A FAMILY OF MINIMAL IMMERSED TORI IN \mathbb{S}^{3} WITH DENSE PRINCIPAL LINES

RONALDO GARCIA AND DIEGO MARQUES

Abstract

In this paper is given an example of a discrete family of minimal tori \mathbb{T}^{2} immersed in \mathbb{S}^{3} such that all their principal lines are dense. A relation between dynamics and transcendental number theory is established.

MSC 2010: 11J89, 53A05, 53A30

1. Introduction

Let $\alpha: \mathbb{M} \rightarrow \mathbb{S}^{3}$ be an immersion of class $C^{r}, r \geq 3$, of a smooth, compact and oriented two-dimensional manifold \mathbb{M} into the three dimensional sphere \mathbb{S}^{3} endowed with the canonical inner product $\langle.,$.$\rangle of \mathbb{R}^{4}$.

The Fundamental Forms of α at a point p of \mathbb{M} are the symmetric bilinear forms on $\mathbb{T}_{p} \mathbb{M}$ defined as follows, see [16]:

$$
\begin{aligned}
I_{\alpha}(p ; v, w) & =\langle D \alpha(p ; v), D \alpha(p ; w)\rangle, \\
I I_{\alpha}(p ; v, w) & =\left\langle-D N_{\alpha}(p ; v), D \alpha(p ; w)\right\rangle .
\end{aligned}
$$

Here, N_{α} is the positive unit normal of the immersion α and $\left\langle N_{\alpha}, \alpha\right\rangle=0$.
In a local chart (u, v) the two fundamental forms are denoted by $I_{\alpha}=$ $E_{\alpha} d u^{2}+2 F_{\alpha} d u d v+G_{\alpha} d v^{2}$ and $I I_{\alpha}=e_{\alpha} d u^{2}+2 f_{\alpha} d u d v+g_{\alpha} d v^{2}$.

We recall that in \mathbb{S}^{3}, with the second fundamental form relative to the normal vector $N=\alpha \wedge \alpha_{u} \wedge \alpha_{v}$, it follows that:

$$
e=\frac{\operatorname{det}\left[\alpha, \alpha_{u}, \alpha_{v}, \alpha_{u u}\right]}{\sqrt{E_{\alpha} G_{\alpha}-F_{\alpha}^{2}}}, f=\frac{\operatorname{det}\left[\alpha, \alpha_{u}, \alpha_{v}, \alpha_{u v}\right]}{\sqrt{E_{\alpha} G_{\alpha}-F_{\alpha}^{2}}}, g=\frac{\operatorname{det}\left[\alpha, \alpha_{u}, \alpha_{v}, \alpha_{v v}\right]}{\sqrt{E_{\alpha} G_{\alpha}-F_{\alpha}^{2}}} .
$$

The eigenvalues $k_{1} \leq k_{2}$ of $I I_{\alpha}-k I_{\alpha}=0$ are called principal curvatures and the corresponding eigenspaces are called principal directions.

The umbilic set of α is defined by $\mathcal{U}_{\alpha}=\left\{p \in \mathbb{M}: k_{1}(p)=k_{2}(p)\right\}$.
These two line fields, called the principal line fields of α are of class C^{r-2} on $\mathbb{M} \backslash \mathcal{U}_{\alpha}$; they are distinctly defined.

The principal directions of α are defined by the implicit differential equation

$$
\begin{equation*}
\left(F_{\alpha} g_{\alpha}-G_{\alpha} f_{\alpha}\right) d v^{2}+\left(E_{\alpha} g_{\alpha}-G_{\alpha} e_{\alpha}\right) d u d v+\left(E_{\alpha} f_{\alpha}-F_{\alpha} e_{\alpha}\right) d u^{2}=0 \tag{1}
\end{equation*}
$$

When the surface \mathbb{M}^{2} is oriented the principal lines can be assembled in two one-dimensional orthogonal foliations which will be denoted by $\mathcal{F}_{1}(\alpha)$
and $\mathcal{F}_{2}(\alpha)$. The umbilic set \mathcal{U}_{α} is the singular set of both foliations. The triple $\mathcal{P}_{\alpha}=\left\{\mathcal{F}_{1}(\alpha), \mathcal{F}_{2}(\alpha), \mathcal{U}_{\alpha}\right\}$ is called the principal configuration of the immersion $\alpha,[6,7]$.

A principal line γ is called recurrent if $\gamma \subseteq L(\gamma)$, where $L(\gamma)$ is the limit set of γ, and it is called dense if $L(\gamma)=\mathbb{M}$.

The qualitative behavior of principal lines on surfaces was initiated by G. Monge [13] who introduced this concept and described the global behavior of these curves on the triaxial ellipsoid $x^{2} / a^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1$.

The global behavior of principal lines is known only in very special class of surfaces, including quadrics and cyclides of Dupin, which are part of a triple orthogonal system of surfaces. In these cases the principal lines are closed, or a connection of umbilic separatrices. See Fig. 1.

Figure 1. Principal lines of the ellipsoid and of a Dupin cyclide.

The first examples of nontrivial recurrent principal lines was given by Gutierrez and Sotomayor, see $[6,7,8]$ and [4].

In a recent work of the first author with Sotomayor [5], using methods of perturbation theory, is presented examples of embedded tori (deformation of the Clifford torus) with both principal foliations having dense leaves.

For a survey of recent works about qualitative theory of principal lines see [3].

The study of foliations with dense leaves goes back to Poincaré, Birkhoff, Denjoy, Peixoto, among others, [14].

In this paper is presented an explicit example of a family of minimal immersed tori having all principal lines dense. The result is obtained showing that both Poincaré return maps have transcendental rotation number and therefore a strong relation between number theory and dynamical aspects of principal foliations is obtained.

2. Family of Immersed Minimal Tori

Consider the family of immersions $\alpha_{m, n}=\alpha$ defined by:

$$
\begin{equation*}
\alpha_{m, n}(u, v)=(\cos m v \sin u, \sin m v \sin u, \cos n v \cos u, \sin n v \cos u) \tag{2}
\end{equation*}
$$

Let $N_{\alpha}=\left(\alpha \wedge \alpha_{u} \wedge \alpha_{v}\right) /\left|\alpha \wedge \alpha_{u} \wedge \alpha_{v}\right|$. Then

$$
N_{\alpha}=\frac{(-n \cos u \sin m v, n \cos u \cos m v, m \sin u \sin n v,-m \sin u \cos n v)}{\sqrt{m^{2}+\left(n^{2}-m^{2}\right) \cos ^{2} u}}
$$

The coefficients of the first and second fundamental forms of α are given by:

$$
\begin{align*}
E_{\alpha}(u, v) & =\left\langle\alpha_{u}, \alpha_{u}\right\rangle=1 \\
F_{\alpha}(u, v) & =\left\langle\alpha_{u}, \alpha_{v}\right\rangle=0 \\
G_{\alpha}(u, v) & =\left\langle\alpha_{v}, \alpha_{v}\right\rangle=m^{2}+\left(n^{2}-m^{2}\right) \cos ^{2} u \\
f_{\alpha}(u, v) & =\left\langle\alpha_{u v}, N_{\alpha}\right\rangle=\frac{m n}{\sqrt{m^{2}+\left(n^{2}-m^{2}\right) \cos ^{2} u}} \tag{3}\\
e_{\alpha}(u, v) & =\left\langle\alpha_{u u}, N_{\alpha}\right\rangle=0 \\
g_{\alpha}(u, v) & =\left\langle\alpha_{v v}, N_{\alpha}\right\rangle=0 .
\end{align*}
$$

Therefore the mean curvature $\mathcal{H}_{\alpha}=\left(E_{\alpha} g_{\alpha}+e_{\alpha} G_{\alpha}-2 f_{\alpha} F_{\alpha}\right) /\left(E_{\alpha} G_{\alpha}-\right.$ $\left.F_{\alpha}^{2}\right)=0$ and the extrinsic Gaussian curvature is $\mathcal{K}_{\alpha, \text { ext }}=\left(e_{\alpha} g_{\alpha}-f_{\alpha}^{2}\right) /\left(E_{\alpha} G_{\alpha}-\right.$ $\left.F_{\alpha}^{2}\right)<0$.

The coordinate curves are closed and they are the asymptotic lines of $\alpha_{m, n}$.

Proposition 1. Let $\alpha_{m, n}:[0,2 \pi] \times[0,2 \pi] \rightarrow \mathbb{S}^{3}$ be defined by equation 2. Then $\alpha_{m, n}$ is an immersed torus of \mathbb{S}^{3}, free of umbilic points. Both principal foliations $\mathcal{F}_{i}\left(\alpha_{m, n}\right)$, $(\mathrm{i}=1,2)$ are regular and the Poincaré return maps defined $\pi^{i}:\{u=0\} \rightarrow\{u=2 \pi\}(\mathrm{i}=1,2)$ have the same rotation number

$$
\rho_{m, n}=\frac{2 \mathbf{K}\left(\frac{\sqrt{m^{2}-n^{2}}}{m}\right)}{\pi m} .
$$

Here \mathbf{K} is the elliptic integral defined by $\mathbf{K}(k)=\int_{0}^{\frac{\pi}{2}} \frac{d t}{\sqrt{1-k^{2} \sin ^{2} t}}$
Proof. The principal lines are defined by the following differential equation.

$$
\left(F_{\alpha} g_{\alpha}-f_{\alpha} G_{\alpha}\right) d v^{2}+\left(E_{\alpha} g_{\alpha}-G_{\alpha} e_{\alpha}\right) d u d v+\left(E_{\alpha} f_{\alpha}-F_{\alpha} e_{\alpha}\right) d u^{2}=0
$$

By equation (3) it follows that this equation can be solved as:

$$
\frac{d v}{d u}= \pm \sqrt{\frac{E_{\alpha}}{G_{\alpha}}}, \quad v\left(0, v_{0}\right)=v_{0} .
$$

Therefore,

$$
v(2 \pi)-v(0)= \pm \int_{0}^{2 \pi} \frac{1}{\sqrt{m^{2}+\left(n^{2}-m^{2}\right) \cos ^{2} u}} d u= \pm \frac{4 \mathbf{K}\left(\frac{\sqrt{m^{2}-n^{2}}}{m}\right)}{m} .
$$

So the rotation number of both Poincaré maps defined by

$$
\pi^{i}:\{u=0\} \rightarrow\{u=2 \pi\}, \pi^{i}\left(v_{0}\right)=v_{0} \pm v\left(2 \pi, v_{0}\right)=v_{0} \pm \frac{4 \mathbf{K}\left(\frac{\sqrt{m^{2}-n^{2}}}{m}\right)}{m} .
$$

is given by

$$
\rho_{m, n}=\frac{2 \mathbf{K}\left(\frac{\sqrt{m^{2}-n^{2}}}{m}\right)}{\pi m} .
$$

Remark 1. For all positive integers m and n, we have

$$
\frac{\mathbf{K}\left(\frac{\sqrt{n^{2}-m^{2}}}{n}\right)}{n}=\frac{\mathbf{K}\left(\frac{\sqrt{m^{2}-n^{2}}}{m}\right)}{m}
$$

and so $\rho_{m, n}=\rho_{n, m}$.

Remark 2. For all positive integers m and n, we have

$$
\rho_{m, n} \cdot M G(m, n)=1
$$

where $M G(m, n)$ is the arithmetic-geometric Gauss mean. See [2].

Remark 3. Consider the homogeneous polynomial of degree 3 , $f(x, y, z, w)=$ $-2 x y z+w\left(x^{2}-y^{2}\right)$. For $n=2$ and $m=1$ the trace of the immersion $\alpha_{1,2}$ defined by equation (2) is contained in the algebraic set $f^{-1}(0)$. See also [11] and [15].

Figure 2. Stereographic projection in \mathbb{R}^{3} of the immersed torus $\alpha_{1,2}$

3. On The ARITHMETIC NATURE OF $\rho_{m, n}$

The aim of this section is to study the arithmetic nature (i.e., to decide when a given complex number is a rational number, an irrational algebraic number or else a transcendental number) of the numbers $\rho_{m, n}$ for positive integers m and n. Since $\rho_{m, m}=\frac{1}{m}$ is rational, we may consider $m \neq n$.

Here, we shall prove the following result
Theorem 1. For any distinct positive integers m and n, the number $\rho_{m, n}$ is transcendental.

First, in order to prove the previous result, some tools will be essential ingredients.

Let $F(a, b, c ; z)$ be the Gauss hypergeometric function, given by

$$
F(a, b, c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n} n!} z^{n}
$$

where $(x)_{n}=x(x+1) \cdots(x+n-1)$, if $n>0$ and $(x)_{0}=1$.
Lemma 1. For all $z \in \mathbb{C}$, with $|z|<1$, we have

$$
\begin{equation*}
\mathbf{K}(z)=\frac{\pi}{2} F\left(\frac{1}{2}, \frac{1}{2}, 1 ; z^{2}\right) \tag{4}
\end{equation*}
$$

Proof. A well-known integral representation of $F(a, b, c ; z)$, see [9] page 1040, is given by

$$
F(a, b, c ; w)=\frac{\Gamma(c)}{\Gamma(b) \Gamma(c-b)} \int_{0}^{1} t^{b-1}(1-t)^{c-b-1}(1-w t)^{-a} d t
$$

where $\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t$ is the Gamma function. Taking $a=b=\frac{1}{2}, c=1$ and $w=z^{2}$, we obtain

$$
F\left(\frac{1}{2}, \frac{1}{2}, 1 ; z^{2}\right)=\frac{\Gamma(1)}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{1}{2}\right)} \int_{0}^{1} \frac{d t}{\sqrt{t(1-t)\left(1-z^{2} t\right)}}
$$

Since $\Gamma(1)=1, \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$ and by applying the trigonometric change of variables $t=\sin ^{2} x$, we get

$$
F\left(\frac{1}{2}, \frac{1}{2}, 1 ; z^{2}\right)=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{d x}{\sqrt{\left(1-z^{2} \sin ^{2} x\right)}}=\frac{2}{\pi} \mathbf{K}(z)
$$

as desired.
Note that we can deduce from Lemma 1 that the rotation number can be written as

$$
\begin{equation*}
\rho_{m, n}=\frac{1}{n} F\left(\frac{1}{2}, \frac{1}{2}, 1 ; \frac{n^{2}-m^{2}}{n^{2}}\right) \tag{5}
\end{equation*}
$$

Some of these values, can be seen in the following table

n	$\rho_{1, n}$	numeric	$\rho_{1, n}$
2	$2 \mathbf{K}(-\sqrt{3}) / \pi$	$0.68644 \ldots$	$\frac{1}{2} F\left(\frac{1}{2}, \frac{1}{2}, 1 ; \frac{3}{4}\right)$
3	$2 \mathbf{K}(-2 \sqrt{2}) / \pi$	$0.53659 \ldots$	$\frac{1}{2} F\left(\frac{1}{2}, \frac{1}{2}, 1 ; \frac{1}{4}\right)$
4	$\mathbf{K}(-\sqrt{15}) / 2 \pi$	$0.44582 \ldots$	$\frac{1}{4} F\left(\frac{1}{2}, \frac{1}{2}, 1 ; \frac{15}{16}\right)$
5	$2 \mathbf{K}(-2 \sqrt{6}) / \pi$	$0.38402 \ldots$	$\frac{1}{3} F\left(\frac{1}{2}, \frac{1}{2}, 1 ; \frac{4}{9}\right)$

The next lemma, crucial to Theorem 1, is already known. Indeed, the transcendence of hypergeometric functions at algebraic values have been studied for several authors (see [1] and its extensive bibliography). However, we shall prove it for the sake of completeness.

Lemma 2. If $\alpha \in \overline{\mathbb{Q}} \backslash\{0,1\}$, with $|\alpha|<1$ and $|\arg \alpha|<\pi$, then $F\left(\frac{1}{2}, \frac{1}{2}, 1 ; \alpha\right)$ is transcendental. Here, as usual, $\overline{\mathbb{Q}}$ is the algebraic closure of \mathbb{Q} in \mathbb{C}.

Before the proof, we shall give a brief overview of this standard approach. Let ω_{1} and ω_{2} be generators of a non-degenerated lattice in \mathbb{C}. The Weierstrass elliptic function, with periods ω_{1} and ω_{2}, is defined as

$$
\wp(z)=\frac{1}{z^{2}}+\sum_{(s, \ell) \neq(0,0)}\left\{\frac{1}{\left(z-s \omega_{1}-\ell \omega_{2}\right)^{2}}-\frac{1}{\left(s \omega_{1}+\ell \omega_{2}\right)^{2}}\right\}
$$

It is well-known that this function satisfies the differential equation

$$
y^{\prime 2}=4 y^{3}-g_{2} y-g_{3}
$$

where

$$
g_{2}=60 \sum_{(s, \ell) \neq(0,0)}\left(s \omega_{1}+\ell \omega_{2}\right)^{-4} \text { and } g_{3}=140 \sum_{(s, \ell) \neq(0,0)}\left(s \omega_{1}+\ell \omega_{2}\right)^{-6}
$$

are called invariants of $\wp(z)$. Such a function has the corresponding elliptic curve $y^{2}=4 x^{3}-g_{2} x-g_{3}$ and vice-versa. The Weierstrass ζ-function, associated to $\wp(z)$, is defined by the formula $\zeta^{\prime}(z)=-\wp(z)$ and $\eta_{j}=\zeta\left(\omega_{j}\right)$, $j=1,2$, are called quasi-periods of $\wp(z)$. Now, we can state our key lemma

Lemma 3. Let ω be a nonzero period of $\wp(z)$, then ω / π is transcendental.
Proof. Let ω be a nonzero period of $\wp(z)$ and let η be its corresponding quasiperiod. We use Corollary 1.19 of [10, p. 302] to conclude that ω / η and ω / π are algebraically independent. In particular, they are both transcendental.

Proof. (Lemma 2) Let γ be a closed path on the Riemann surface on the elliptic curve

$$
y^{2}=4 x^{3}-g_{2} x-g_{3},
$$

with $g_{2}, g_{3} \in \overline{\mathbb{Q}}$. Then

$$
\omega=\int_{\gamma} \frac{d x}{\sqrt{4 x^{3}-g_{2} x-g_{3}}}=\frac{1}{2} \int_{\gamma} \frac{d x}{\sqrt{\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)}}
$$

is a period of the corresponding elliptic function $\wp(z)$, where e_{1}, e_{2}, e_{3} are the roots of $4 x^{3}-g_{2} x-g_{3}$. Then, for any $\alpha \in \overline{\mathbb{Q}} \backslash\{0,1\}$, we choose the elliptic curve

$$
C_{\alpha}: y^{2}=4 x(1-x)\left(\alpha^{-1}-x\right) .
$$

Denoting $\wp_{\alpha}(z)$ by the corresponding elliptic function to C_{α}, one deduces that

$$
\omega_{\alpha}=\frac{\sqrt{\alpha}}{2} \int_{\gamma} \frac{d x}{\sqrt{x(1-x)(1-\alpha x)}}
$$

is a nonzero period of $\wp_{\alpha}(z)$, here γ is any closed path on the Riemann surface of C_{α}. Thus, by Lemma 3, the number $\frac{\omega_{\alpha}}{\pi}$ is transcendental. Hence, since $\frac{2}{\sqrt{\alpha}}$ is a nonzero algebraic number, we get that

$$
\begin{equation*}
\frac{2 \omega_{\alpha}}{\sqrt{\alpha} \pi}=\frac{1}{\pi} \int_{\gamma} \frac{d x}{\sqrt{x(1-x)(1-\alpha x)}} \tag{6}
\end{equation*}
$$

is also transcendental.
On the other hand, it is known (see [12, 4.2.2]) the existence of a path γ^{\prime} on the Riemann surface of C_{α}, such that

$$
\frac{1}{\pi} \int_{\gamma^{\prime}} \frac{d x}{\sqrt{x(1-x)(1-\alpha x)}}=F\left(\frac{1}{2}, \frac{1}{2}, 1 ; \alpha\right)
$$

where $|\arg \alpha|<\pi$. Since the number in Eq. (6) is transcendental, for the choice of $\gamma=\gamma^{\prime}$, then $F\left(\frac{1}{2}, \frac{1}{2}, 1 ; \alpha\right)$ is transcendental. The proof is then complete.

Finally, we are able to deal with the proof of theorem

Proof. (Theorem 1) Since $\rho_{m, n}=\rho_{n, m}$, by Remark 1, we may suppose $n>$ m. Thus, if we set $z_{m, n}:=\frac{\sqrt{n^{2}-m^{2}}}{n}$, one obtains that $z_{m, n} \in \overline{\mathbb{Q}}, \arg z_{m, n}=0$ (since it is a positive real number) and $\left|z_{m, n}\right|<1$. Therefore, Lemma 2 together with identity in (5) yield that

$$
\rho_{m, n}=\frac{1}{n} F\left(\frac{1}{2}, \frac{1}{2}, 1 ; \frac{n^{2}-m^{2}}{n^{2}}\right)
$$

is transcendental.

4. Dense Principal Lines

In this section the main result of this paper is formulated.
Theorem 2. Consider the immersions $\alpha_{m, n}$ defined by equation (2) with $m \neq n$. The all leaves of the principal configuration $\mathcal{P}_{\alpha_{m, n}}$ are dense.
Proof. Follows from Proposition 1 and Theorem 1.

Remark 4. A stereographic projection (conformal map) of the family $\alpha_{m, n}$ give examples of immersions in \mathbb{R}^{3} having all principal lines dense.

Acknowledgement

The first author had the financial support of CNPq, 476672/2009-0. The second author is grateful to FEMAT and CNPq for the financial support.

References

[1] F. Beukers and J. Wolfart, Algebraic values of hypertranscendental functions, in New advances in transcendental theory (Durham, 1986), Cambridge Univ. Press, 1988, p. 68-81.
[2] David A. Cox, The arithmetic-geometric mean of Gauss. Enseign. Math. (2)30 (1984), no. 3-4, 275-330.
[3] R. Garcia and J. Sotomayor, Lines of curvature on surfaces, historical comments and recent developments. São Paulo J. Math. Sci. 2 (2008), no. 1, 99-143.
[4] R. Garcia and J. Sotomayor, Differential Equations of Classical Geometry, a Qualitative Theory, Publicações Matemáticas, 27° Colóquio Brasileiro de Matemática, IMPA, (2009).
[5] R. Garcia and J. Sotomayor, Tori embedded in \mathbb{R}^{3} with dense principal lines. Bull. Sci. Math. 133 (2009), 348-354.
[6] C. Gutierrez and J. Sotomayor, Structural Stable Configurations of Lines of Principal Curvature, Asterisque 98-99, (1982), 185-215.
[7] C. Gutierrez and J. Sotomayor, An Approximation Theorem for Immersions with Structurally Stable Configurations of Lines of Principal Curvature, Lect. Notes in Math. 1007, (1983), 332-368.
[8] C. Gutierrez and J. Sotomayor, Lines of Curvature and Umbilic Points on Surfaces, $18^{\text {th }}$ Brazilian Math. Colloquium, Rio de Janeiro, IMPA, 1991. Reprinted as Structurally Configurations of Lines of Curvature and Umbilic Points on Surfaces, Lima, Monografias del IMCA, (1998).
[9] I. Gradshteyn and M. Ryzhik, Table of Integrals, Series and Products, Academic Press, Inc. (1980)
[10] G. Chudnovsky, Contributions to the Theory of Transcendental Numbers, Mathematical surveys and monographs -number 19, American Mathematical Society, 1984.
[11] H. Lawson, Complete minimal surfaces in \mathbb{S}^{3}. Ann. Math. 92 (1970), 335-374
[12] A. Kratzer and W. Franz, Transzendente Functionen, Akademische, Leipzig (1960).
[13] Gaspard Monge, Sur les lignes de courbure de l'ellipsoide, Journal de l'école polytechnique II ${ }^{\text {ème }}$ cahier, cours de Floréal an III p. 145.
[14] W. Melo and J. Palis, Geometric Theory of Dynamical Systems, New York, Springer Verlag, 1982.
[15] O. Perdomo, Characterization of order 3 algebraic immersed minimal surfaces of \mathbb{S}^{3}. Geom. Dedicata 129 (2007), 23-34.
[16] M. Spivak, A Comprehensive Introduction to Differential Geometry, vol. III, Publish of Perish, Berkeley, (1999).

Ronaldo Garcia
Instituto de Matemática e Estatística,
Universidade Federal de Goiás,
CEP 74001-970, Caixa Postal 131,
Goiânia, GO, BRAZIL
e-mail: ragarcia@mat.ufg.br

Diego Marques
Departamento de Matemática
Universidade de Brasília
CEP 70910-900, Brasília, DF, BRAZIL
e-mail: diego@mat.unb.br

