A New Fibonacci-Lucas Relation

Diego Marques ${ }^{\text {a }}$
University of Brasilia
Brasilia, DF 70910-900
diego@mat.unb.br

Very recently, B. Sury [1] proved an interesting and new Fibonacci-Lucas relation, namely,

$$
2^{m+1} F_{m+1}=\sum_{i=0}^{m} 2^{i} L_{i}
$$

In his proof, Sury used a simple polynomial identity (see [2] for another proof). Naturally, a question arise: is there a similar formula for $3^{m+1} F_{m+1}$? In this note, we shall provide such formula. More precisely

Theorem. For all $m \geq 1$, it holds that

$$
3^{m+1} F_{m+1}=\sum_{i=0}^{m} 3^{i} L_{i}+\sum_{i=0}^{m+1} 3^{i-1} F_{i}
$$

Proof. We can proceed by induction on m. Clearly, the basis case is straightforward, so we may suppose that the identity holds for $m \in\{k-1, k\}$. Now, we sum these relations and by adding $3^{k} L_{k}+2 \cdot 3^{k+1} L_{k+1}+3^{k} F_{k+1}+2$. $3^{k+1} F_{k+3}$ in each side, we arrive at

$$
2\left(\sum_{i=0}^{k+1} 3^{i} L_{i}+\sum_{i=0}^{k+2} 3^{i-1} F_{i}\right)=3^{k}(\underbrace{F_{k}+4 F_{k+1}+L_{k}+6 L_{k+1}+6 F_{k+2}}_{18 F_{k+2}}),
$$

where we used that $L_{t}=F_{t-1}+F_{t+1}$.

References

[1] B. Sury, A polynomial parent to a Fibonacci-Lucas relation. The American Mathematical Monthly 121, No. 3, p. 236.
[2] H. Kwong, An alternate proof of Sury's Fibonacci-Lucas relation, The American Mathematical Monthly 121, No. 6, p. 51.

[^0]
[^0]: ${ }^{\text {a }}$ Supported by FAP-DF and CPNq-Brazil.

