On the Diophantine equation $x^{2}+2^{\alpha} 5^{\beta} 17^{\gamma}=y^{n}$

Hemar Godinho, Diego Marques and Alain Togbé

Abstract

In this paper, we find all solutions of the Diophantine equation $x^{2}+2^{\alpha} 5^{\beta} 17^{\gamma}=y^{n}$ in positive integers $x, y \geq 1, \alpha, \beta, \gamma, n \geq 3$ with $\operatorname{gcd}(x, y)=1$. Mathematics Subject Classification (2010). Primary 11D61; Secondary 11 Y 50 .

Keywords. Diophantine equation, exponential equation, primitive divisor theorem.

1. Introduction

The interest for the diophantine equation

$$
\begin{equation*}
x^{2}+C=y^{n}, \quad x \geq 1, \quad y \geq 1, \quad n \geq 3 \tag{1.1}
\end{equation*}
$$

started with a paper due to Lebesgue [18] and dating back to 1850, where he proved that the above equation has no solutions for $C=1$. More recently, other values of C were considered. Tengely [24] solved the equation with $C=b^{2}$ and $3 \leq b \leq 501$. The case where $C=p^{k}$, a power of a prime number, was studied in $[7,16,17]$ for $p=2$, in $[5,6,19]$ for $p=3$, in $[1,2]$ for $p=5$, and in [22] for $p=7$. For arbitrary primes, some advances can be found in [4]. In [9], the cases with $1 \leq C \leq 100$ were completely solved. The solutions for the cases $C=2^{a} \cdot 3^{b}, C=2^{a} \cdot 5^{b}$ and $C=5^{a} \cdot 13^{b}$, when x and y are coprime, can be found in [3, 20, 21], respectively. Recent progress on the subject were made in the cases $C=5^{a} \cdot 11^{b}, C=2^{a} \cdot 11^{b}, C=2^{a} \cdot 3^{b} \cdot 11^{c}, C=2^{a} \cdot 5^{b} \cdot 13^{c}$ and can be found in $[10,11,12,14]$.

In this paper, we are interested in solving the Diophantine equation

$$
\begin{equation*}
x^{2}+2^{\alpha} 5^{\beta} 17^{\gamma}=y^{n}, \operatorname{gcd}(x, y)=1, x, y \geq 1, \alpha, \beta, \gamma \geq 0, n \geq 3 \tag{1.2}
\end{equation*}
$$

Our result is the following.
Theorem 1.1. The equation (1.2) has no solution except for:
$n=3 \quad$ the solutions given in Table 1;
$n=4 \quad$ the solutions given in Table 2;
$n=5 \quad(x, y, \alpha, \beta, \gamma)=(401,11,1,3,0)$;

$$
\begin{array}{ll}
n=6 & (x, y, \alpha, \beta, \gamma)=(7,3,3,1,1),(23,3,3,2,0) \\
n=8 & (x, y, \alpha, \beta, \gamma)=(47,3,8,0,1),(79,3,6,1,0)
\end{array}
$$

One can deduce from the above result the following corollary.
Corollary 1.2. The equation

$$
\begin{equation*}
x^{2}+5^{k} 17^{l}=y^{n}, \quad x \geq 1, \quad y \geq 1, \quad \operatorname{gcd}(x, y)=1, \quad n \geq 3, \quad k \geq 0, l \geq 0 \tag{1.3}
\end{equation*}
$$

has only the solution

$$
(x, y, k, l, n)=(94,21,2,1,3), \quad(2034,161,3,2,3),(8,3,0,1,4)
$$

Therefore, our work extends that of Pink and Rábai [23].

α_{1}	β_{1}	γ_{1}	z	α	β	γ	x	y
1	0	0	1	1	0	0	5	3
1	0	0	$2 \cdot 5$	7	6	0	383	129
2	0	0	1	2	0	0	11	5
4	0	1	5	4	6	1	5369	321
3	0	2	5	3	6	2	167589	3041
1	1	1	2^{2}	13	1	1	93	89
1	1	1	5	1	7	1	1531	171
1	1	1	1	1	1	1	453	59
3	1	1	1	3	1	1	7	9
1	1	2	1	1	1	2	63	19
2	1	2	1	2	1	2	59	21
1	1	3	2	7	1	3	5471	321
1	1	3	5	1	7	3	17052501	66251
3	2	0	1	3	2	0	23	9
3	2	0	2	9	2	0	17771	681
5	2	0	1	5	2	0	261	41
0	2	1	1	0	2	1	94	21
0	2	1	2	6	2	1	55157	1449
3	3	1	2	9	3	1	10763	489
3	3	1	2^{2}	15	3	1	4617433	27729
0	3	2	1	0	3	2	2034	161
3	3	5	2^{5}	33	3	5	2037783243169	160733121
1	4	0	1	1	4	0	9	11
4	4	1	$2 \cdot 5$	10	10	1	3274947	22169
5	4	2	$2 \cdot 5$	11	10	2	699659581	788121
1	5	0	17	1	5	6	916769	9971
1	5	1	17	1	5	7	846227	14859
1	5	1	2	7	5	1	17579	681

TABLE 1. Solutions for $n=3$.

α_{1}	β_{1}	γ_{1}	z	α	β	γ	x	y
1	0	0	2	5	0	0	7	3
0	1	0	2	4	1	0	1	3
0	0	1	2^{2}	8	0	1	1087	33
0	0	1	1	0	0	1	8	3
0	0	1	2^{2}	8	0	1	47	9
1	0	1	2	5	0	1	9	5
3	0	1	2	7	0	1	15	7
3	0	1	2^{2}	11	0	1	495	23
2	1	0	2	6	1	0	79	9
2	2	1	2	6	2	1	409	21
3	2	2	2	7	2	2	511	33
1	0	3	2^{2}	9	0	3	4785	71

Table 2. Solutions for $n=4$.

2. The case $n=3$

Lemma 2.1. When $n=3$, all the solutions to equation (1.2) are given in Table 1.

For $n=6$, we have $(x, y, \alpha, \beta, \gamma)=(7,3,3,1,1),(23,3,3,2,0)$.
Proof. Equation (1.2) can be rewritten as

$$
\begin{equation*}
\left(\frac{x}{z^{3}}\right)^{2}+A=\left(\frac{y}{z^{2}}\right)^{3} \tag{2.1}
\end{equation*}
$$

where A is sixth-power free and defined implicitly by $2^{\alpha} 5^{\beta} 17^{\gamma}=A z^{6}$. One can see that $A=2^{\alpha_{1}} 5^{\beta_{1}} 17^{\gamma_{1}}$ with $\alpha_{1}, \beta_{1}, \gamma_{1}, \in\{0,1,2,3,4,5\}$. We thus get

$$
\begin{equation*}
V^{2}=U^{3}-2^{\alpha_{1}} 5^{\beta_{1}} 17^{\beta_{1}} \tag{2.2}
\end{equation*}
$$

with $U=y / z^{2}, V=x / z^{3}$ and $\alpha_{1}, \beta_{1}, \gamma_{1} \in\{0,1,2,3,4,5\}$. We need to determine all the $\{2,5,17\}$-integral points on the above 216 elliptic curves. Recall that if \mathcal{S} is a finite set of prime numbers, then an \mathcal{S}-integer is rational number a / b with coprime integers a and b, where the prime factors of b are in \mathcal{S}. We use MAGMA [13] to determine all the $\{2,5,17\}$-integer points on the above elliptic curves. Here are a few remarks about the computations:

1. We eliminate the solutions with $U V=0$ because they yield to $x y=0$.
2. We consider only solutions such that the numerators of U and V are coprime.
3. If U and V are integers then $z=1$. So $\alpha_{1}=\alpha, \beta_{1}=\beta$, and $\gamma_{1}=\gamma$.
4. If U and V are rational numbers which are not integers, then z is determined by the denominators of U and V. The numerators of these rational numbers give x and y. Then α, β, γ are computed knowing that $2^{\alpha} 5^{\beta} 17^{\gamma}=A z^{6}$.

Therefore, we first determine $\left(U, V, \alpha_{1}, \beta_{1}, \gamma_{1}\right)$ and then we use the relations

$$
U=\frac{y}{z^{2}}, \quad V=\frac{x}{z^{3}}, \quad 2^{\alpha} 5^{\beta} 17^{\gamma}=A z^{6}
$$

to find the solutions $(x, y, \alpha, \beta, \gamma)$ listed in Table 1.
For $n=6$, equation

$$
\begin{equation*}
x^{2}+2^{\alpha} 5^{\beta} 17^{\gamma}=y^{6} \tag{2.3}
\end{equation*}
$$

becomes equation

$$
\begin{equation*}
x^{2}+2^{\alpha} 5^{\beta} 17^{\gamma}=\left(y^{2}\right)^{3} \tag{2.4}
\end{equation*}
$$

We look in the list of solutions of equation Table 1 and observe that the only solutions in Table 1 whose y is a perfect square. Therefore, the only solutions to equation (1.2) for $n=6$ are the two solutions listed in Theorem 1.1. This completes the proof of Lemma 2.1.

3. The case $n=4$

Here, we have the following result.
Lemma 3.1. If $n=4$, then the only solutions to equation (1.2) are given in Table 2.

If $n=8$, then the only solution to equation (1.2) is $(x, y, \alpha, \beta, \gamma)=$ $(47,3,8,0,1),(79,3,6,1,0)$.

Proof. Equation (1.2) can be written as

$$
\begin{equation*}
\left(\frac{x}{z^{2}}\right)^{2}+A=\left(\frac{y}{z}\right)^{4} \tag{3.1}
\end{equation*}
$$

where A is fourth-power free and defined implicitly by $2^{\alpha} 5^{\beta} 17^{\gamma}=A z^{4}$. One can see that $A=2^{\alpha_{1}} 5^{\beta_{1}} 17^{\gamma_{1}}$ with $\alpha_{1}, \beta_{1}, \gamma_{1} \in\{0,1,2,3\}$. Hence, the problem consists of determining the $\{2,5,17\}$-integer points on the totality of the 64 elliptic curves

$$
\begin{equation*}
V^{2}=U^{4}-2^{\alpha_{1}} 5^{b_{1}} 17^{\gamma_{1}} \tag{3.2}
\end{equation*}
$$

with $U=y / z, V=x / z^{2}$ and $\alpha_{1}, \beta_{1}, \gamma_{1} \in\{0,1,2,3\}$. Here, we use again MAGMA [13] to determine the $\{2,5,17\}$-integer points on the above elliptic curves. As in Section 2, we first find ($U, V, \alpha_{1}, \beta_{1}, \gamma_{1}$), and then using the coprimality conditions on x and y and the definition of U and V, we determine all the corresponding solutions $(x, y, \alpha, \beta, \gamma)$ listed in Table 2.

Looking in the list of solutions of equation Table 2, we observe the 8 solutions in Table 2 whose values for y are perfect squares. Thus, the only solutions to equation (1.2) with $n=8$ are those listed in Theorem 1.1. This concludes the proof of Lemma 3.1.

4. The case $n \geq 5$

The aim of this section is to determine all solutions of equation (1.2), for $n \geq 5$ and to prove its unsolubility for $n=7$ and $n \geq 9$. The cases when n is of the form $2^{a} 3^{b}$ were treated in previous sections. So, apart from these cases, in order to prove that (1.2) has no solution for $n \geq 7$, it suffices to consider n prime. In fact, if $(x, y, \alpha, \beta, \gamma, n)$ is a solution for (1.2) and $n=p k$, where $p \geq 7$ is prime and $k>1$, then $\left(x, y^{k}, \alpha, \beta, \gamma, p\right)$ is also a solution. So, from now on, n will denote a prime number.

Lemma 4.1. The Diophantine equation (1.2) has no solution with $n \geq 5$ prime except for

$$
n=5 \quad(x, y, \alpha, \beta, \gamma)=(401,11,1,3,0)
$$

Proof. Let $(x, y, \alpha, \beta, \gamma, n)$ be a solution for (1.2). We claim that y is odd. In fact, if y is even and since $\operatorname{gcd}(x, y)=1$, one has that x is odd, and then $-2^{\alpha} 5^{\beta} 17^{\gamma} \equiv x^{2}-y^{n} \equiv 1(\bmod 4)$, but this contradicts the fact that $-2^{\alpha} 5^{\beta} 17^{\gamma} \equiv 0,2$ or $3(\bmod 4)$. Now, write equation (1.2) as $x^{2}+d z^{2}=y^{n}$, where

$$
d=2^{\alpha-2\lfloor\alpha / 2\rfloor} 5^{\beta-2\lfloor\beta / 2\rfloor} 17^{\gamma-2\lfloor\gamma / 2\rfloor},
$$

and $z=2^{\lfloor\alpha / 2\rfloor} 5^{\lfloor\beta / 2\rfloor} 17^{\lfloor\gamma / 2\rfloor}$. Since $x-2\lfloor x / 2\rfloor \in\{0,1\}$, we have

$$
d \in\{1,2,5,10,17,34,85,170\}
$$

We then factor the previous equation over $\mathbb{K}=\mathbb{Q}[i \sqrt{d}]=\mathbb{Q}[\sqrt{-d}]$ as

$$
(x+i \sqrt{d} z)(x-i \sqrt{d} z)=y^{n}
$$

Now, we claim that the ideals $(x+i \sqrt{d} z) \mathcal{O}_{\mathbb{K}}$ and $(x-i \sqrt{d} z) \mathcal{O}_{\mathbb{K}}$ are coprime. If this is not the case, there must exist a prime ideal \mathfrak{p} containing these ideals. Therefore, $x \pm i \sqrt{d} z$ and y^{n} (and so y) belong to \mathfrak{p}. Thus $2 x \in \mathfrak{p}$ and hence either 2 or x belongs to \mathfrak{p}. Since $\operatorname{gcd}(2, y)=\operatorname{gcd}(x, y)=1$, then 1 belongs to the ideals $\langle 2, y\rangle$ and $\langle x, y\rangle$, then $1 \in \mathfrak{p}$ leading to an absurdity of $\mathfrak{p}=\mathcal{O}_{\mathbb{K}}$. By the unique factorization of ideals, it follows that $(x+i \sqrt{d} z) \mathcal{O}_{\mathbb{K}}=$ \mathfrak{j}^{n}, for some ideal \mathfrak{j} of $\mathcal{O}_{\mathbb{K}}$. Using the Mathematica command

$$
\text { NumberFieldClassNumber }[\text { Sqrt }[-d]]
$$

we obtain that the class number of \mathbb{K} is either $1,2,4$ or 12 and so coprime to n, then \mathfrak{j} is a principal ideal yielding

$$
\begin{equation*}
x+i \sqrt{d} z=\varepsilon \eta^{n}, \tag{4.1}
\end{equation*}
$$

for some $\eta \in \mathcal{O}_{\mathbb{K}}$ and ε a unit of \mathbb{K}. Since the group of units of \mathbb{K} is a subset of $\{ \pm 1, \pm i\}$ and n is odd, then ε is a n-th power. Thus, (4.1) can be reduced to $x+i \sqrt{d} z=\eta^{n}$. Since \mathbb{K} is an imaginary quadratic field and $-d \not \equiv 1(\bmod 4)$, then $\{1, i \sqrt{d}\}$ is an integral basis and we can write $\eta=u+i \sqrt{d} v$, for some integers u and v. We then get

$$
\begin{equation*}
\frac{\eta^{n}-\bar{\eta}^{n}}{\eta-\bar{\eta}}=\frac{2^{\lfloor\alpha / 2\rfloor} 5^{\lfloor\beta / 2\rfloor} 17^{\lfloor\gamma / 2\rfloor}}{v} \tag{4.2}
\end{equation*}
$$

where, as usual, \bar{w} denotes the complex conjugate of w.
Let $\left(L_{m}\right)_{m \geq 0}$ be the Lucas sequence given by

$$
L_{m}=\frac{\eta^{m}-\bar{\eta}^{m}}{\eta-\bar{\eta}}, \text { for } m \geq 0
$$

We recall that the Primitive Divisor Theorem for Lucas sequences ensures for primes $n \geq 5$, that there exists a primitive divisor for L_{n}, except for the finitely many (defective) pairs ($\eta, \bar{\eta}$) given in Table 1 of [8] (a primitive divisor of L_{n} is a prime that divides L_{n} but does not divide $\left.(\eta-\bar{\eta})^{2} \prod_{j=1}^{n-1} L_{j}\right)$. And a helpful property of a primitive divisor p is that $p \equiv \pm 1(\bmod n)$.

For $n=5$, we find in Table 1 in [8] that L_{5} has a primitive divisor except for $(u, d, v)=(1,10,1)$ which leads to a number $\eta=1+i \sqrt{10} \in \mathbb{Q}[i \sqrt{10}]$ ($d=10$ is one of the possible values of d described in the beginning of this proof), which gives the solution with $n=5$.

Apart from this case, let p be a primitive divisor of $L_{n}, n \geq 7$. The identity (4.2) implies that $p \in\{2,5,17\}$ and so $p=17$, since $p \not \equiv \pm 1(\bmod n)$, for $p=2,5$. Hence, n is a prime dividing 17 ± 1 and so $n=2$ or 3 which contradicts the fact that $n \geq 7$. This completes the proof of Theorem 1.1.

Acknowledgement

The first author was partially supported by a grant from CNPq-Brazil. The second author is grateful to FEMAT-Brazil and CNPq-Brazil for the financial support. The third author thanks Professor I. Pink for sending a copy his manuscript [23]. He was also partially supported by Purdue University North Central.

References

[1] F. S. Abu Muriefah, On the Diophantine equation $x^{2}+5^{2 k}=y^{n}$, Demonstratio Math. 39 (2006), 285-289.
[2] F. S. Abu Muriefah, S. A. Arif, The Diophantine equation $x^{2}+5^{2 k+1}=y^{n}$, Indian J. Pure Appl. Math. 30 (1999), 229-231.
[3] F. S. Abu Muriefah, F. Luca, A. Togbé, On the Diophantine equation $x^{2}+5^{a}$. $13^{b}=y^{n}$, Glasgow Math. J. 50 (2006), 175-181.
[4] S. A. Arif, F. S. Abu Muriefah, On the Diophantine equation $x^{2}+q^{2 k+1}=y^{n}$, J. Number Theory 95 (2002), 95-100.
[5] S. A. Arif, F. S. Abu Muriefah, On the Diophantine equation $x^{2}+3^{m}=y^{n}$, Int. J. Math. Math. Sci. 21 (1998), 619-620.
[6] S. A. Arif, F. S. Abu Muriefah, On a Diophantine equation, Bull. Austral. Math. Soc. 57 (1998), 189-198.
[7] S. A. Arif, F. S. Abu Muriefah, On the Diophantine equation $x^{2}+2^{k}=y^{n}$, Int. J. Math. Math. Sci. 20 (1997), 299-304.
[8] Yu. Bilu, G. Hanrot and P. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte), J. Reine Angew. Math. 539 (2001), 75-122.
[9] Y. Bugeaud, M. Mignotte et S. Siksek, Classical and modular approaches to exponential Diophantine equations. II. The Lebesgue-Nagell Equation. Compositio Math. 142 (2006), 31-62.
[10] I. N. Cangül, M. Demirci, G. Soydan, N. Tzanakis, The Diophantine equation $x^{2}+5^{a} \cdot 11^{b}=y^{n}$, Funct. Approx. Comment. Math, to appear. (arXiv:1001.2525)
[11] I. N. Cangül, M. Demirci, F. Luca, A. Pintér, G. Soydan, On the Diophantine equation $x^{2}+2^{a} \cdot 11^{b}=y^{n}$, Fibonacci Quart., to appear.
[12] I. N. Cangül, M. Demirci, I. Inam, F. Luca, G. Soydan, On the Diophantine equation $x^{2}+2^{a} \cdot 3^{b} \cdot 11^{c}=y^{n}$, submitted.
[13] J. Cannon and C. Playoust, MAGMA: a new computer algebra system, Euromath Bull. 2(1):113-144, (1996).
[14] E. Goins, F. Luca, A. Togbé, On the Diophantine equation $x^{2}+2^{\alpha} 5^{\beta} 13^{\gamma}=y^{n}$. Algorithmic number theory, Lecture Notes in Computer Science, 2008, Volume 5011/2008, 430-442.
[15] C. Ko, On the Diophantine equation $x^{2}=y^{n}+1, x y \neq 0$, Sci. Sinica 14 (1965), 457-460.
[16] M. Le, On Cohn's conjecture concerning the Diophantine $x^{2}+2^{m}=y^{n}$, Arch. Math. (Basel) 78 (2002), 26-35.
[17] M. Le, An exponential Diophantine equation, Bull. Austral. Math. Soc. 64 (2001), 99-105.
[18] V. A. Lebesgue, Sur l'impossibilité en nombres entiers de l'equation $x^{m}=$ $y^{2}+1$, Nouv. Annal. des Math. 9 (1850), 178-181.
[19] F. Luca, On a Diophantine equation, Bull. Austral. Math. Soc. 61 (2000), 241-246.
[20] F. Luca, On the Diophantine equation $x^{2}+2^{a} \cdot 3^{b}=y^{n}$, Int. J. Math. Math. Sci. 29 (2002), 239-244.
[21] F. Luca, A. Togbé, On the Diophantine equation $x^{2}+2^{a} \cdot 5^{b}=y^{n}$, Int. J. Number Theory 4 (2008), 973-979.
[22] F. Luca, A. Togbé, On the Diophantine equation $x^{2}+7^{2 k}=y^{n}$, Fibonacci Quart. 54 No 4 (2007), 322-326.
[23] I. Pink, Z. Rábai, On the Diophantine equation $x^{2}+5^{k} 17^{l}=y^{n}$, submitted.
[24] Sz. Tengely, On the Diophantine equation $x^{2}+a^{2}=2 y^{p}$, Indag. Math. (N.S.) 15 (2004), 291-304.

Hemar Godinho
Departamento de Matemática, Universidade de Brasilia, Brazil
e-mail: hemar@mat.unb.br
Diego Marques
Departamento de Matemática, Universidade de Brasilia, Brazil
e-mail: diego@mat.unb.br

Alain Togbé
Mathematics Department,
Purdue University North Central,
1401 S, U.S. 421, Westville, IN 46391, USA
e-mail: atogbe@pnc.edu

