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Abstract. In this paper, we find all solutions of the Diophantine equation
x2 + 2α5β17γ = yn in positive integers x, y ≥ 1, α, β, γ, n ≥ 3 with
gcd(x, y) = 1.
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1. Introduction

The interest for the diophantine equation

x2 + C = yn, x ≥ 1, y ≥ 1, n ≥ 3 (1.1)

started with a paper due to Lebesgue [18] and dating back to 1850, where he
proved that the above equation has no solutions for C = 1. More recently,
other values of C were considered. Tengely [24] solved the equation with
C = b2 and 3 ≤ b ≤ 501. The case where C = pk, a power of a prime number,
was studied in [7, 16, 17] for p = 2, in [5, 6, 19] for p = 3, in [1, 2] for p = 5,
and in [22] for p = 7. For arbitrary primes, some advances can be found in [4].
In [9], the cases with 1 ≤ C ≤ 100 were completely solved. The solutions for
the cases C = 2a ·3b, C = 2a ·5b and C = 5a ·13b, when x and y are coprime,
can be found in [3, 20, 21], respectively. Recent progress on the subject were
made in the cases C = 5a · 11b, C = 2a · 11b, C = 2a · 3b · 11c, C = 2a · 5b · 13c

and can be found in [10, 11, 12, 14].
In this paper, we are interested in solving the Diophantine equation

x2 + 2α5β17γ = yn, gcd(x, y) = 1, x, y ≥ 1, α, β, γ ≥ 0, n ≥ 3. (1.2)

Our result is the following.

Theorem 1.1. The equation (1.2) has no solution except for:
n = 3 the solutions given in Table 1;
n = 4 the solutions given in Table 2;
n = 5 (x, y, α, β, γ) = (401, 11, 1, 3, 0);
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n = 6 (x, y, α, β, γ) = (7, 3, 3, 1, 1), (23, 3, 3, 2, 0);
n = 8 (x, y, α, β, γ) = (47, 3, 8, 0, 1), (79, 3, 6, 1, 0).

One can deduce from the above result the following corollary.

Corollary 1.2. The equation

x2 + 5k17l = yn, x ≥ 1, y ≥ 1, gcd(x, y) = 1, n ≥ 3, k ≥ 0, l ≥ 0 (1.3)

has only the solution

(x, y, k, l, n) = (94, 21, 2, 1, 3), (2034, 161, 3, 2, 3), (8, 3, 0, 1, 4).

Therefore, our work extends that of Pink and Rábai [23].

α1 β1 γ1 z α β γ x y
1 0 0 1 1 0 0 5 3
1 0 0 2 · 5 7 6 0 383 129
2 0 0 1 2 0 0 11 5
4 0 1 5 4 6 1 5369 321
3 0 2 5 3 6 2 167589 3041
1 1 1 22 13 1 1 93 89
1 1 1 5 1 7 1 1531 171
1 1 1 1 1 1 1 453 59
3 1 1 1 3 1 1 7 9
1 1 2 1 1 1 2 63 19
2 1 2 1 2 1 2 59 21
1 1 3 2 7 1 3 5471 321
1 1 3 5 1 7 3 17052501 66251
3 2 0 1 3 2 0 23 9
3 2 0 2 9 2 0 17771 681
5 2 0 1 5 2 0 261 41
0 2 1 1 0 2 1 94 21
0 2 1 2 6 2 1 55157 1449
3 3 1 2 9 3 1 10763 489
3 3 1 22 15 3 1 4617433 27729
0 3 2 1 0 3 2 2034 161
3 3 5 25 33 3 5 2037783243169 160733121
1 4 0 1 1 4 0 9 11
4 4 1 2 · 5 10 10 1 3274947 22169
5 4 2 2 · 5 11 10 2 699659581 788121
1 5 0 17 1 5 6 916769 9971
1 5 1 17 1 5 7 846227 14859
1 5 1 2 7 5 1 17579 681

Table 1. Solutions for n = 3.
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α1 β1 γ1 z α β γ x y
1 0 0 2 5 0 0 7 3
0 1 0 2 4 1 0 1 3
0 0 1 22 8 0 1 1087 33
0 0 1 1 0 0 1 8 3
0 0 1 22 8 0 1 47 9
1 0 1 2 5 0 1 9 5
3 0 1 2 7 0 1 15 7
3 0 1 22 11 0 1 495 23
2 1 0 2 6 1 0 79 9
2 2 1 2 6 2 1 409 21
3 2 2 2 7 2 2 511 33
1 0 3 22 9 0 3 4785 71

Table 2. Solutions for n = 4.

2. The case n = 3

Lemma 2.1. When n = 3, all the solutions to equation (1.2) are given in
Table 1.

For n = 6, we have (x, y, α, β, γ) = (7, 3, 3, 1, 1), (23, 3, 3, 2, 0).

Proof. Equation (1.2) can be rewritten as( x
z3

)2
+A =

( y
z2

)3
, (2.1)

where A is sixth-power free and defined implicitly by 2α5β17γ = Az6. One
can see that A = 2α15β117γ1 with α1, β1, γ1, ∈ {0, 1, 2, 3, 4, 5}. We thus get

V 2 = U3 − 2α15β117β1 , (2.2)

with U = y/z2, V = x/z3 and α1, β1, γ1 ∈ {0, 1, 2, 3, 4, 5}. We need to
determine all the {2, 5, 17}-integral points on the above 216 elliptic curves.
Recall that if S is a finite set of prime numbers, then an S-integer is rational
number a/b with coprime integers a and b, where the prime factors of b are
in S. We use MAGMA [13] to determine all the {2, 5, 17}-integer points on the
above elliptic curves. Here are a few remarks about the computations:

1. We eliminate the solutions with UV = 0 because they yield to xy = 0.
2. We consider only solutions such that the numerators of U and V are

coprime.
3. If U and V are integers then z = 1. So α1 = α, β1 = β, and γ1 = γ.
4. If U and V are rational numbers which are not integers, then z is de-

termined by the denominators of U and V . The numerators of these
rational numbers give x and y. Then α, β, γ are computed knowing that
2α5β17γ = Az6.
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Therefore, we first determine (U, V, α1, β1, γ1) and then we use the relations

U =
y

z2
, V =

x

z3
, 2α5β17γ = Az6,

to find the solutions (x, y, α, β, γ) listed in Table 1.

For n = 6, equation

x2 + 2α5β17γ = y6 (2.3)

becomes equation

x2 + 2α5β17γ =
(
y2
)3
. (2.4)

We look in the list of solutions of equation Table 1 and observe that the only
solutions in Table 1 whose y is a perfect square. Therefore, the only solutions
to equation (1.2) for n = 6 are the two solutions listed in Theorem 1.1. This
completes the proof of Lemma 2.1. �

3. The case n = 4

Here, we have the following result.

Lemma 3.1. If n = 4, then the only solutions to equation (1.2) are given in
Table 2.

If n = 8, then the only solution to equation (1.2) is (x, y, α, β, γ) =
(47, 3, 8, 0, 1), (79, 3, 6, 1, 0).

Proof. Equation (1.2) can be written as( x
z2

)2
+A =

(y
z

)4
, (3.1)

where A is fourth-power free and defined implicitly by 2α 5β 17γ = Az4. One
can see that A = 2α1 5β1 17γ1 with α1, β1, γ1 ∈ {0, 1, 2, 3}. Hence, the
problem consists of determining the {2, 5, 17}-integer points on the totality
of the 64 elliptic curves

V 2 = U4 − 2α1 5b1 17γ1 , (3.2)

with U = y/z, V = x/z2 and α1, β1, γ1 ∈ {0, 1, 2, 3}. Here, we use again
MAGMA [13] to determine the {2, 5, 17}-integer points on the above elliptic
curves. As in Section 2, we first find (U, V, α1, β1, γ1), and then using the
coprimality conditions on x and y and the definition of U and V , we determine
all the corresponding solutions (x, y, α, β, γ) listed in Table 2.

Looking in the list of solutions of equation Table 2, we observe the 8
solutions in Table 2 whose values for y are perfect squares. Thus, the only
solutions to equation (1.2) with n = 8 are those listed in Theorem 1.1. This
concludes the proof of Lemma 3.1. �
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4. The case n ≥ 5

The aim of this section is to determine all solutions of equation (1.2), for
n ≥ 5 and to prove its unsolubility for n = 7 and n ≥ 9. The cases when n is
of the form 2a3b were treated in previous sections. So, apart from these cases,
in order to prove that (1.2) has no solution for n ≥ 7, it suffices to consider
n prime. In fact, if (x, y, α, β, γ, n) is a solution for (1.2) and n = pk, where
p ≥ 7 is prime and k > 1, then (x, yk, α, β, γ, p) is also a solution. So, from
now on, n will denote a prime number.

Lemma 4.1. The Diophantine equation (1.2) has no solution with n ≥ 5 prime
except for

n = 5 (x, y, α, β, γ) = (401, 11, 1, 3, 0);

Proof. Let (x, y, α, β, γ, n) be a solution for (1.2). We claim that y is odd.
In fact, if y is even and since gcd(x, y) = 1, one has that x is odd, and
then −2α5β17γ ≡ x2 − yn ≡ 1 (mod 4), but this contradicts the fact that
−2α5β17γ ≡ 0, 2 or 3 (mod 4). Now, write equation (1.2) as x2 + dz2 = yn,
where

d = 2α−2bα/2c5β−2bβ/2c17γ−2bγ/2c,

and z = 2bα/2c5bβ/2c17bγ/2c. Since x− 2bx/2c ∈ {0, 1}, we have

d ∈ {1, 2, 5, 10, 17, 34, 85, 170}.

We then factor the previous equation over K = Q[i
√
d] = Q[

√
−d] as

(x+ i
√
dz)(x− i

√
dz) = yn.

Now, we claim that the ideals (x + i
√
dz)OK and (x − i

√
dz)OK are

coprime. If this is not the case, there must exist a prime ideal p containing
these ideals. Therefore, x± i

√
dz and yn (and so y) belong to p. Thus 2x ∈ p

and hence either 2 or x belongs to p. Since gcd(2, y) = gcd(x, y) = 1, then 1
belongs to the ideals 〈2, y〉 and 〈x, y〉, then 1 ∈ p leading to an absurdity of

p = OK. By the unique factorization of ideals, it follows that (x+ i
√
dz)OK =

jn, for some ideal j of OK. Using the Mathematica command

NumberFieldClassNumber[Sqrt[-d]]

we obtain that the class number of K is either 1, 2, 4 or 12 and so coprime to
n, then j is a principal ideal yielding

x+ i
√
dz = εηn, (4.1)

for some η ∈ OK and ε a unit of K. Since the group of units of K is a subset of
{±1,±i} and n is odd, then ε is a n-th power. Thus, (4.1) can be reduced to

x+ i
√
dz = ηn. Since K is an imaginary quadratic field and −d 6≡ 1 (mod 4),

then {1, i
√
d} is an integral basis and we can write η = u + i

√
dv, for some

integers u and v. We then get

ηn − ηn

η − η
=

2bα/2c5bβ/2c17bγ/2c

v
, (4.2)
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where, as usual, w denotes the complex conjugate of w.
Let (Lm)m≥0 be the Lucas sequence given by

Lm =
ηm − ηm

η − η
, for m ≥ 0.

We recall that the Primitive Divisor Theorem for Lucas sequences en-
sures for primes n ≥ 5, that there exists a primitive divisor for Ln, except for
the finitely many (defective) pairs (η, η) given in Table 1 of [8] (a primitive

divisor of Ln is a prime that divides Ln but does not divide (η−η)2
∏n−1
j=1 Lj).

And a helpful property of a primitive divisor p is that p ≡ ±1 (mod n).
For n = 5, we find in Table 1 in [8] that L5 has a primitive divisor except

for (u, d, v) = (1, 10, 1) which leads to a number η = 1 + i
√

10 ∈ Q[i
√

10]
(d = 10 is one of the possible values of d described in the beginning of this
proof), which gives the solution with n = 5.

Apart from this case, let p be a primitive divisor of Ln, n ≥ 7. The
identity (4.2) implies that p ∈ {2, 5, 17} and so p = 17, since p 6≡ ±1 (mod n),
for p = 2, 5. Hence, n is a prime dividing 17 ± 1 and so n = 2 or 3 which
contradicts the fact that n ≥ 7. This completes the proof of Theorem 1.1.

�
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[18] V. A. Lebesgue, Sur l’impossibilité en nombres entiers de l’equation xm =
y2 + 1, Nouv. Annal. des Math. 9 (1850), 178–181.

[19] F. Luca, On a Diophantine equation, Bull. Austral. Math. Soc. 61 (2000),
241–246.

[20] F. Luca, On the Diophantine equation x2 + 2a · 3b = yn, Int. J. Math. Math.
Sci. 29 (2002), 239–244.
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