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Abstract. In this paper is given an example of a discrete family of
minimal tori T2 immersed in S3 such that all their principal lines are
dense. A relation between dynamics and transcendental number theory
is established.
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1. Introduction

Let α : M→ S3 be an immersion of class Cr, r ≥ 3, of a smooth, compact
and oriented two-dimensional manifold M into the three dimensional sphere
S3 endowed with the canonical inner product 〈., .〉 of R4.

The Fundamental Forms of α at a point p of M are the symmetric bilinear
forms on TpM defined as follows, see [16]:

Iα(p; v, w) =〈Dα(p; v), Dα(p;w)〉,
IIα(p; v, w) =〈−DNα(p; v), Dα(p;w)〉.

Here, Nα is the positive unit normal of the immersion α and 〈Nα, α〉 = 0.
In a local chart (u, v) the two fundamental forms are denoted by Iα =

Eαdu
2 + 2Fαdudv +Gαdv

2 and IIα = eαdu
2 + 2fαdudv + gαdv

2.
We recall that in S3, with the second fundamental form relative to the

normal vector N = α ∧ αu ∧ αv, it follows that:

e =
det[α, αu, αv, αuu]√

EαGα − F 2
α

, f =
det[α, αu, αv, αuv]√

EαGα − F 2
α

, g =
det[α, αu, αv, αvv]√

EαGα − F 2
α

.

The eigenvalues k1 ≤ k2 of IIα − kIα = 0 are called principal curvatures
and the corresponding eigenspaces are called principal directions.

The umbilic set of α is defined by Uα = {p ∈M : k1(p) = k2(p)}.
These two line fields, called the principal line fields of α are of class Cr−2

on M \ Uα; they are distinctly defined.
The principal directions of α are defined by the implicit differential equa-

tion

(Fαgα −Gαfα)dv2 + (Eαgα −Gαeα)dudv + (Eαfα − Fαeα)du2 = 0 (1)

When the surface M2 is oriented the principal lines can be assembled in
two one-dimensional orthogonal foliations which will be denoted by F1(α)
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and F2(α). The umbilic set Uα is the singular set of both foliations. The
triple Pα = {F1(α),F2(α),Uα} is called the principal configuration of the
immersion α, [6, 7].

A principal line γ is called recurrent if γ ⊆ L(γ), where L(γ) is the limit
set of γ, and it is called dense if L(γ) = M.

The qualitative behavior of principal lines on surfaces was initiated by G.
Monge [13] who introduced this concept and described the global behavior
of these curves on the triaxial ellipsoid x2/a2 + y2/b2 + z2/c2 = 1.

The global behavior of principal lines is known only in very special class
of surfaces, including quadrics and cyclides of Dupin, which are part of a
triple orthogonal system of surfaces. In these cases the principal lines are
closed, or a connection of umbilic separatrices. See Fig. 1.

Figure 1. Principal lines of the ellipsoid and of a Dupin cyclide.

The first examples of nontrivial recurrent principal lines was given by
Gutierrez and Sotomayor, see [6, 7, 8] and [4].

In a recent work of the first author with Sotomayor [5], using methods of
perturbation theory, is presented examples of embedded tori (deformation
of the Clifford torus) with both principal foliations having dense leaves.

For a survey of recent works about qualitative theory of principal lines
see [3].

The study of foliations with dense leaves goes back to Poincaré, Birkhoff,
Denjoy, Peixoto, among others, [14].

In this paper is presented an explicit example of a family of minimal
immersed tori having all principal lines dense. The result is obtained showing
that both Poincaré return maps have transcendental rotation number and
therefore a strong relation between number theory and dynamical aspects
of principal foliations is obtained.

2. Family of Immersed Minimal Tori

Consider the family of immersions αm,n = α defined by:

αm,n(u, v) = (cosmv sinu, sinmv sinu, cosnv cosu, sinnv cosu). (2)

Let Nα = (α ∧ αu ∧ αv)/|α ∧ αu ∧ αv|. Then

Nα =
(−n cosu sinmv, n cosu cosmv,m sinu sinnv,−m sinu cosnv)√

m2 + (n2 −m2) cos2 u
.

The coefficients of the first and second fundamental forms of α are given
by:
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Eα(u, v) =〈αu, αu〉 = 1

Fα(u, v) =〈αu, αv〉 = 0

Gα(u, v) =〈αv, αv〉 = m2 + (n2 −m2) cos2 u

fα(u, v) =〈αuv, Nα〉 =
mn√

m2 + (n2 −m2) cos2 u

eα(u, v) =〈αuu, Nα〉 = 0

gα(u, v) =〈αvv, Nα〉 = 0.

(3)

Therefore the mean curvature Hα = (Eαgα + eαGα − 2fαFα)/(EαGα −
F 2
α) = 0 and the extrinsic Gaussian curvature isKα,ext = (eαgα−f2α)/(EαGα−
F 2
α) < 0.
The coordinate curves are closed and they are the asymptotic lines of

αm,n.

Proposition 1. Let αm,n : [0, 2π] × [0, 2π] → S3 be defined by equation
2. Then αm,n is an immersed torus of S3, free of umbilic points. Both
principal foliations Fi(αm,n), (i = 1, 2) are regular and the Poincaré return
maps defined πi : {u = 0} → {u = 2π} (i = 1, 2) have the same rotation
number

ρm,n =
2K(

√
m2−n2

m )

πm
.

Here K is the elliptic integral defined by K(k) =
∫ π

2
0

dt√
1−k2 sin2 t

Proof. The principal lines are defined by the following differential equation.

(Fαgα − fαGα)dv2 + (Eαgα −Gαeα)dudv + (Eαfα − Fαeα)du2 = 0.

By equation (3) it follows that this equation can be solved as:

dv

du
= ±

√
Eα
Gα

, v(0, v0) = v0.

Therefore,

v(2π)− v(0) = ±
∫ 2π

0

1√
m2 + (n2 −m2) cos2 u

du = ±
4K(

√
m2−n2

m )

m
.

So the rotation number of both Poincaré maps defined by

πi : {u = 0} → {u = 2π}, πi(v0) = v0 ± v(2π, v0) = v0 ±
4K(

√
m2−n2

m )

m
.

is given by

ρm,n =
2K(

√
m2−n2

m )

πm
.

�
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Remark 1. For all positive integers m and n, we have

K(
√
n2−m2

n )

n
=

K(
√
m2−n2

m )

m
,

and so ρm,n = ρn,m.

Remark 2. For all positive integers m and n, we have

ρm,n ·MG(m,n) = 1,

where MG(m,n) is the arithmetic-geometric Gauss mean. See [2].

Remark 3. Consider the homogeneous polynomial of degree 3, f(x, y, z, w) =
−2xyz + w(x2 − y2). For n = 2 and m = 1 the trace of the immersion α1,2

defined by equation (2) is contained in the algebraic set f−1(0). See also
[11] and [15].

Figure 2. Stereographic projection in R3 of the immersed
torus α1,2

3. On the arithmetic nature of ρm,n

The aim of this section is to study the arithmetic nature (i.e., to decide
when a given complex number is a rational number, an irrational algebraic
number or else a transcendental number) of the numbers ρm,n for positive
integers m and n. Since ρm,m = 1

m is rational, we may consider m 6= n.
Here, we shall prove the following result

Theorem 1. For any distinct positive integers m and n, the number ρm,n
is transcendental.

First, in order to prove the previous result, some tools will be essential
ingredients.

Let F (a, b, c; z) be the Gauss hypergeometric function, given by

F (a, b, c; z) =
∞∑
n=0

(a)n(b)n
(c)nn!

zn,

where (x)n = x(x+ 1) · · · (x+ n− 1), if n > 0 and (x)0 = 1.

Lemma 1. For all z ∈ C, with |z| < 1, we have

K(z) =
π

2
F

(
1

2
,
1

2
, 1; z2

)
. (4)
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Proof. A well-known integral representation of F (a, b, c; z), see [9] page 1040,
is given by

F (a, b, c;w) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− wt)−adt,

where Γ(z) =
∫∞
0 tz−1e−tdt is the Gamma function. Taking a = b = 1

2 , c = 1

and w = z2, we obtain

F

(
1

2
,
1

2
, 1; z2

)
=

Γ(1)

Γ(12)Γ(12)

∫ 1

0

dt√
t(1− t)(1− z2t)

Since Γ(1) = 1, Γ(12) =
√
π and by applying the trigonometric change of

variables t = sin2 x, we get

F

(
1

2
,
1

2
, 1; z2

)
=

2

π

∫ π
2

0

dx√
(1− z2 sin2 x)

=
2

π
K(z),

as desired. �

Note that we can deduce from Lemma 1 that the rotation number can be
written as

ρm,n =
1

n
F

(
1

2
,
1

2
, 1;

n2 −m2

n2

)
. (5)

Some of these values, can be seen in the following table

n ρ1,n numeric ρ1,n
2 2K(−

√
3)/π 0.68644... 1

2F (12 ,
1
2 , 1; 3

4)

3 2K(−2
√

2)/π 0.53659... 1
2F (12 ,

1
2 , 1; 1

4)

4 K(−
√

15)/2π 0.44582... 1
4F (12 ,

1
2 , 1; 15

16)

5 2K(−2
√

6)/π 0.38402... 1
3F (12 ,

1
2 , 1; 4

9)

The next lemma, crucial to Theorem 1, is already known. Indeed, the
transcendence of hypergeometric functions at algebraic values have been
studied for several authors (see [1] and its extensive bibliography). However,
we shall prove it for the sake of completeness.

Lemma 2. If α ∈ Q\{0, 1}, with |α| < 1 and | argα| < π, then F
(
1
2 ,

1
2 , 1;α

)
is transcendental. Here, as usual, Q is the algebraic closure of Q in C.

Before the proof, we shall give a brief overview of this standard approach.
Let ω1 and ω2 be generators of a non-degenerated lattice in C. The

Weierstrass elliptic function, with periods ω1 and ω2, is defined as

℘(z) =
1

z2
+

∑
(s,`)6=(0,0)

{
1

(z − sω1 − `ω2)2
− 1

(sω1 + `ω2)2

}
.

It is well-known that this function satisfies the differential equation

y′2 = 4y3 − g2y − g3,
where
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g2 = 60
∑

(s,`)6=(0,0)

(sω1 + `ω2)
−4 and g3 = 140

∑
(s,`) 6=(0,0)

(sω1 + `ω2)
−6

are called invariants of ℘(z). Such a function has the corresponding elliptic
curve y2 = 4x3 − g2x − g3 and vice-versa. The Weierstrass ζ-function,
associated to ℘(z), is defined by the formula ζ ′(z) = −℘(z) and ηj = ζ(ωj),
j = 1, 2, are called quasi-periods of ℘(z). Now, we can state our key lemma

Lemma 3. Let ω be a nonzero period of ℘(z), then ω/π is transcendental.

Proof. Let ω be a nonzero period of ℘(z) and let η be its corresponding quasi-
period. We use Corollary 1.19 of [10, p. 302] to conclude that ω/η and ω/π
are algebraically independent. In particular, they are both transcendental.

�

Proof. (Lemma 2) Let γ be a closed path on the Riemann surface on the
elliptic curve

y2 = 4x3 − g2x− g3,
with g2, g3 ∈ Q. Then

ω =

∫
γ

dx√
4x3 − g2x− g3

=
1

2

∫
γ

dx√
(x− e1)(x− e2)(x− e3)

is a period of the corresponding elliptic function ℘(z), where e1, e2, e3 are
the roots of 4x3 − g2x − g3. Then, for any α ∈ Q\{0, 1}, we choose the
elliptic curve

Cα : y2 = 4x(1− x)(α−1 − x).

Denoting ℘α(z) by the corresponding elliptic function to Cα, one deduces
that

ωα =

√
α

2

∫
γ

dx√
x(1− x)(1− αx)

is a nonzero period of ℘α(z), here γ is any closed path on the Riemann
surface of Cα. Thus, by Lemma 3, the number ωα

π is transcendental. Hence,

since 2√
α

is a nonzero algebraic number, we get that

2ωα√
απ

=
1

π

∫
γ

dx√
x(1− x)(1− αx)

(6)

is also transcendental.
On the other hand, it is known (see [12, 4.2.2]) the existence of a path γ′

on the Riemann surface of Cα, such that

1

π

∫
γ′

dx√
x(1− x)(1− αx)

= F

(
1

2
,
1

2
, 1;α

)
,

where | argα| < π. Since the number in Eq. (6) is transcendental, for the
choice of γ = γ′, then F

(
1
2 ,

1
2 , 1;α

)
is transcendental. The proof is then

complete. �

Finally, we are able to deal with the proof of theorem
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Proof. (Theorem 1) Since ρm,n = ρn,m, by Remark 1, we may suppose n >

m. Thus, if we set zm,n :=
√
n2−m2

n , one obtains that zm,n ∈ Q, arg zm,n = 0
(since it is a positive real number) and |zm,n| < 1. Therefore, Lemma 2
together with identity in (5) yield that

ρm,n =
1

n
F

(
1

2
,
1

2
, 1;

n2 −m2

n2

)
is transcendental. �

4. Dense Principal Lines

In this section the main result of this paper is formulated.

Theorem 2. Consider the immersions αm,n defined by equation (2) with
m 6= n. The all leaves of the principal configuration Pαm,n are dense.

Proof. Follows from Proposition 1 and Theorem 1.
�

Remark 4. A stereographic projection (conformal map) of the family αm,n
give examples of immersions in R3 having all principal lines dense.
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