(9).
So, we can conjugate this relation in Q(¢) to get
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g(as,, k)a;:"l = g(pi, )P fori=1,.., 4,

where ay, are the £ conjugates of a over Q(¢). Since g(c, k)a™ ! has at most
k conjugates (over Q), then each number in the list {g(a,, k)a ™! 11 < i <
¢} is repeated at least £/k > 1 times. In particular, there exists t € {2, ..., ¢},
such that g(as,, k)ali™ = glay, k)ag ™" Thus, g(¢,k)¢" " = g(¢r, ()67~
and then e 6.0
n—1 9\Pi, n—1
(1) <o =|sg o <
where we used that ¢ > 2(1 —27%) > 7/4, |g(¢s,0)| < 2 < 8|g(¢, £)] and
|¢¢| < 1 for t > 1. However, the inequality (7/4)"' < 8 holds only for
n = 1,2,3,4, but this gives an absurdity, since n > /+1 > 3+ 1 = 4.
Therefore e* # 1.
Now, the conditions to apply Lemma 3 are fulfilled and hence

le® — 1| > exp(—1.5- 10" ¢3(1 + 2log ) log(4¢ + 4)(1 + log(m — 1)))
Since, 1 + 2log ¢ < 3logl and 4¢ + 4 < (*% (for ¢ > 3), we have that
le® — 1| > exp(—2.4 - 10"%¢% log? £1log(m — 1)) (11)

By combining (10) and (11), we get

m—1

< 6.1-10"%1og?¢,

log(m — 1) o8

where we used that log v > 0.4. Since the function z/log x is increasing for
x > e, it is a simple matter to prove that

Xz

< A implies that z < 2Alog A. (12)
log

A proof for that can be found in [2, p. 74].
Thus, by using (12) for # := m — 1 and A := 6.1 - 10'2¢®log”® ¢, we have
that
m—1<2(6.1-10"%¢*1og®¢)log(6.1 - 10"2¢%1og? ().

Now, the inequality 30 4+ 2loglog ¢ < 28log ¢, for £ > 3, yields
log(6.1 - 10"2¢*1og® £) < 30 + 8log ¢ + 2loglog ¢ < 36log (.

Therefore
m < 4.4-10"¢1og® ¢ (13)

The proof is then complete. 0J
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3. Upper bound for £ in terms of k

Lemma 4. If (m,n, 0, k) is a solution in positive integers of equation (2),
with{ >k >1,n>0+1and m >k+ 1, then

(< 1.8-10"%k*log” k. (14)

Proof. If ¢ < 239, then the inequalities (13) yields m < 8 -10%. In par-
ticular, max{m,n,?,k} < 103 < 2209 So by Lemma 1, the only solu-
tions of equation (2) with the conditions in the statement of Theorem 1 are
(m,n, 0, k)= (7,6,3,2) and (12,11,7,3).

Thus, we may assume that ¢ > 239. Therefore

n < 4.4-10%8log® ¢ < 2'/? (15)

where we used (13) and the fact that n < m. By using a key argument due
to Bravo and Luca [2, p. 72-73], we get

n— m— 5 : 2n72
2"7% — g(a, k)a™ 1] < o (16)
or equivalently,
o (n— 5
|]_ — g(O[, k?)Oém 12 ( 2)| < W (17)

For applying Lemma 3, it remains us to prove that the left-hand side
of (17) is nonzero, or equivalently, 2"~% = g(a, k)a™!. To obtain a con-
tradiction, we suppose the contrary, i.e., 272 = g(a, k)a™ . By conjugat-
ing the previous relation in the splitting field of ¢ (x), we obtain 2" 2 =
glag, k)a" ™t for i = 1,..., k. However, when i > 1, |oy| < 1 and |g(ay, k)| <

2. But this leads to the following absurdity
2" = |g(au, k)| |ou|" " < 2,

since n > 4. Therefore g(a, k)a™ 127("=2) £ 1 and then we are in position
to apply Lemma 3. For that, take t := 3,

1= glas k), v =, 3 =2

and
bl = 1, b2 =m — 1, bg = —(n— 2)



The intersection of k-generalized Fibonacci sequences 9

By some calculations made in Section 2, we see that A; := klog(4k +
4), Ay = A3 := 0.7 are suitable choices. Moreover D = k and B = m — 1.
Thus

11— g(a, k)™ 127"D| > exp(—C1E3 (1 +log k) (1 +log(m — 1)) log(4k +4)),
where we can take C; = 0.75 - 10'*. Combining (17) and (18) together v(vf}i
a straightforward calculation, we get
0 < 4.7-10"Kk*log”® klogm (19)
On the other hand, m < 4.4 - 10"¢%log* ¢ (by (13)) and so
logm < log(4.4 - 103 1og® ¢) < 451og . (20)

Turning back to inequality (19), we obtain

< 2.2-10"k310g* k

log ¢
which implies (by (12)) that
(< 2(2.2-10"K%log® k) log(2.2 - 103 log? k).
Since log(2.2 - 1043 log? k) < 391log k, we finally get the desired inequality

0 <1.8-10%310g® k.

4. The proof of Theorem 1

If k& < 1655, then £ < 4-10% (by (14)). Thus, by (13), one has that
n < m < 2-10*8. In particular, max{m,n,¢,k} < 2-10%% < 22000 So
Lemma 1 gives the known solutions.

Therefore, we may suppose that & > 1655. The inequality ¢ < 1.8 -

10'%%3 1og® k together with (13) yield

m < 4.4-10"(1.8-10"k%log® k)®log®(1.8 - 10*%k% log® k)
< 310"k 1og? k < 202,



The intersection of k-generalized Fibonacci sequences 10

where the last inequality holds only because k > 1655. Now, we use again
the key argument of Bravo and Luca to conclude that

m— n— 5.2m2
’2 2— g(¢7£)¢ 1| < ok/2 ° (21>

Combining (16), (21) and (8), we get

2772 =272 <277 = gl k)am T+ [g(a, k)am T = g(o, 0)¢"
+2m7 = g(¢, 0)¢" |

5.2n72 5.2m=2  ]1.2m2

< 2¢/2 +1+ 9k/2 < 9k/2 !

since n < m, k < ¢ and m > k + 1. Therefore

11

Since n < m — 1, then

11

N | —

Thus 2¥/2 < 22 leading to an absurdity, since k > 1655.

In conclusion, the only solutions of equation (2) with ¢ >k > 1,n > (+1
and m > k + 1 are those listed in (3). Thus, the proof of Theorem 1 is
complete. O

5. The program

In this section, for the sake of completeness, we present the Mathematica
program (which was kindly sent to us by Noe [19]) used to confirm Lemma
1:

nn = 2000;

f = 2"Range[nn] - 1;

f[[1]] = Infinity;

cnt = O;

seq = Table[Join[2"Range[i - 1], {271 - 1}], {i, nn}];
done = False;

While[! done, fMin = Min[f];
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pMin = Flatten[Position[f, fMin]];

If [Length[pMin] > 1, Print[{fMin, pMin}]];
Do[k = pMin[[i]];

s = Plus @@ seq[[k]];

seq[[k]] = RotateLeft[seq[[k]]];

seql[k, k]] = s;

f[[k]] = s, {i, Length[pMin]}];

cnt++;
done = (fMin > 2°nn)]; cnt

11

The calculations took roughly 54 hours on 1.80 GHz AMD Triple-Core

PC.
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