On the Diophantine equation $x^2 + 2^{\alpha}5^{\beta}17^{\gamma} = y^n$

Hemar Godinho, Diego Marques and Alain Togbé

Abstract. In this paper, we find all solutions of the Diophantine equation $x^2 + 2^{\alpha}5^{\beta}17^{\gamma} = y^n$ in positive integers $x, y \ge 1, \ \alpha, \beta, \gamma, n \ge 3$ with $\gcd(x, y) = 1$.

Mathematics Subject Classification (2010). Primary 11D61; Secondary 11Y50.

Keywords. Diophantine equation, exponential equation, primitive divisor theorem.

1. Introduction

The interest for the diophantine equation

$$x^2 + C = y^n, \quad x \ge 1, \quad y \ge 1, \quad n \ge 3$$
 (1.1)

started with a paper due to Lebesgue [18] and dating back to 1850, where he proved that the above equation has no solutions for C=1. More recently, other values of C were considered. Tengely [24] solved the equation with $C=b^2$ and $3 \le b \le 501$. The case where $C=p^k$, a power of a prime number, was studied in [7, 16, 17] for p=2, in [5, 6, 19] for p=3, in [1, 2] for p=5, and in [22] for p=7. For arbitrary primes, some advances can be found in [4]. In [9], the cases with $1 \le C \le 100$ were completely solved. The solutions for the cases $C=2^a\cdot 3^b$, $C=2^a\cdot 5^b$ and $C=5^a\cdot 13^b$, when x and y are coprime, can be found in [3, 20, 21], respectively. Recent progress on the subject were made in the cases $C=5^a\cdot 11^b$, $C=2^a\cdot 11^b$, $C=2^a\cdot 3^b\cdot 11^c$, $C=2^a\cdot 5^b\cdot 13^c$ and can be found in [10, 11, 12, 14].

In this paper, we are interested in solving the Diophantine equation

$$x^2 + 2^{\alpha} 5^{\beta} 17^{\gamma} = y^n$$
, $gcd(x, y) = 1$, $x, y \ge 1$, $\alpha, \beta, \gamma \ge 0$, $n \ge 3$. (1.2)

Our result is the following.

Theorem 1.1. The equation (1.2) has no solution except for:

n=3 the solutions given in Table 1;

n=4 the solutions given in Table 2;

 $n=5 \quad (x,y,\alpha,\beta,\gamma) = (401,11,1,3,0);$

$$n=6 \quad (x,y,\alpha,\beta,\gamma) = (7,3,3,1,1), (23,3,3,2,0); n=8 \quad (x,y,\alpha,\beta,\gamma) = (47,3,8,0,1), (79,3,6,1,0).$$

One can deduce from the above result the following corollary.

Corollary 1.2. The equation

$$x^2 + 5^k 17^l = y^n, \ \, x \geq 1, \ \, \gcd(x,y) = 1, \ \, n \geq 3, \ \, k \geq 0, \, \, l \geq 0 \ \, (1.3)$$
 has only the solution

$$(x, y, k, l, n) = (94, 21, 2, 1, 3), (2034, 161, 3, 2, 3), (8, 3, 0, 1, 4).$$

Therefore, our work extends that of Pink and Rábai [23].

α_1	β_1	γ_1	z	α	β	γ	\overline{x}	y	
1	0	0	1	1	0	0	5	3	
1	0	0	$2 \cdot 5$	7	6	0	383	129	
2	0	0	1	2	0	0	11	5	
4	0	1	5	4	6	1	5369	321	
3	0	2	5	3	6	2	167589	3041	
1	1	1	2^{2}	13	1	1	93	89	
1	1	1	5	1	7	1	1531	171	
1	1	1	1	1	1	1	453	59	
3	1	1	1	3	1	1	7	9	
1	1	2	1	1	1	2	63	19	
2	1	2	1	2	1	2	59	21	
1	1	3	2	7	1	3	5471	321	
1	1	3	5	1	7	3	17052501	66251	
3	2	0	1	3	2	0	23	9	
3	2	0	2	9	2	0	17771	681	
5	2	0	1	5	2	0	261	41	
0	2	1	1	0	2	1	94	21	
0	2	1	2	6	2	1	55157	1449	
3	3	1	2	9	3	1	10763	489	
3	3	1	2^2	15	3	1	4617433	27729	
0	3	2	1	0	3	2	2034	161	
3	3	5	2^5	33	3	5	2037783243169	160733121	
1	4	0	1	1	4	0	9	11	
4	4	1	$2 \cdot 5$	10	10	1	3274947	22169	
5	4	2	$2 \cdot 5$	11	10	2	699659581	788121	
1	5	0	17	1	5	6	916769	9971	
1	5	1	17	1	5	7	846227	14859	
1	5	1	2	7	5	1	17579	681	

Table 1. Solutions for n = 3.

α_1	β_1	γ_1	z	α	β	γ	x	y
1	0	0	2	5	0	0	7	3
0	1	0	2	4	1	0	1	3
0	0	1	2^2	8	0	1	1087	33
0	0	1	1	0	0	1	8	3
0	0	1	2^{2}	8	0	1	47	9
1	0	1	2	5	0	1	9	5
3	0	1	2	7	0	1	15	7
3	0	1	2^{2}	11	0	1	495	23
3 2 2 3	1	0	2	6	1	0	79	9
2	2	1	$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	6	2	1	409	21
3	2	2	2	7	2	2	511	33
1	0	3	2^2	9	0	3	4785	71

Table 2. Solutions for n=4.

2. The case n=3

Lemma 2.1. When n = 3, all the solutions to equation (1.2) are given in Table 1.

For n = 6, we have $(x, y, \alpha, \beta, \gamma) = (7, 3, 3, 1, 1), (23, 3, 3, 2, 0)$.

Proof. Equation (1.2) can be rewritten as

$$\left(\frac{x}{z^3}\right)^2 + A = \left(\frac{y}{z^2}\right)^3,\tag{2.1}$$

where A is sixth-power free and defined implicitly by $2^{\alpha}5^{\beta}17^{\gamma} = Az^{6}$. One can see that $A = 2^{\alpha_1}5^{\beta_1}17^{\gamma_1}$ with $\alpha_1, \beta_1, \gamma_1, \in \{0, 1, 2, 3, 4, 5\}$. We thus get

$$V^2 = U^3 - 2^{\alpha_1} 5^{\beta_1} 17^{\beta_1}, \tag{2.2}$$

with $U=y/z^2$, $V=x/z^3$ and α_1 , β_1 , $\gamma_1 \in \{0,1,2,3,4,5\}$. We need to determine all the $\{2,5,17\}$ -integral points on the above 216 elliptic curves. Recall that if \mathcal{S} is a finite set of prime numbers, then an \mathcal{S} -integer is rational number a/b with coprime integers a and b, where the prime factors of b are in \mathcal{S} . We use MAGMA [13] to determine all the $\{2,5,17\}$ -integer points on the above elliptic curves. Here are a few remarks about the computations:

- 1. We eliminate the solutions with UV = 0 because they yield to xy = 0.
- 2. We consider only solutions such that the numerators of U and V are coprime.
- 3. If U and V are integers then z = 1. So $\alpha_1 = \alpha$, $\beta_1 = \beta$, and $\gamma_1 = \gamma$.
- 4. If U and V are rational numbers which are not integers, then z is determined by the denominators of U and V. The numerators of these rational numbers give x and y. Then α, β, γ are computed knowing that $2^{\alpha}5^{\beta}17^{\gamma} = Az^{6}$.

Therefore, we first determine $(U, V, \alpha_1, \beta_1, \gamma_1)$ and then we use the relations

$$U = \frac{y}{z^2}, \ \ V = \frac{x}{z^3}, \ \ 2^{\alpha}5^{\beta}17^{\gamma} = Az^6,$$

to find the solutions $(x, y, \alpha, \beta, \gamma)$ listed in Table 1.

For n = 6, equation

$$x^2 + 2^{\alpha} 5^{\beta} 17^{\gamma} = y^6 \tag{2.3}$$

becomes equation

$$x^2 + 2^{\alpha} 5^{\beta} 17^{\gamma} = (y^2)^3. \tag{2.4}$$

We look in the list of solutions of equation Table 1 and observe that the only solutions in Table 1 whose y is a perfect square. Therefore, the only solutions to equation (1.2) for n = 6 are the two solutions listed in Theorem 1.1. This completes the proof of Lemma 2.1.

3. The case n=4

Here, we have the following result.

Lemma 3.1. If n = 4, then the only solutions to equation (1.2) are given in Table 2.

If n = 8, then the only solution to equation (1.2) is $(x, y, \alpha, \beta, \gamma) = (47, 3, 8, 0, 1), (79, 3, 6, 1, 0)$.

Proof. Equation (1.2) can be written as

$$\left(\frac{x}{z^2}\right)^2 + A = \left(\frac{y}{z}\right)^4,\tag{3.1}$$

where A is fourth-power free and defined implicitly by $2^{\alpha} 5^{\beta} 17^{\gamma} = Az^4$. One can see that $A = 2^{\alpha_1} 5^{\beta_1} 17^{\gamma_1}$ with $\alpha_1, \beta_1, \gamma_1 \in \{0, 1, 2, 3\}$. Hence, the problem consists of determining the $\{2, 5, 17\}$ -integer points on the totality of the 64 elliptic curves

$$V^2 = U^4 - 2^{\alpha_1} \, 5^{b_1} \, 17^{\gamma_1}, \tag{3.2}$$

with $U=y/z,\ V=x/z^2$ and $\alpha_1,\ \beta_1,\ \gamma_1\in\{0,1,2,3\}$. Here, we use again MAGMA [13] to determine the $\{2,5,17\}$ -integer points on the above elliptic curves. As in Section 2, we first find $(U,V,\alpha_1,\beta_1,\gamma_1)$, and then using the coprimality conditions on x and y and the definition of U and V, we determine all the corresponding solutions $(x,y,\alpha,\beta,\gamma)$ listed in Table 2.

Looking in the list of solutions of equation Table 2, we observe the 8 solutions in Table 2 whose values for y are perfect squares. Thus, the only solutions to equation (1.2) with n=8 are those listed in Theorem 1.1. This concludes the proof of Lemma 3.1.

4. The case n > 5

The aim of this section is to determine all solutions of equation (1.2), for $n \geq 5$ and to prove its unsolubility for n = 7 and $n \geq 9$. The cases when n is of the form $2^a 3^b$ were treated in previous sections. So, apart from these cases, in order to prove that (1.2) has no solution for $n \geq 7$, it suffices to consider n prime. In fact, if $(x, y, \alpha, \beta, \gamma, n)$ is a solution for (1.2) and n = pk, where $p \geq 7$ is prime and k > 1, then $(x, y^k, \alpha, \beta, \gamma, p)$ is also a solution. So, from now on, n will denote a prime number.

Lemma 4.1. The Diophantine equation (1.2) has no solution with $n \geq 5$ prime except for

$$n = 5$$
 $(x, y, \alpha, \beta, \gamma) = (401, 11, 1, 3, 0);$

Proof. Let $(x, y, \alpha, \beta, \gamma, n)$ be a solution for (1.2). We claim that y is odd. In fact, if y is even and since $\gcd(x,y)=1$, one has that x is odd, and then $-2^{\alpha}5^{\beta}17^{\gamma} \equiv x^2-y^n \equiv 1 \pmod 4$, but this contradicts the fact that $-2^{\alpha}5^{\beta}17^{\gamma} \equiv 0, 2$ or $3 \pmod 4$. Now, write equation (1.2) as $x^2+dz^2=y^n$, where

$$d = 2^{\alpha - 2\lfloor \alpha/2 \rfloor} 5^{\beta - 2\lfloor \beta/2 \rfloor} 17^{\gamma - 2\lfloor \gamma/2 \rfloor}.$$

and $z = 2^{\lfloor \alpha/2 \rfloor} 5^{\lfloor \beta/2 \rfloor} 17^{\lfloor \gamma/2 \rfloor}$. Since $x - 2 \lfloor x/2 \rfloor \in \{0, 1\}$, we have

$$d \in \{1, 2, 5, 10, 17, 34, 85, 170\}.$$

We then factor the previous equation over $\mathbb{K} = \mathbb{Q}[i\sqrt{d}] = \mathbb{Q}[\sqrt{-d}]$ as

$$(x + i\sqrt{d}z)(x - i\sqrt{d}z) = y^n.$$

Now, we claim that the ideals $(x+i\sqrt{d}z)\mathcal{O}_{\mathbb{K}}$ and $(x-i\sqrt{d}z)\mathcal{O}_{\mathbb{K}}$ are coprime. If this is not the case, there must exist a prime ideal \mathfrak{p} containing these ideals. Therefore, $x\pm i\sqrt{d}z$ and y^n (and so y) belong to \mathfrak{p} . Thus $2x\in\mathfrak{p}$ and hence either 2 or x belongs to \mathfrak{p} . Since $\gcd(2,y)=\gcd(x,y)=1$, then 1 belongs to the ideals $\langle 2,y\rangle$ and $\langle x,y\rangle$, then $1\in\mathfrak{p}$ leading to an absurdity of $\mathfrak{p}=\mathcal{O}_{\mathbb{K}}$. By the unique factorization of ideals, it follows that $(x+i\sqrt{d}z)\mathcal{O}_{\mathbb{K}}=j^n$, for some ideal \mathfrak{j} of $\mathcal{O}_{\mathbb{K}}$. Using the Mathematica command

NumberFieldClassNumber[Sqrt[-d]]

we obtain that the class number of \mathbb{K} is either 1, 2, 4 or 12 and so coprime to n, then \mathfrak{j} is a principal ideal yielding

$$x + i\sqrt{d}z = \varepsilon \eta^n, \tag{4.1}$$

for some $\eta \in \mathcal{O}_{\mathbb{K}}$ and ε a unit of \mathbb{K} . Since the group of units of \mathbb{K} is a subset of $\{\pm 1, \pm i\}$ and n is odd, then ε is a n-th power. Thus, (4.1) can be reduced to $x+i\sqrt{d}z=\eta^n$. Since \mathbb{K} is an imaginary quadratic field and $-d\not\equiv 1\pmod 4$, then $\{1,i\sqrt{d}\}$ is an integral basis and we can write $\eta=u+i\sqrt{d}v$, for some integers u and v. We then get

$$\frac{\eta^n - \overline{\eta}^n}{\eta - \overline{\eta}} = \frac{2^{\lfloor \alpha/2 \rfloor} 5^{\lfloor \beta/2 \rfloor} 17^{\lfloor \gamma/2 \rfloor}}{v}, \tag{4.2}$$

where, as usual, \overline{w} denotes the complex conjugate of w.

Let $(L_m)_{m>0}$ be the Lucas sequence given by

$$L_m = \frac{\eta^m - \overline{\eta}^m}{\eta - \overline{\eta}}$$
, for $m \ge 0$.

We recall that the Primitive Divisor Theorem for Lucas sequences ensures for primes $n \geq 5$, that there exists a *primitive divisor* for L_n , except for the finitely many (*defective*) pairs $(\eta, \overline{\eta})$ given in Table 1 of [8] (a primitive divisor of L_n is a prime that divides L_n but does not divide $(\eta - \overline{\eta})^2 \prod_{j=1}^{n-1} L_j$). And a helpful property of a primitive divisor p is that $p \equiv \pm 1 \pmod{n}$.

For n = 5, we find in Table 1 in [8] that L_5 has a primitive divisor except for (u, d, v) = (1, 10, 1) which leads to a number $\eta = 1 + i\sqrt{10} \in \mathbb{Q}[i\sqrt{10}]$ (d = 10) is one of the possible values of d described in the beginning of this proof), which gives the solution with n = 5.

Apart from this case, let p be a primitive divisor of L_n , $n \geq 7$. The identity (4.2) implies that $p \in \{2, 5, 17\}$ and so p = 17, since $p \not\equiv \pm 1 \pmod{n}$, for p = 2, 5. Hence, n is a prime dividing 17 ± 1 and so n = 2 or 3 which contradicts the fact that $n \geq 7$. This completes the proof of Theorem 1.1.

Acknowledgement

The first author was partially supported by a grant from CNPq-Brazil. The second author is grateful to FEMAT-Brazil and CNPq-Brazil for the financial support. The third author thanks Professor I. Pink for sending a copy his manuscript [23]. He was also partially supported by Purdue University North Central.

References

- [1] F. S. Abu Muriefah, On the Diophantine equation $x^2 + 5^{2k} = y^n$, Demonstratio Math. 39 (2006), 285–289.
- [2] F. S. Abu Muriefah, S. A. Arif, The Diophantine equation $x^2 + 5^{2k+1} = y^n$, Indian J. Pure Appl. Math. 30 (1999), 229–231.
- [3] F. S. Abu Muriefah, F. Luca, A. Togbé, On the Diophantine equation $x^2 + 5^a \cdot 13^b = y^n$, Glasgow Math. J. 50 (2006), 175–181.
- [4] S. A. Arif, F. S. Abu Muriefah, On the Diophantine equation $x^2 + q^{2k+1} = y^n$, J. Number Theory 95 (2002), 95–100.
- [5] S. A. Arif, F. S. Abu Muriefah, On the Diophantine equation $x^2 + 3^m = y^n$, Int. J. Math. Math. Sci. 21 (1998), 619–620.
- [6] S. A. Arif, F. S. Abu Muriefah, On a Diophantine equation, Bull. Austral. Math. Soc. 57 (1998), 189–198.
- [7] S. A. Arif, F. S. Abu Muriefah, On the Diophantine equation $x^2 + 2^k = y^n$, Int. J. Math. Math. Sci. 20 (1997), 299–304.

- [8] Yu. Bilu, G. Hanrot and P. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte), J. Reine Angew. Math. 539 (2001), 75–122.
- [9] Y. Bugeaud, M. Mignotte et S. Siksek, Classical and modular approaches to exponential Diophantine equations. II. The Lebesgue-Nagell Equation. Compositio Math. 142 (2006), 31-62.
- [10] I. N. Cangül, M. Demirci, G. Soydan, N. Tzanakis, *The Diophantine equation* $x^2 + 5^a \cdot 11^b = y^n$, Funct. Approx. Comment. Math, to appear. (arXiv:1001.2525)
- [11] I. N. Cangül, M. Demirci, F. Luca, A. Pintér, G. Soydan, On the Diophantine equation $x^2 + 2^a \cdot 11^b = y^n$, Fibonacci Quart., to appear.
- [12] I. N. Cangül, M. Demirci, I. Inam, F. Luca, G. Soydan, On the Diophantine equation $x^2+2^a\cdot 3^b\cdot 11^c=y^n$, submitted.
- [13] J. Cannon and C. Playoust, MAGMA: a new computer algebra system, Euromath Bull. 2(1):113–144, (1996).
- [14] E. Goins, F. Luca, A. Togbé, On the Diophantine equation $x^2 + 2^{\alpha}5^{\beta}13^{\gamma} = y^n$. Algorithmic number theory, Lecture Notes in Computer Science, 2008, Volume 5011/2008, 430–442.
- [15] C. Ko, On the Diophantine equation $x^2 = y^n + 1$, $xy \neq 0$, Sci. Sinica 14 (1965), 457–460.
- [16] M. Le, On Cohn's conjecture concerning the Diophantine $x^2 + 2^m = y^n$, Arch. Math. (Basel) 78 (2002), 26–35.
- [17] M. Le, An exponential Diophantine equation, Bull. Austral. Math. Soc. 64 (2001), 99–105.
- [18] V. A. Lebesgue, Sur l'impossibilité en nombres entiers de l'equation $x^m = y^2 + 1$, Nouv. Annal. des Math. 9 (1850), 178–181.
- [19] F. Luca, On a Diophantine equation, Bull. Austral. Math. Soc. 61 (2000), 241–246.
- [20] F. Luca, On the Diophantine equation $x^2 + 2^a \cdot 3^b = y^n$, Int. J. Math. Math. Sci. 29 (2002), 239–244.
- [21] F. Luca, A. Togbé, On the Diophantine equation $x^2 + 2^a \cdot 5^b = y^n$, Int. J. Number Theory 4 (2008), 973–979.
- [22] F. Luca, A. Togbé, On the Diophantine equation $x^2 + 7^{2k} = y^n$, Fibonacci Quart. 54 No 4 (2007), 322–326.
- [23] I. Pink, Z. Rábai, On the Diophantine equation $x^2 + 5^k 17^l = y^n$, submitted.
- [24] Sz. Tengely, On the Diophantine equation $x^2 + a^2 = 2y^p$, Indag. Math. (N.S.) 15 (2004), 291–304.

Hemar Godinho Departamento de Matemática, Universidade de Brasilia, Brazil e-mail: hemar@mat.unb.br

Diego Marques Departamento de Matemática, Universidade de Brasilia, Brazil e-mail: diego@mat.unb.br Alain Togbé Mathematics Department, Purdue University North Central, 1401 S, U.S. 421, Westville, IN 46391, USA e-mail: atogbe@pnc.edu