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Abstract

For k ≥ 2, the k-generalized Fibonacci sequence (F
(k)
n )n is defined by the

initial values 0, 0, ..., 0, 1 (k terms) and such that each term afterwards is the
sum of the k preceding terms. In 2005, Noe and Post conjectured that the
only solutions of Diophantine equation F

(k)
m = F

(`)
n , with ` > k > 1, n >

`+ 1, m > k + 1 are

(m,n, `, k) = (7, 6, 3, 2) and (12, 11, 7, 3).

In this paper, we confirm this conjecture.
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1. Introduction

Let k ≥ 2 and denote F (k) := (F
(k)
n )n≥−(k−2), the k-generalized Fibonacci

sequence whose terms satisfy the recurrence relation

F
(k)
n+k = F

(k)
n+k−1 + F

(k)
n+k−2 + · · ·+ F (k)

n , (1)

with initial conditions 0, 0, ..., 0, 1 (k terms) and such that the first nonzero

term is F
(k)
1 = 1.

Email address: diego@mat.unb.br (Diego Marques)
1Supported by DPP-UnB, FAP-DF, FEMAT and CNPq-Brazil

Preprint submitted to Bulletin of the Brazilian Mathematical Society September 4, 2012



The intersection of k-generalized Fibonacci sequences 2

The above sequence is one among the several generalizations of Fibonacci
numbers. Such a sequence is also called k-step Fibonacci sequence, the Fi-
bonacci k-sequence, or k-bonacci sequence. Clearly for k = 2, we obtain the
well-known Fibonacci numbers F

(2)
n = Fn, and for k = 3, the Tribonacci

numbers F
(3)
n = Tn.

Several authors have worked on problems involving k-generalized Fi-
bonacci sequences. For instance, Togbé and the author [13] proved that
only finitely many terms of a linear recurrence sequence whose character-
istic polynomial has a simple positive dominant root can be repdigits (i.e.,
numbers with only one distinct digit in its decimal expansion). As an appli-
cation, since the characteristic polynomial of the recurrence in (1), namely
xk−xk−1−· · ·−x−1, has just one root α such that |α| > 1 (see for instance
[24]), then there exist only finitely many terms of F (k) which are repdigits,
for all k ≥ 2. F. Luca [12] and the author [15] proved that 55 and 44 are
the largest repdigits in the sequences F (2) and F (3), respectively. Moreover,
the author conjectured that there are no repdigits, with at least two digits,
belonging to F (k), for k > 3. In a recent work, Bravo and Luca [3] confirmed
this conjecture.

Here, we are interested in the problem of determining the intersection
of two k-generalized Fibonacci sequences. It is important to notice that
Mignotte (see [17]) showed that if (un)n≥0 and (vn)n≥0 are two linearly recur-
rence sequences then, under some weak technical assumptions, the equation

un = vm

has only finitely many solutions in positive integers m,n. Moreover, all such
solutions are effectively computable (we refer the reader to [1, 20, 21, 23] for
results on the intersection of two recurrence sequences). Thus, it is reasonable
to think that the intersection F (k) ∩ F (`) is a finite set for all 2 ≤ k < `. In
2005, Noe and Post [18] gave a heuristic argument to show that the expected
cardinality of this intersection must be small. Furthermore, they raised the
following conjecture

Conjecture 1 (Noe-Post). The Diophantine equation

F (k)
m = F (`)

n , (2)

with ` > k ≥ 2, n > `+ 1 and m > k + 1, has only the solutions:

(m,n, `, k) = (7, 6, 3, 2) and (12, 11, 7, 3). (3)

That is,
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13 = F
(2)
7 = F

(3)
6 and 504 = F

(3)
12 = F

(7)
11

Since the first nonzero terms of F (k) are 1, 1, 2, ..., 2k−1, then the above
conjecture can be rephrased as

Conjecture 2. Let 2 ≤ k < ` be positive integer numbers. Then

F (k) ∩ F (`) =


{0, 1, 2, 13}, if (k, `) = (2, 3)

{0, 1, 2, 4, 504}, if (k, `) = (3, 7)
{0, 1, 2, 8}, if k = 2 and ` > 3

{0, 1, 2, . . . , 2k−1}, otherwise

We remark that this intersection was confirmed for (k, `) = (2, 3), by the
author [14]. Also, Noe and Post used computational methods to study this
intersection (see Section 5). Let us state their result as a lemma, since we
shall use it throughout our work.

Lemma 1. The only solutions (m,n, `, k) in positive integers of Diophantine
equation (2), with ` > k > 1, n > ` + 1, m > k + 1 and max{m,n, k, `} <
22000, are listed in (3).

In this paper, we shall use transcendental tools to prove the Noe-Post
conjecture. For the sake of preciseness, we stated it as a theorem.

Theorem 1. Conjecture 1 is true.

Let us give a brief overview of our strategy for proving Theorem 1. First,
we use a Dresden formula [6, Formula (2)] to get an upper bound for a
linear form in three logarithms related to equation (2). After, we use a lower
bound due to Matveev to obtain an upper bound for m and n in terms of
`. Very recently, Bravo and Luca solved the equation F

(k)
n = 2m and for

that they used a nice argument combining some estimates together with the
Mean Value Theorem (this can be seen in pages 72 and 73 of [2]). In our
case, we must use two times this Bravo and Luca approach to prove our main
theorem. In the final section, we present a program for checking the “small”
cases. The computations in the paper were performed using Mathematica R©.

We remark some differences between our work and the one by Bravo and
Luca. In their paper, the equation F

(k)
n = 2m was studied. By applying a

key method, they get directly an upper bound for |2m − 2n−2|. In our case,

the equation F
(k)
m = F

(`)
n needs a little more work, because it is necessary
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to apply two times their method to get an upper bound for |2n−2 − 2m−2|.
Moreover, they used a reduction argument due to Dujella and Pethö to solve
small cases. In our work, we use a Noe and Post program to deal with these
cases. Our presentation is therefore organized in a similar way that the one
in the papers [2, 3], since we think that those presentations are intuitively
clear.

2. Upper bounds for m and n in terms of `

In this section, we shall prove the following result

Lemma 2. If (m,n, `, k) is a solution in positive integers of Diophantine
equation (2), with ` > k ≥ 2, n > `+ 1 and m > k + 1. Then

n < m < 4.4 · 1014`8 log3 `.

Before proceeding further, we shall recall some facts and properties of
these sequences which will be used after.

We know that the characteristic polynomial of (F
(k)
n )n is

ψk(x) := xk − xk−1 − · · · − x− 1

and it is irreducible over Q[x] with just one zero outside the unit circle. That
single zero is located between 2(1−2−k) and 2 (as can be seen in [24]). Also,
in a recent paper, G. Dresden [6, Theorem 1] gave a simplified “Binet-like”

formula for F
(k)
n :

F (k)
n =

k∑
i=1

αi − 1

2 + (k + 1)(αi − 2)
αn−1
i , (4)

for α = α1, ..., αk being the roots of ψk(x). There are many other ways
of representing these k-generalized Fibonacci numbers, as can be seen in
[7, 8, 9, 10]. Also, it was proved in [3, Lemma 1] that

αn−2 ≤ F (k)
n ≤ αn−1, for all n ≥ 1, (5)

where α is the dominant root of ψk(x). Also, the contribution of the roots
inside the unit circle in formula (4) is almost trivial. More precisely, it was
proved in [6] that

|F (k)
n − g(α, k)αn−1| < 1

2
, (6)
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where we adopt throughout the notation g(x, y) := (x−1)/(2+(y+1)(x−2)).
As a last tool to prove Lemma 2, we still use a lower bound for a linear

form logarithms à la Baker and such a bound was given by the following
result of Matveev (see [16] or Theorem 9.4 in [4]).

Lemma 3. Let γ1, ..., γt be real algebraic numbers and let b1, ..., bt be nonzero
rational integer numbers. Let D be the degree of the number field Q(γ1, ..., γt)
over Q and let Aj be a positive real number satisfying

Aj ≥ max{Dh(γj), | log γj|, 0.16} for j = 1, ..., t.

Assume that
B ≥ max{|b1|, ..., |bt|}.

If γb11 · · · γbtt 6= 1, then

|γb11 · · · γbtt − 1| ≥ exp(−1.4 · 30t+3 · t4.5 ·D2(1 + logD)(1 + logB)A1 · · ·At).

As usual, in the above statement, the logarithmic height of an s-degree alge-
braic number γ is defined as

h(γ) =
1

s
(log |a|+

s∑
j=1

log max{1, |γ(j)|}),

where a is the leading coefficient of the minimal polynomial of γ (over Z)
and (γ(j))1≤j≤s are the conjugates of γ (over Q).

2.1. The proof of Lemma 2

First, the inequality n < m follows from the facts that the sequences
(F

(`)
n )n and (F

(`)
n )` are nondecreasing together with (2), n > ` + 1 and m >

k + 1. By the way, to find an upper bound for m in terms of n, we combine
(2) and (5) to obtain

2n−1 > φn−1 ≥ F (`)
n = F (k)

m ≥ αm−2 > (
√

2)m−2 and so 2n > m, (7)

where in the last inequality we used that α > 3/2 >
√

2.
Now, we use (6) to get

|F (k)
m − g(α, k)αm−1| < 1

2
and |F (`)

n − g(φ, `)φn−1| < 1

2
,
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where α and φ are the dominant roots of the recurrences (F
(k)
m )m and (F

(`)
n )n,

respectively. Combining these inequalities, we obtain

|g(φ, `)φn−1 − g(α, k)αm−1| < 1 (8)

and so ∣∣∣∣ g(φ, `)φn−1

g(α, k)αm−1
− 1

∣∣∣∣ < 1

g(α, k)αm−1
<

4

αm−1
, (9)

where we used that g(α, k) > 1/4, since α > 3/2 (for k ≥ 2) and 2 + (k +
1)(α− 2) < 2. Thus (9) becomes

|eΛ − 1| < 4

αm−1
, (10)

where Λ := (n− 1) log φ+ log(g(φ, `)/g(α, k))− (m− 1) logα.
Now, we shall apply Lemma 3. To this end, take t := 3,

γ1 := φ, γ2 :=
g(φ, `)

g(α, k)
, γ3 := α

and
b1 := n− 1, b2 := 1, b3 := m− 1.

For this choice, we have D = [Q(α, φ) : Q] ≤ k` < `2. Also h(γ1) =
(log φ)/` < (log 2)/` < 0.7/` and similarly h(γ3) < 0.7/k. In [2, p. 73], an
estimate for h(g(α, k)) was given. More precisely, it was proved that

h(g(α, k)) < log(k + 1) + log 4.

Analogously,
h(g(φ, `)) < log(`+ 1) + log 4.

Thus

h(γ2) ≤ h(g(φ, `)) + h(g(α, k)) ≤ log(`+ 1) + log(k + 1) + 2 log 4,

where we used the well-known facts that h(xy) ≤ h(x) + h(y) and h(x) =
h(x−1). Also, in [2] was proved that |g(αi, k)| < 2, for all i = 1, . . . , k.

Since ` > k and m > n, we can take A1 = A3 := 0.7`, A2 := 2`2 log(4`+4)
and B := m− 1.

Before applying Lemma 3, it remains us to prove that eΛ 6= 1. Suppose,
towards a contradiction, the contrary, i.e., g(α, k)αm−1 = g(φ, `)φn−1 ∈ Q(φ).
So, we can conjugate this relation in Q(φ) to get
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g(αsi , k)αm−1
si

= g(φi, `)φ
n−1
i , for i = 1, ..., `,

where αsi are the ` conjugates of α over Q(φ). Since g(α, k)αm−1 has at most
k conjugates (over Q), then each number in the list {g(αsi , k)αm−1

si
: 1 ≤ i ≤

`} is repeated at least `/k > 1 times. In particular, there exists t ∈ {2, ..., `},
such that g(αs1 , k)αm−1

s1
= g(αst , k)αm−1

st . Thus, g(φ, k)φn−1 = g(φt, `)φ
n−1
t

and then (
7

4

)n−1

< φn−1 =

∣∣∣∣g(φt, `)

g(φ, `)

∣∣∣∣ |φt|n−1 < 8,

where we used that φ > 2(1 − 2−`) ≥ 7/4, |g(φt, `)| < 2 < 8|g(φ, `)| and
|φt| < 1 for t > 1. However, the inequality (7/4)n−1 < 8 holds only for
n = 1, 2, 3, 4, but this gives an absurdity, since n > ` + 1 ≥ 3 + 1 = 4.
Therefore eΛ 6= 1.

Now, the conditions to apply Lemma 3 are fulfilled and hence

|eΛ − 1| > exp(−1.5 · 1011`8(1 + 2 log `) log(4`+ 4)(1 + log(m− 1)))

Since, 1 + 2 log ` ≤ 3 log ` and 4`+ 4 < `2.6 (for ` ≥ 3), we have that

|eΛ − 1| > exp(−2.4 · 1012`8 log2 ` log(m− 1)) (11)

By combining (10) and (11), we get

m− 1

log(m− 1)
< 6.1 · 1012`8 log2 `,

where we used that logα > 0.4. Since the function x/ log x is increasing for
x > e, it is a simple matter to prove that

x

log x
< A implies that x < 2A logA. (12)

A proof for that can be found in [2, p. 74].
Thus, by using (12) for x := m − 1 and A := 6.1 · 1012`8 log2 `, we have

that
m− 1 < 2(6.1 · 1012`8 log2 `) log(6.1 · 1012`8 log2 `).

Now, the inequality 30 + 2 log log ` < 28 log `, for ` ≥ 3, yields

log(6.1 · 1012`8 log2 `) < 30 + 8 log `+ 2 log log ` < 36 log `.

Therefore
m < 4.4 · 1014`8 log3 ` (13)

The proof is then complete. �
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3. Upper bound for ` in terms of k

Lemma 4. If (m,n, `, k) is a solution in positive integers of equation (2),
with ` > k > 1, n > `+ 1 and m > k + 1, then

` < 1.8 · 1016k3 log3 k. (14)

Proof. If ` ≤ 239, then the inequalities (13) yields m < 8 · 1035. In par-
ticular, max{m,n, `, k} < 1036 < 22000. So, by Lemma 1, the only solu-
tions of equation (2) with the conditions in the statement of Theorem 1 are
(m,n, `, k) = (7, 6, 3, 2) and (12, 11, 7, 3).

Thus, we may assume that ` > 239. Therefore

n < 4.4 · 1014`8 log3 ` < 2`/2 (15)

where we used (13) and the fact that n < m. By using a key argument due
to Bravo and Luca [2, p. 72-73], we get

|2n−2 − g(α, k)αm−1| < 5 · 2n−2

2`/2
(16)

or equivalently,

|1− g(α, k)αm−12−(n−2)| < 5

2`/2
. (17)

For applying Lemma 3, it remains us to prove that the left-hand side
of (17) is nonzero, or equivalently, 2n−2 6= g(α, k)αm−1. To obtain a con-
tradiction, we suppose the contrary, i.e., 2n−2 = g(α, k)αm−1. By conjugat-
ing the previous relation in the splitting field of ψk(x), we obtain 2n−2 =
g(αi, k)αm−1

i , for i = 1, ..., k. However, when i > 1, |αi| < 1 and |g(αi, k)| <
2. But this leads to the following absurdity

2n−2 = |g(αi, k)||αi|m−1 < 2,

since n > 4. Therefore g(α, k)αm−12−(n−2) 6= 1 and then we are in position
to apply Lemma 3. For that, take t := 3,

γ1 := g(α, k), γ2 := α, γ3 := 2

and
b1 := 1, b2 := m− 1, b3 := −(n− 2).
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By some calculations made in Section 2, we see that A1 := k log(4k +
4), A2 = A3 := 0.7 are suitable choices. Moreover D = k and B = m − 1.
Thus

|1−g(α, k)αm−12−(n−2)| > exp(−C1k
3(1+ log k)(1+ log(m−1)) log(4k+4)),

(18)
where we can take C1 = 0.75 · 1011. Combining (17) and (18) together with
a straightforward calculation, we get

` < 4.7 · 1012k3 log2 k logm (19)

On the other hand, m < 4.4 · 1014`8 log3 ` (by (13)) and so

logm < log(4.4 · 1014`8 log3 `) < 45 log `. (20)

Turning back to inequality (19), we obtain

`

log `
< 2.2 · 1014k3 log2 k

which implies (by (12)) that

` < 2(2.2 · 1014k3 log2 k) log(2.2 · 1014k3 log2 k).

Since log(2.2 · 1014k3 log2 k) < 39 log k, we finally get the desired inequality

` < 1.8 · 1016k3 log3 k.

�

4. The proof of Theorem 1

If k ≤ 1655, then ` < 4 · 1028 (by (14)). Thus, by (13), one has that
n < m < 2 · 10248. In particular, max{m,n, `, k} < 2 · 10248 < 22000. So,
Lemma 1 gives the known solutions.

Therefore, we may suppose that k > 1655. The inequality ` < 1.8 ·
1016k3 log3 k together with (13) yield

m < 4.4 · 1014(1.8 · 1016k3 log3 k)8 log3(1.8 · 1016k3 log3 k)

< 3 · 10148k24 log27 k < 2k/2,
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where the last inequality holds only because k > 1655. Now, we use again
the key argument of Bravo and Luca to conclude that

|2m−2 − g(φ, `)φn−1| < 5 · 2m−2

2k/2
. (21)

Combining (16), (21) and (8), we get

|2n−2 − 2m−2| ≤ |2n−2 − g(α, k)αn−1|+ |g(α, k)αn−1 − g(φ, `)φn−1|
+|2m−2 − g(φ, `)φn−1|

<
5 · 2n−2

2`/2
+ 1 +

5 · 2m−2

2k/2
<

11 · 2m−2

2k/2
,

since n < m, k < ` and m > k + 1. Therefore

|2n−m − 1| < 11

2k/2
. (22)

Since n ≤ m− 1, then

1

2
≤ 1− 2n−m = |2n−m − 1| < 11

2k/2
.

Thus 2k/2 < 22 leading to an absurdity, since k > 1655.
In conclusion, the only solutions of equation (2) with ` > k > 1, n > `+1

and m > k + 1 are those listed in (3). Thus, the proof of Theorem 1 is
complete. �

5. The program

In this section, for the sake of completeness, we present the Mathematica
program (which was kindly sent to us by Noe [19]) used to confirm Lemma
1:

nn = 2000;

f = 2^Range[nn] - 1;

f[[1]] = Infinity;

cnt = 0;

seq = Table[Join[2^Range[i - 1], {2^i - 1}], {i, nn}];

done = False;

While[! done, fMin = Min[f];
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pMin = Flatten[Position[f, fMin]];

If[Length[pMin] > 1, Print[{fMin, pMin}]];

Do[k = pMin[[i]];

s = Plus @@ seq[[k]];

seq[[k]] = RotateLeft[seq[[k]]];

seq[[k, k]] = s;

f[[k]] = s, {i, Length[pMin]}];

cnt++;

done = (fMin > 2^nn)]; cnt

The calculations took roughly 54 hours on 1.80 GHz AMD Triple-Core
PC.
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