The proof of a conjecture concerning the intersection of k-generalized Fibonacci sequences

Diego Marques ${ }^{1}$
Departamento de Matemática, Universidade de Brasília, Brasília, 70910-900, Brazil

Abstract

For $k \geq 2$, the k-generalized Fibonacci sequence $\left(F_{n}^{(k)}\right)_{n}$ is defined by the initial values $0,0, \ldots, 0,1$ (k terms) and such that each term afterwards is the sum of the k preceding terms. In 2005, Noe and Post conjectured that the only solutions of Diophantine equation $F_{m}^{(k)}=F_{n}^{(\ell)}$, with $\ell>k>1, n>$ $\ell+1, m>k+1$ are $$
(m, n, \ell, k)=(7,6,3,2) \text { and }(12,11,7,3)
$$

In this paper, we confirm this conjecture.
Keywords: k-generalized Fibonacci numbers, linear forms in logarithms, intersection
2010 MSC: 11B39, 11J86

1. Introduction

Let $k \geq 2$ and denote $F^{(k)}:=\left(F_{n}^{(k)}\right)_{n \geq-(k-2)}$, the k-generalized Fibonacci sequence whose terms satisfy the recurrence relation

$$
\begin{equation*}
F_{n+k}^{(k)}=F_{n+k-1}^{(k)}+F_{n+k-2}^{(k)}+\cdots+F_{n}^{(k)}, \tag{1}
\end{equation*}
$$

with initial conditions $0,0, \ldots, 0,1$ (k terms) and such that the first nonzero term is $F_{1}^{(k)}=1$.
${ }^{1}$ Supported by DPP-UnB, FAP-DF, FEMAT and CNPq-Brazil

The above sequence is one among the several generalizations of Fibonacci numbers. Such a sequence is also called k-step Fibonacci sequence, the Fibonacci k-sequence, or k-bonacci sequence. Clearly for $k=2$, we obtain the well-known Fibonacci numbers $F_{n}^{(2)}=F_{n}$, and for $k=3$, the Tribonacci numbers $F_{n}^{(3)}=T_{n}$.

Several authors have worked on problems involving k-generalized Fibonacci sequences. For instance, Togbé and the author [13] proved that only finitely many terms of a linear recurrence sequence whose characteristic polynomial has a simple positive dominant root can be repdigits (i.e., numbers with only one distinct digit in its decimal expansion). As an application, since the characteristic polynomial of the recurrence in (1), namely $x^{k}-x^{k-1}-\cdots-x-1$, has just one root α such that $|\alpha|>1$ (see for instance [24]), then there exist only finitely many terms of $F^{(k)}$ which are repdigits, for all $k \geq 2$. F. Luca [12] and the author [15] proved that 55 and 44 are the largest repdigits in the sequences $F^{(2)}$ and $F^{(3)}$, respectively. Moreover, the author conjectured that there are no repdigits, with at least two digits, belonging to $F^{(k)}$, for $k>3$. In a recent work, Bravo and Luca [3] confirmed this conjecture.

Here, we are interested in the problem of determining the intersection of two k-generalized Fibonacci sequences. It is important to notice that Mignotte (see [17]) showed that if $\left(u_{n}\right)_{n \geq 0}$ and $\left(v_{n}\right)_{n \geq 0}$ are two linearly recurrence sequences then, under some weak technical assumptions, the equation

$$
u_{n}=v_{m}
$$

has only finitely many solutions in positive integers m, n. Moreover, all such solutions are effectively computable (we refer the reader to [1, 20, 21, 23] for results on the intersection of two recurrence sequences). Thus, it is reasonable to think that the intersection $F^{(k)} \cap F^{(\ell)}$ is a finite set for all $2 \leq k<\ell$. In 2005, Noe and Post [18] gave a heuristic argument to show that the expected cardinality of this intersection must be small. Furthermore, they raised the following conjecture
Conjecture 1 (Noe-Post). The Diophantine equation

$$
\begin{equation*}
F_{m}^{(k)}=F_{n}^{(\ell)}, \tag{2}
\end{equation*}
$$

with $\ell>k \geq 2, n>\ell+1$ and $m>k+1$, has only the solutions:

$$
\begin{equation*}
(m, n, \ell, k)=(7,6,3,2) \text { and }(12,11,7,3) \tag{3}
\end{equation*}
$$

That is,

$$
13=F_{7}^{(2)}=F_{6}^{(3)} \quad \text { and } \quad 504=F_{12}^{(3)}=F_{11}^{(7)}
$$

Since the first nonzero terms of $F^{(k)}$ are $1,1,2, \ldots, 2^{k-1}$, then the above conjecture can be rephrased as

Conjecture 2. Let $2 \leq k<\ell$ be positive integer numbers. Then

$$
F^{(k)} \cap F^{(\ell)}=\left\{\begin{array}{rcl}
\{0,1,2,13\}, & \text { if } & (k, \ell)=(2,3) \\
\{0,1,2,4,504\}, & \text { if } & (k, \ell)=(3,7) \\
\{0,1,2,8\}, & \text { if } & k=2 \text { and } \ell>3 \\
\left\{0,1,2, \ldots, 2^{k-1}\right\}, & \text { otherwise } &
\end{array}\right.
$$

We remark that this intersection was confirmed for $(k, \ell)=(2,3)$, by the author [14]. Also, Noe and Post used computational methods to study this intersection (see Section 5). Let us state their result as a lemma, since we shall use it throughout our work.

Lemma 1. The only solutions (m, n, ℓ, k) in positive integers of Diophantine equation (2), with $\ell>k>1, n>\ell+1, m>k+1$ and $\max \{m, n, k, \ell\}<$ 2^{2000}, are listed in (3).

In this paper, we shall use transcendental tools to prove the Noe-Post conjecture. For the sake of preciseness, we stated it as a theorem.

Theorem 1. Conjecture 1 is true.
Let us give a brief overview of our strategy for proving Theorem 1. First, we use a Dresden formula [6, Formula (2)] to get an upper bound for a linear form in three logarithms related to equation (2). After, we use a lower bound due to Matveev to obtain an upper bound for m and n in terms of ℓ. Very recently, Bravo and Luca solved the equation $F_{n}^{(k)}=2^{m}$ and for that they used a nice argument combining some estimates together with the Mean Value Theorem (this can be seen in pages 72 and 73 of [2]). In our case, we must use two times this Bravo and Luca approach to prove our main theorem. In the final section, we present a program for checking the "small" cases. The computations in the paper were performed using Mathematica ${ }^{\circledR}$.

We remark some differences between our work and the one by Bravo and Luca. In their paper, the equation $F_{n}^{(k)}=2^{m}$ was studied. By applying a key method, they get directly an upper bound for $\left|2^{m}-2^{n-2}\right|$. In our case, the equation $F_{m}^{(k)}=F_{n}^{(\ell)}$ needs a little more work, because it is necessary
to apply two times their method to get an upper bound for $\left|2^{n-2}-2^{m-2}\right|$. Moreover, they used a reduction argument due to Dujella and Pethö to solve small cases. In our work, we use a Noe and Post program to deal with these cases. Our presentation is therefore organized in a similar way that the one in the papers [2,3], since we think that those presentations are intuitively clear.

2. Upper bounds for m and n in terms of ℓ

In this section, we shall prove the following result
Lemma 2. If (m, n, ℓ, k) is a solution in positive integers of Diophantine equation (2), with $\ell>k \geq 2, n>\ell+1$ and $m>k+1$. Then

$$
n<m<4.4 \cdot 10^{14} \ell^{8} \log ^{3} \ell
$$

Before proceeding further, we shall recall some facts and properties of these sequences which will be used after.

We know that the characteristic polynomial of $\left(F_{n}^{(k)}\right)_{n}$ is

$$
\psi_{k}(x):=x^{k}-x^{k-1}-\cdots-x-1
$$

and it is irreducible over $\mathbb{Q}[x]$ with just one zero outside the unit circle. That single zero is located between $2\left(1-2^{-k}\right)$ and 2 (as can be seen in [24]). Also, in a recent paper, G. Dresden [6, Theorem 1] gave a simplified "Binet-like" formula for $F_{n}^{(k)}$:

$$
\begin{equation*}
F_{n}^{(k)}=\sum_{i=1}^{k} \frac{\alpha_{i}-1}{2+(k+1)\left(\alpha_{i}-2\right)} \alpha_{i}^{n-1}, \tag{4}
\end{equation*}
$$

for $\alpha=\alpha_{1}, \ldots, \alpha_{k}$ being the roots of $\psi_{k}(x)$. There are many other ways of representing these k-generalized Fibonacci numbers, as can be seen in $[7,8,9,10]$. Also, it was proved in [3, Lemma 1] that

$$
\begin{equation*}
\alpha^{n-2} \leq F_{n}^{(k)} \leq \alpha^{n-1}, \text { for all } n \geq 1 \tag{5}
\end{equation*}
$$

where α is the dominant root of $\psi_{k}(x)$. Also, the contribution of the roots inside the unit circle in formula (4) is almost trivial. More precisely, it was proved in [6] that

$$
\begin{equation*}
\left|F_{n}^{(k)}-g(\alpha, k) \alpha^{n-1}\right|<\frac{1}{2} \tag{6}
\end{equation*}
$$

where we adopt throughout the notation $g(x, y):=(x-1) /(2+(y+1)(x-2))$.
As a last tool to prove Lemma 2, we still use a lower bound for a linear form logarithms à la Baker and such a bound was given by the following result of Matveev (see [16] or Theorem 9.4 in [4]).

Lemma 3. Let $\gamma_{1}, \ldots, \gamma_{t}$ be real algebraic numbers and let b_{1}, \ldots, b_{t} be nonzero rational integer numbers. Let D be the degree of the number field $\mathbb{Q}\left(\gamma_{1}, \ldots, \gamma_{t}\right)$ over \mathbb{Q} and let A_{j} be a positive real number satisfying

$$
A_{j} \geq \max \left\{D h\left(\gamma_{j}\right),\left|\log \gamma_{j}\right|, 0.16\right\} \text { for } j=1, \ldots, t
$$

Assume that

$$
B \geq \max \left\{\left|b_{1}\right|, \ldots,\left|b_{t}\right|\right\}
$$

If $\gamma_{1}^{b_{1}} \cdots \gamma_{t}^{b_{t}} \neq 1$, then

$$
\left|\gamma_{1}^{b_{1}} \cdots \gamma_{t}^{b_{t}}-1\right| \geq \exp \left(-1.4 \cdot 30^{t+3} \cdot t^{4.5} \cdot D^{2}(1+\log D)(1+\log B) A_{1} \cdots A_{t}\right)
$$

As usual, in the above statement, the logarithmic height of an s-degree algebraic number γ is defined as

$$
h(\gamma)=\frac{1}{s}\left(\log |a|+\sum_{j=1}^{s} \log \max \left\{1,\left|\gamma^{(j)}\right|\right\}\right),
$$

where a is the leading coefficient of the minimal polynomial of γ (over \mathbb{Z}) and $\left(\gamma^{(j)}\right)_{1 \leq j \leq s}$ are the conjugates of $\gamma($ over $\mathbb{Q})$.

2.1. The proof of Lemma 2

First, the inequality $n<m$ follows from the facts that the sequences $\left(F_{n}^{(\ell)}\right)_{n}$ and $\left(F_{n}^{(\ell)}\right)_{\ell}$ are nondecreasing together with (2), $n>\ell+1$ and $m>$ $k+1$. By the way, to find an upper bound for m in terms of n, we combine (2) and (5) to obtain

$$
\begin{equation*}
2^{n-1}>\phi^{n-1} \geq F_{n}^{(\ell)}=F_{m}^{(k)} \geq \alpha^{m-2}>(\sqrt{2})^{m-2} \text { and so } 2 n>m \tag{7}
\end{equation*}
$$

where in the last inequality we used that $\alpha>3 / 2>\sqrt{2}$.
Now, we use (6) to get

$$
\left|F_{m}^{(k)}-g(\alpha, k) \alpha^{m-1}\right|<\frac{1}{2} \text { and }\left|F_{n}^{(\ell)}-g(\phi, \ell) \phi^{n-1}\right|<\frac{1}{2},
$$

where α and ϕ are the dominant roots of the recurrences $\left(F_{m}^{(k)}\right)_{m}$ and $\left(F_{n}^{(\ell)}\right)_{n}$, respectively. Combining these inequalities, we obtain

$$
\begin{equation*}
\left|g(\phi, \ell) \phi^{n-1}-g(\alpha, k) \alpha^{m-1}\right|<1 \tag{8}
\end{equation*}
$$

and so

$$
\begin{equation*}
\left|\frac{g(\phi, \ell) \phi^{n-1}}{g(\alpha, k) \alpha^{m-1}}-1\right|<\frac{1}{g(\alpha, k) \alpha^{m-1}}<\frac{4}{\alpha^{m-1}} \tag{9}
\end{equation*}
$$

where we used that $g(\alpha, k)>1 / 4$, since $\alpha>3 / 2$ (for $k \geq 2$) and $2+(k+$ $1)(\alpha-2)<2$. Thus (9) becomes

$$
\begin{equation*}
\left|e^{\Lambda}-1\right|<\frac{4}{\alpha^{m-1}} \tag{10}
\end{equation*}
$$

where $\Lambda:=(n-1) \log \phi+\log (g(\phi, \ell) / g(\alpha, k))-(m-1) \log \alpha$.
Now, we shall apply Lemma 3. To this end, take $t:=3$,

$$
\gamma_{1}:=\phi, \gamma_{2}:=\frac{g(\phi, \ell)}{g(\alpha, k)}, \gamma_{3}:=\alpha
$$

and

$$
b_{1}:=n-1, b_{2}:=1, b_{3}:=m-1 .
$$

For this choice, we have $D=[\mathbb{Q}(\alpha, \phi): \mathbb{Q}] \leq k \ell<\ell^{2}$. Also $h\left(\gamma_{1}\right)=$ $(\log \phi) / \ell<(\log 2) / \ell<0.7 / \ell$ and similarly $h\left(\gamma_{3}\right)<0.7 / k$. In [2, p. 73], an estimate for $h(g(\alpha, k))$ was given. More precisely, it was proved that

$$
h(g(\alpha, k))<\log (k+1)+\log 4 .
$$

Analogously,

$$
h(g(\phi, \ell))<\log (\ell+1)+\log 4
$$

Thus

$$
h\left(\gamma_{2}\right) \leq h(g(\phi, \ell))+h(g(\alpha, k)) \leq \log (\ell+1)+\log (k+1)+2 \log 4
$$

where we used the well-known facts that $h(x y) \leq h(x)+h(y)$ and $h(x)=$ $h\left(x^{-1}\right)$. Also, in [2] was proved that $\left|g\left(\alpha_{i}, k\right)\right|<2$, for all $i=1, \ldots, k$.

Since $\ell>k$ and $m>n$, we can take $A_{1}=A_{3}:=0.7 \ell, A_{2}:=2 \ell^{2} \log (4 \ell+4)$ and $B:=m-1$.

Before applying Lemma 3, it remains us to prove that $e^{\Lambda} \neq 1$. Suppose, towards a contradiction, the contrary, i.e., $g(\alpha, k) \alpha^{m-1}=g(\phi, \ell) \phi^{n-1} \in \mathbb{Q}(\phi)$. So, we can conjugate this relation in $\mathbb{Q}(\phi)$ to get

$$
g\left(\alpha_{s_{i}}, k\right) \alpha_{s_{i}}^{m-1}=g\left(\phi_{i}, \ell\right) \phi_{i}^{n-1}, \text { for } i=1, \ldots, \ell
$$

where $\alpha_{s_{i}}$ are the ℓ conjugates of α over $\mathbb{Q}(\phi)$. Since $g(\alpha, k) \alpha^{m-1}$ has at most k conjugates (over \mathbb{Q}), then each number in the list $\left\{g\left(\alpha_{s_{i}}, k\right) \alpha_{s_{i}}^{m-1}: 1 \leq i \leq\right.$ $\ell\}$ is repeated at least $\ell / k>1$ times. In particular, there exists $t \in\{2, \ldots, \ell\}$, such that $g\left(\alpha_{s_{1}}, k\right) \alpha_{s_{1}}^{m-1}=g\left(\alpha_{s_{t}}, k\right) \alpha_{s_{t}}^{m-1}$. Thus, $g(\phi, k) \phi^{n-1}=g\left(\phi_{t}, \ell\right) \phi_{t}^{n-1}$ and then

$$
\left(\frac{7}{4}\right)^{n-1}<\phi^{n-1}=\left|\frac{g\left(\phi_{t}, \ell\right)}{g(\phi, \ell)}\right|\left|\phi_{t}\right|^{n-1}<8,
$$

where we used that $\phi>2\left(1-2^{-\ell}\right) \geq 7 / 4,\left|g\left(\phi_{t}, \ell\right)\right|<2<8|g(\phi, \ell)|$ and $\left|\phi_{t}\right|<1$ for $t>1$. However, the inequality $(7 / 4)^{n-1}<8$ holds only for $n=1,2,3,4$, but this gives an absurdity, since $n>\ell+1 \geq 3+1=4$. Therefore $e^{\Lambda} \neq 1$.

Now, the conditions to apply Lemma 3 are fulfilled and hence

$$
\left|e^{\Lambda}-1\right|>\exp \left(-1.5 \cdot 10^{11} \ell^{8}(1+2 \log \ell) \log (4 \ell+4)(1+\log (m-1))\right)
$$

Since, $1+2 \log \ell \leq 3 \log \ell$ and $4 \ell+4<\ell^{2.6}$ (for $\ell \geq 3$), we have that

$$
\begin{equation*}
\left|e^{\Lambda}-1\right|>\exp \left(-2.4 \cdot 10^{12} \ell^{8} \log ^{2} \ell \log (m-1)\right) \tag{11}
\end{equation*}
$$

By combining (10) and (11), we get

$$
\frac{m-1}{\log (m-1)}<6.1 \cdot 10^{12} \ell^{8} \log ^{2} \ell
$$

where we used that $\log \alpha>0.4$. Since the function $x / \log x$ is increasing for $x>e$, it is a simple matter to prove that

$$
\begin{equation*}
\frac{x}{\log x}<A \text { implies that } x<2 A \log A . \tag{12}
\end{equation*}
$$

A proof for that can be found in [2, p. 74].
Thus, by using (12) for $x:=m-1$ and $A:=6.1 \cdot 10^{12} \ell^{8} \log ^{2} \ell$, we have that

$$
m-1<2\left(6.1 \cdot 10^{12} \ell^{8} \log ^{2} \ell\right) \log \left(6.1 \cdot 10^{12} \ell^{8} \log ^{2} \ell\right)
$$

Now, the inequality $30+2 \log \log \ell<28 \log \ell$, for $\ell \geq 3$, yields

$$
\log \left(6.1 \cdot 10^{12} \ell^{8} \log ^{2} \ell\right)<30+8 \log \ell+2 \log \log \ell<36 \log \ell
$$

Therefore

$$
\begin{equation*}
m<4.4 \cdot 10^{14} \ell^{8} \log ^{3} \ell \tag{13}
\end{equation*}
$$

The proof is then complete.

3. Upper bound for ℓ in terms of \boldsymbol{k}

Lemma 4. If (m, n, ℓ, k) is a solution in positive integers of equation (2), with $\ell>k>1, n>\ell+1$ and $m>k+1$, then

$$
\begin{equation*}
\ell<1.8 \cdot 10^{16} k^{3} \log ^{3} k \tag{14}
\end{equation*}
$$

Proof. If $\ell \leq 239$, then the inequalities (13) yields $m<8 \cdot 10^{35}$. In particular, $\max \{m, n, \ell, k\}<10^{36}<2^{2000}$. So, by Lemma 1 , the only solutions of equation (2) with the conditions in the statement of Theorem 1 are $(m, n, \ell, k)=(7,6,3,2)$ and $(12,11,7,3)$.

Thus, we may assume that $\ell>239$. Therefore

$$
\begin{equation*}
n<4.4 \cdot 10^{14} \ell^{8} \log ^{3} \ell<2^{\ell / 2} \tag{15}
\end{equation*}
$$

where we used (13) and the fact that $n<m$. By using a key argument due to Bravo and Luca [2, p. 72-73], we get

$$
\begin{equation*}
\left|2^{n-2}-g(\alpha, k) \alpha^{m-1}\right|<\frac{5 \cdot 2^{n-2}}{2^{\ell / 2}} \tag{16}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\left|1-g(\alpha, k) \alpha^{m-1} 2^{-(n-2)}\right|<\frac{5}{2^{\ell / 2}} \tag{17}
\end{equation*}
$$

For applying Lemma 3, it remains us to prove that the left-hand side of (17) is nonzero, or equivalently, $2^{n-2} \neq g(\alpha, k) \alpha^{m-1}$. To obtain a contradiction, we suppose the contrary, i.e., $2^{n-2}=g(\alpha, k) \alpha^{m-1}$. By conjugating the previous relation in the splitting field of $\psi_{k}(x)$, we obtain $2^{n-2}=$ $g\left(\alpha_{i}, k\right) \alpha_{i}^{m-1}$, for $i=1, \ldots, k$. However, when $i>1,\left|\alpha_{i}\right|<1$ and $\left|g\left(\alpha_{i}, k\right)\right|<$ 2. But this leads to the following absurdity

$$
2^{n-2}=\left|g\left(\alpha_{i}, k\right)\right|\left|\alpha_{i}\right|^{m-1}<2
$$

since $n>4$. Therefore $g(\alpha, k) \alpha^{m-1} 2^{-(n-2)} \neq 1$ and then we are in position to apply Lemma 3. For that, take $t:=3$,

$$
\gamma_{1}:=g(\alpha, k), \quad \gamma_{2}:=\alpha, \quad \gamma_{3}:=2
$$

and

$$
b_{1}:=1, b_{2}:=m-1, b_{3}:=-(n-2) .
$$

By some calculations made in Section 2, we see that $A_{1}:=k \log (4 k+$ 4), $A_{2}=A_{3}:=0.7$ are suitable choices. Moreover $D=k$ and $B=m-1$. Thus

$$
\begin{equation*}
\left|1-g(\alpha, k) \alpha^{m-1} 2^{-(n-2)}\right|>\exp \left(-C_{1} k^{3}(1+\log k)(1+\log (m-1)) \log (4 k+4)\right) \tag{18}
\end{equation*}
$$

where we can take $C_{1}=0.75 \cdot 10^{11}$. Combining (17) and (18) together with a straightforward calculation, we get

$$
\begin{equation*}
\ell<4.7 \cdot 10^{12} k^{3} \log ^{2} k \log m \tag{19}
\end{equation*}
$$

On the other hand, $m<4.4 \cdot 10^{14} \ell^{8} \log ^{3} \ell($ by (13)) and so

$$
\begin{equation*}
\log m<\log \left(4.4 \cdot 10^{14} \ell^{8} \log ^{3} \ell\right)<45 \log \ell \tag{20}
\end{equation*}
$$

Turning back to inequality (19), we obtain

$$
\frac{\ell}{\log \ell}<2.2 \cdot 10^{14} k^{3} \log ^{2} k
$$

which implies (by (12)) that

$$
\ell<2\left(2.2 \cdot 10^{14} k^{3} \log ^{2} k\right) \log \left(2.2 \cdot 10^{14} k^{3} \log ^{2} k\right)
$$

Since $\log \left(2.2 \cdot 10^{14} k^{3} \log ^{2} k\right)<39 \log k$, we finally get the desired inequality

$$
\ell<1.8 \cdot 10^{16} k^{3} \log ^{3} k
$$

4. The proof of Theorem 1

If $k \leq 1655$, then $\ell<4 \cdot 10^{28}$ (by (14)). Thus, by (13), one has that $n<m<2 \cdot 10^{248}$. In particular, $\max \{m, n, \ell, k\}<2 \cdot 10^{248}<2^{2000}$. So, Lemma 1 gives the known solutions.

Therefore, we may suppose that $k>1655$. The inequality $\ell<1.8$. $10^{16} k^{3} \log ^{3} k$ together with (13) yield

$$
\begin{aligned}
m & <4.4 \cdot 10^{14}\left(1.8 \cdot 10^{16} k^{3} \log ^{3} k\right)^{8} \log ^{3}\left(1.8 \cdot 10^{16} k^{3} \log ^{3} k\right) \\
& <3 \cdot 10^{148} k^{24} \log ^{27} k<2^{k / 2}
\end{aligned}
$$

where the last inequality holds only because $k>1655$. Now, we use again the key argument of Bravo and Luca to conclude that

$$
\begin{equation*}
\left|2^{m-2}-g(\phi, \ell) \phi^{n-1}\right|<\frac{5 \cdot 2^{m-2}}{2^{k / 2}} \tag{21}
\end{equation*}
$$

Combining (16), (21) and (8), we get

$$
\begin{aligned}
\left|2^{n-2}-2^{m-2}\right| \leq & \left|2^{n-2}-g(\alpha, k) \alpha^{n-1}\right|+\left|g(\alpha, k) \alpha^{n-1}-g(\phi, \ell) \phi^{n-1}\right| \\
& +\left|2^{m-2}-g(\phi, \ell) \phi^{n-1}\right| \\
< & \frac{5 \cdot 2^{n-2}}{2^{\ell / 2}}+1+\frac{5 \cdot 2^{m-2}}{2^{k / 2}}<\frac{11 \cdot 2^{m-2}}{2^{k / 2}}
\end{aligned}
$$

since $n<m, k<\ell$ and $m>k+1$. Therefore

$$
\begin{equation*}
\left|2^{n-m}-1\right|<\frac{11}{2^{k / 2}} \tag{22}
\end{equation*}
$$

Since $n \leq m-1$, then

$$
\frac{1}{2} \leq 1-2^{n-m}=\left|2^{n-m}-1\right|<\frac{11}{2^{k / 2}}
$$

Thus $2^{k / 2}<22$ leading to an absurdity, since $k>1655$.
In conclusion, the only solutions of equation (2) with $\ell>k>1, n>\ell+1$ and $m>k+1$ are those listed in (3). Thus, the proof of Theorem 1 is complete.

5. The program

In this section, for the sake of completeness, we present the Mathematica program (which was kindly sent to us by Noe [19]) used to confirm Lemma 1 :

```
nn = 2000;
f = 2^Range[nn] - 1;
f[[1]] = Infinity;
cnt = 0;
seq = Table[Join[2^Range[i - 1], {2^i - 1}], {i, nn}];
done = False;
While[! done, fMin = Min[f];
```

```
pMin = Flatten[Position[f, fMin]];
If[Length[pMin] > 1, Print[{fMin, pMin}]];
Do[k = pMin[[i]];
    s = Plus @@ seq[[k]];
    seq[[k]] = RotateLeft[seq[[k]]];
    seq[[k, k]] = s;
    f[[k]] = s, {i, Length[pMin]}];
cnt++;
done = (fMin > 2^nn)]; cnt
```

The calculations took roughly 54 hours on 1.80 GHz AMD Triple-Core PC.

Acknowledgements

We would like to express our deepest gratitude to the anonymous referee for carefully examining this paper and providing it a number of important comments. In particular, he/she pointed out the useful reference [2]. This research was partly supported by FAP-DF, FEMAT and CNPq.

References

[1] M. A. Alekseyev, On the intersections of Fibonacci, Pell, and Lucas numbers, Integers 11A (2011).
[2] J. Bravo, F. Luca, Powers of two in generalized Fibonacci sequences, Rev. Colombiana Mat. 46 (2012), 67-79.
[3] J. Bravo, F. Luca, k-generalized Fibonacci numbers with only one distinct digit, Preprint.
[4] Y. Bugeaud, M. Mignotte, S. Siksek, Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers, Ann. of Math. 163 (2006), no. 3, 969-1018.
[5] A. Dujella and A. Pethö, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), 291-306.
[6] G. P. Dresden, A simplified Binet formula for k-generalized Fibonacci numbers, Preprint, arXiv:0905.0304v2 (2011). Accessed 31 December 2011.
[7] D. E. Ferguson, An expression for generalized Fibonacci numbers, Fibonacci Quart. 4 (1966), 270273.
[8] I. Flores, Direct calculation of k-generalized Fibonacci numbers, Fibonacci Quart. 5 (1967), 259-266.
[9] H. Gabai, Generalized Fibonacci k-sequences, Fibonacci Quart. 8 (1970), 3138.
[10] D. Kalman, Generalized Fibonacci numbers by matrix methods, Fibonacci Quart. 20 (1982), 7376.
[11] P. Y. Lin, De Moivre-type identities for the Tribonacci numbers. Fibonacci Quart. 26 (1988), 131-134.
[12] F. Luca, Fibonacci and Lucas numbers with only one distinct digit, Port. Math. 57 (2) (2000), 243-254.
[13] D. Marques and A. Togbé, On terms of a linear recurrence sequence with only one distinct block of digits, Colloq. Math. 124, p. 145-155, 2011.
[14] D. Marques, On the intersection of two distinct k-generalized Fibonacci sequences, To appear in Math. Bohem.
[15] D. Marques, On k-generalized Fibonacci numbers with only one distinct digit, To appear in Util. Math.
[16] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers, Izv. Math. 64 (2000), no. 6, 1217-1269.
[17] M. Mignotte, Intersection des images de certaines suites récurrentes linéaires. Theor. Comput. Sci., 7 (1), (1978), 117-121.
[18] T. D. Noe and J. V. Post, Primes in Fibonacci n-step and Lucas n-step sequences, J. Integer Seq., 8 (2005), Article 05.4.4.
[19] T. D. Noe, personal communication, 27 January 2012.
[20] H. P. Schlickewei, W. M. Schmidt, Linear equations in members of recurrence sequences. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 20 (1993)2, 219-246.
[21] H. P. Schlickewei, W. M. Schmidt, The intersection of recurrence sequences. Acta Arith. 72 (1995) 1-44.
[22] W. R. Spickerman, Binet's formula for the Tribonacci sequence, Fibonacci Quart. 20 (1982), 118-120.
[23] S. K. Stein, The intersection of Fibonacci sequences. Michigan Math. J. 9 (1962) 399-402.
[24] A. Wolfram, Solving generalized Fibonacci recurrences, Fibonacci Quart. 36 (1998), 129-145.

