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ABsTRACT. Let C, be the cyclic group of order n and set
s4(CT) as the smallest integer £ such that every sequence S in CJ,
of length at least ¢ has an A-zero-sum subsequence of length equal
to exp(Cr), for A = {—1,1}. In this paper, among other things, we
give estimates for s4(C%), and prove that s4(C3) = 9, s4(C%) = 21
and 41 < s4(C3) < 45.

Introduction

Let G be a finite abelian group (written additively), and S be a finite
sequence of elements of G and of length m. For simplicity we are going
to write S in a multiplicative form

J4
S=11g"
=1

where v; represents the number of times the element g; appears in this
sequence. Hence Zle v; = m.

Let A = {—1,1}. We say that a subsequence aj---as; of S is an
A-zero-sum subsequence, if we can find €1,...,e; € A such that

€1a1 +-+esas =0 in G.

The first two authors were partially supported by a grant from CNPgq-Brazil. The
third author is partially supported by FAP-DF, FEMAT and CNPq-Brazil

2010 Mathematics Subject Classification: 20D60, 20K01.

Key words and phrases: Weighted zero-sum, abelian groups.



2 WEIGHTED ZERO-SUM PROBLEMS OVER Cj

Here we are particularly interested in studying the behavior of s4(G)
defined as the smallest integer ¢ such that every sequence S of length
greater than or equal to ¢, satisfies the condition (s4), which states that
there must exist an A-zero-sum subsequence of S of length exp(G) (the
exponent of G).

For this purpose, two other invariants will be defined to help us in
this study. Thus, define n4(G) as the smallest integer ¢ such that every
sequence S of length greater than or equal to ¢, satisfies the condition
(na), which says that there exists an A-zero-sum subsequence of S of
length at most exp(G). Define also g4(G) as the smallest integer ¢ such
that every sequence S of distinct elements and of length greater than or
equal to ¢, satisfies the condition (g4), which says that there must exist
an A-zero-sum subsequence of S of length exp(G).

The study of zero-sums is a classical area of additive number theory
and goes back to the works of Erdds, Ginzburg and Ziv [6] and Harborth
[9]. A very thorough survey up to 2006 can be found on Gao-Geroldinger
[7], where applications of this theory are also given.

In [8], Grynkiewicz established a weighted version of Erdés-Ginzburg-
Ziv theorem, which introduced the idea of considering certain weighted
subsequence sums, and Thangadurai [13] presented many results on a
weighted Davenport’s constant and its relation to sg4.

For the particular weight A = {—1,1}, the best results are due to
Adhikari et al [1], where it is proved that s4(Cy) = n + |logyn] (here
C,, is a cyclic group of order n) and Adhikari et al [2], where it is proved
that s4(C,, x Cp) = 2n — 1, when n is odd. Recently, Adhikari et al
proved that s4(G) = exp(G) + |G| log 2 + O(|G|log 2log 2) when exp(G)
is even and exp(G) — +oo (see [3]).

The aim of this paper is to give estimates for s4(C},), where as usual
Cr =Cy X -+ x Cy (r times), and here are our results.

Theorem 1. Let A={—-1,1}, n>1odd andr > 1. Ifn =3 andr > 2,
orn > 5 then

277 n — 1)+ 1 < s54(C7) < (0" —1) (”;1> + 1.

For the case of n = 3 we present a more detailed study and prove
Theorem 2. Let A={-1,1} and r > 5.
(i) If r is odd then

—1
sA(CT) > 2" +2<TT5 ) —1
7
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(ii) If r is even, with m = L3T474J, then

(a) If r =2 (mod 4), then s4(C}) > 23 cicp, (;) + 2(%) +1,
where j takes odd values.

(b) If r = 0 (mod 4), then sa(C§) > 23015, () + (2) + 1,

where j takes odd values.

It is simple to check that s4(C3) = 4, and it follows from Theorem
3 in [2] that s4(C3) = 5. Our next result presents both exact values of
54(C%), and r = 3,4 as well as estimates for s4(C5.), r = 3,4, 5, for all
a > 1.

Theorem 3. Let A={-1,1}. Then
(i) sA(C3) =9, sA(C3) =21, 41 < 54(C3) < 45
(i) s4(C3:) =4 x3% =3, foralla>1
(i4i) 8 x 3% — 7 < 54(C4) <10 x 3% =9, for alla > 1

(iv) 16 x 3% — 15 < s4(C3.) <22 x 3% — 21, for all a > 1

1. Relations between the invariants 74, g4 and s4

We start by proving the following result.

Lemma 1. For A= {-1,1}, we have
(i) na(Cs) =2, ga(Cs) =3 and s4(C3) =4, and
(1) na(Cy) >r+1 for any r € N.

Proof. The proof of item (i) is very simple and will be omitted. For
(ii), the proof follows from the fact that the sequence ejes---e, with
ej =(0,...,1,...,0), has no A-zero-sum subsequence. ]

Proposition 1. For A= {—1,1}, we have ga(C%) = 2n(C%) — 1.

Proof. The case 7 = 1 follows from Lemma 1. Let & = [[, ¢; of
length m = 74(C%) — 1 which does not satisfy the condition (74). In
particular S has no A-zero-sum subsequences of length 1 and 2, that is,
all elements of S are nonzero and distinct. Now, let S* be the sequence
[T, gi [Ti-1(—gi). Observe that S* has only distinct elements, since S
has no A-zero-sum subsequences of length 2. It is easy to see that any
A-zero-sum of S* of length 3 is also an A-zero-sum of S, for A = {—1,1}.
Hence ga(C%) > 2na(C%) — 1.
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Let S be a sequence of distinct elements and of length m = 2n4(C5) —
1, and write

t t m
S=11e1I-9 II ¢
=1 =1 1=2t+1

where g, # —gs for 2t +1 < r < s < m. If t = 0, then S has no A-
zero-sum of length 2, and 0 can appear at most once in S. Let S* be the
subsequence of all nonzero elements of S, hence |S*| = 2n4(C5) — 2 >
na(C%), for r > 2 (see Lemma 1(ii)), hence it must contain an A-zero-sum
of length 3.

For the case t > 1, we may assume g; # 0, for every j=2t+1,...,m
since otherwise, g; + (—g¢) + g, is A-zero-sum subsequence of length 3.
But now, either ¢t > 14(C}), so that [['_, g; has an A—zero-sum of length
3, or m—t > na(C5), so that [['_;(—g;) [\ 0,41 9 has an A—zero-sum
subsequence of length 3. O

Here we note that by the definition of these invariants and the propo-
sition above, we have

s4(C3) 2 ga(C3) = 2na(C3) — 1. (1)
Proposition 2. For A = {—1,1}, we have ss(C%) = ga(C3), forr > 2.

Proof. From Theorem 3 in [2] we have s4(C%) = 5 and, on the other
hand, the sequence (1,0)(0,1)(2,0)(0,2) does not satisfy the condition
(ga), hence s4(C2) = ga(C3) (see (1)). From now on, let us consider
r>3.

Let S be a sequence of length m = s4(C%) — 1 which does not satisfy
the condition (s4). In particular S does not contain three equal elements,
since 3g = 0. If S contains only distinct elements, then it does not
satisfy also the condition (ga), and then m < g4(C%) — 1, which implies
s4(C%) = ga(C5) (see (1)). Hence, let us assume that S has repeated
elements and write

t m

s=&F=[]da Il w (2)

i=1  j=2t+1

where g1, ..., 9t, 92141, - - - , gm are distinct. If for some 1 < j < m we have
g; = 0, then the subsequence of all nonzero elements of & has length at
least equal to s4(C%) —3 > 2na(C%) —4 > na(C%) for r > 3 (see Lemma
1 (ii)). Then it must have an A-zero-sum of length 2 or 3. And if the
A-zero-sum is of length 2, together with g; = 0 we would have an A-
zero-sum of length 3 in S, contradicting the assumption that it does not
satisfy the condition (s4).
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Hence let us assume that all elements of & are nonzero. Observe
that we can not have g in £ and h in F (see (2)) such that h = —g,
for g4+ g —h = 3g = 0, an A-zero-sum of length 3. Therefore the new
sequence

t t m
R=[[a]l-9) ]] @
=1 i=1 i=2t+1

has only distinct elements, length m = s4(C%5) — 1, and does not satisfy
the condition (ga). Hence m < g4(C%) — 1, and this concludes the proof
according to (1). O

2. Proof of Theorem 1

2.1. The lower bound for s4(C7)

Let eq, ..., e, be the elements of C}, defined as e; = (0,...,0,1,0,...,0),
and for every subset I C {1,...,r}, of odd cardinality, define e; = >, ;e
(e.g., taking I = {1,3,7}, we have ¢; = (1,0,1,0,...,0,1)), and let .#,
be the collection of all subsets of {1,...,r} of cardinality odd and at
most equal to m.

There is a natural isomorphism between the cyclic groups C; =
(Z/nZ)", and this result here will be proved for (Z/nZ)". Let ¢ : Z —
Z/nZ be the canonical group epimorphism, and define ¢ : Z" — (Z/nZ)"
as p(at, - ,ar) = (¢(a1), -+ ,¢(ay)). f S = g1 - gm is a sequence over
the group Z", let us denote by ¢(S) the sequence ¢(S) = p(g1) - - - ©(gm)
of same length over the group (Z/nZ)".

Let ef,...,e; be the canonical basis (i.e.,e; = (0,...,0,1,0,...,0))
of the group Z" , and define, as above

e7 = E e;
el
Now consider the sequence

s=TI @,

leg,

of length 2"~ (n — 1). We will prove that the corresponding sequence
p(S) =[] &
Ie.7,

has no A-zero-sum subsequences of length n, which is equivalent to prove
that given A = {—1,1} and any subsequence R = g; - - - g,, of S, it is not
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possible to find €, ..., es € A such that (with an abuse of notation)
€191+ + €ngn = (0,...,0) (modn). (3)

Writing g = (cgk)7 . 7c&k”))7 for 1 < k < mn, it follows from (3) that, for
every j € {1,...,7}, we have

n

Z ekcg-k) =0 ( mod n). (4)

k=1

For every 1 < 7 <7, let us define the sets
l
Aj={0] ) =1},

Since cy) € {0,1} and ¢; € {—1,1} for any j and any ¢, we must have,
according to (4), that either

|Aj|=mn or |Aj| is even. (5)

Since g¢ = ¢y, for some I, by the definition we have >7%_; cge) = |I| for
all £, then

SN =3Y" =" = n|+ -+ L,

j=1 j=1 ¢=1 =1 j=1

an odd sum of odd numbers. Hence there exists a jo, such that |A;,| =n

(see (5)), but then, it follows from (4) that > ;_, ekcglg) = n and therefore
€1 =+ =€, = 1. And the important consequence is that we must have
g1 = +++ = gn, which is impossible since in the sequence S no element

appears more than n — 1 times.

Remark 1. If we consider the sequence ¢(S) = [[;¢ ,, ¢1, for n =3, we
see that this does not satisfy the condition (14). So na(C§) > 2"~ +1
for any r € N, which is an improvement of the item (ii) of the Lemma 1.

2.2. The upper bound for s,(C")

Let us consider the set of elements of the group C} as the union {0} U
GT UG, where if g € G then —g € G~. And write the sequence S as

S=0m H (gvg(S)(_g)v—g(S))'

geGT

First observe that if for some g, v4(S) + v_4(S) > n, then we can find a
subsequence R = ¢; - - - ¢, of S, which is an A-zero-sum, for A = {—1,1},
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and any sum of n equal elements is equal to zero in C]. Now consider
m > 1 and m + v4(S) + v_4(S) > n, then we can find a subsequence
R = hy---hy of S of even length ¢t > n —m with h; € {—g,g}. Since
A = {—1,1}, this is an A-zero-sum. Hence, the subsequence T = 0™ R
(m* <m) of S is an A-zero-sum of length n.

Thus assume that, for every g in S we have vy(S) +v_4(S) <n—m,
which gives

m+ %5t(n—m) if m>0 even
IS| < m—1+"r2_1(n—m) if m>0 odd

2tn—1) if m=0,

for |GT| = % We observe than in the case m even m + ";‘1 (n—m) <
2+ %A n—-2) <2+ 2-AMn-2)+2- — 1 and Ehe equality only
happens when n = 3 and r = 1. In any case, if [S| > 271 (n — 1) + 1, it
has a subsequence of length n which is an A-zero-sum.

Remark 2. For n = 3, the upper bound for s4(C%) can be improved
using the result of Meshulam[12] as follows. According to Proposition
2, 54(C5) = ga(C%) for r > 2, and it follows from the definition that
9a(C5) < g(C%), where g(C%) is the invariant g4 (C%) with A = {1}. Now
we use the Theorem 1.2 of [12] to obtain s4(C%) = ga(C%) < g(C%) <
2 % 37 /r.

3. Proof of Theorem 2.
Now we turn our attention to prove the following proposition.

Proposition 3. If r > 3 is odd and A = {—1,1} then na(C%) > 2" 1 +
(Tgl), where

B - =3 fr=1 (mod 4)
d=46(r) = { (r§5) if r=3 (mod 4). o

Proof. We will prove this proposition by presenting an example of a
sequence of length 2"~ + (rgl) — 1 with no A-zero-sum subsequences of

length smaller or equal to 3. Let £ = (rgl), and consider the sequence

S=¢£G= H er | - 91 9¢

Ie]r—Z
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with
g1 = (_15_17"')_17171) )]-)
d
g = (=1,1,...,1,—1,...,-1),
———
d

where ¢; and .#,_9 are defined in the beginning of section 2. Clearly
S has no A-zero-sum subsequences of length 1 or 2 and also sum or
difference of two elements of G will never give another element of G, for
no element of G has zero as one of its coordinates. Now we will consider
¢s — ¢, where es and e; represent the e;’s for which s coordinates are
equal to 1 and t coordinates are equal to 1 respectively. Thus, we see
that e; — e; will never be an element of G since it necessarily has either
a zero coordinate or it has an odd number of 1’s and -1’s (and 6 + 1 is
even).
Now, if for some s,t we would have

es + ¢ = ¢i,

Then e, ¢; would have § + 1 nonzero coordinates at the same positions
(to obtain § + 1 coordinates -1’s). Hence we would need to have

r4+ (0 +1)=s+t

Which is impossible since s+t is even and r+ (6 + 1) is odd, for § is odd
in any of the two cases.

Thus, the only possible A-zero-sum subsequence of length 3 would
necessarily include one element of £ and two elements of G.

Let v, w be elements of G. Now it simple to verify that (the calcula-
tions are modulo 3) either v + w or v — w have two of their entries with
opposite signs (for 6(r) < (r—1)/2) and hence either of them can not be
added to an =e; to obtain an A-zero-sum, since all its nonzero entries
have the same sign. d

Proposition 4. Let r > 4 be even, m = L%J and A ={-1,1}. Then

na(Cy) = Zm: (T> +4(r) + 1,

J
-]

=1
jodd

where
L) if r=2 (mod 4)

3/2 if r=0 (mod 4),

S

SR
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Proof.
Consider the sequence K = g; - - - g with
g = (—1,...,—1,1,1,...,1)
—_———
é
g = (1,1,...,1,—1,...,—-1)
)

where

if r=2 (mod 4)

B { r) if r=2 (mod 4)
T 2((r) if r=0 (mod 4)

r—2
and 6:{ 2
. 3

and rearrange the elements of the sequence IC, and write it as

T/2  T/2
K=1lo [[(-9) = K"K
=1 i=1

It is simple to observe that if r =2 (mod 4), then 7 = ¢ and £~ = 0.
Now define the sequence

S = Hel g,

Ie 9,
where G = K if 7 = 2 (mod 4) or G = K if 7 = 0 (mod 4), and
m = L3T474J’ a sequence of length ‘S| = Z <T> +f(7”) +1.
J

j=1
jodd

The first important observation is that S has no A-zero-sum subse-
quences of length 1 or 2. And also sum or difference of two elements
of G will never be another element of G, for it necessarily will have a
zero as coordinate. Also e¢; — ey will never be an element of G since it
necessarily has either a zero coordinate or it has an odd number of 1’s
and -1’s (and 0 is even). Now, if for some s,¢ (both defined as in the
proof of the Proposition 3) we would have

¢s + ¢ = £g;, for some

then ¢, ¢; would necessarily have § nonzero coordinates at the same po-
sitions (to obtain d§ coordinates -1’s). But then

3r—2
s+t=r+06>

, for any value of §

if r=0 (mod 4),
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which is impossible since

3r—4
s+t<2m< .

Thus the only A-zero-sum subsequence of length 3 possible necessarily
includes an element ¢; and two elements of G.

Let v, w elements of G. First, observe that if they do not have —1’s
in common positions, then v + w has an even amount of zeros and an
even amount of —1’s (since r and § are both even), i.e., v + w # +ey. If
we make v —w also have an even amount of nonzero coordinates, i.e., we
haven’t +e;. Now, assuming that v, w have at last a —1 in same position,
it simple to verify that (the calculations are modulo 3) either v 4+ w or
v — w have two or more of their entries with opposite signs and hence
either of them can not be added to an =e¢; to obtain an A-zero-sum,
since all its nonzero entries have the same sign. O

Theorem 2 now follows from propositions 1, 2, 3 and 4.

4. Proof of Theorem 3.

We start by proving the following proposition.

Proposition 5. For A ={-1,1}, we have
(i) 1a(C3) = 3;
(ii) n4(C3) = 5
(iii) na(C3) = 11.
(iv) 21 <na(C3) < 23.

Proof. By Propositions 1 and 2, we have that s4(C%) = ga(C%)

2n4(C5) — 1, for » > 1, and by definition, we have ga(C%) < g(C

resulting in n4(C%) < g(Clo;)—l—l’ for r > 1. It follows from

9(C3) =5 ([10]), 9(C3) = 10,(Cy) = 21 ([11]),g(C3) = 46 ( [5]),

that 74(C3) < 3, na(C3) <5, 7a(C3) < 11 and na(C3) < 23. Tt is easy
to see that the sequences (1,0)(0,1) and (1,0,0)(0,1,0)(0,0,1)(1,1,1)
has no A-zero-sum of length at most three, so 74(C3) = 3 and 1n4(C3) =
5. It is also simple to check that following sequences of lengths 10 and
20 respectively do not satisfy the condition (n4):

w=
~—

(1717070) (07071a1)(111a170) (0717171)
and (7)
(17 1707070) e (070707 17 1)(17 17 17070) T (0707 17 17 1)7
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hence n4(C4) = 11 and 14(C3) > 21.

O

Proposition 5 together with propositions 1 and 2 gives the proof of
item (i) of Theorem 3. The proof of the remaining three items is given
in Proposition 7 below.

Before going further, we need a slight modification of a result due to
Gao et al for A = {1} in [4]. Here we shall use it in the case A = {—1,1}.
The proof in this case is analogous to the original one, and shall be omit
it.

Proposition 6. Let G be a finite abelian group, A ={—1,1} and H < G.
Let S be a sequence in G of length

m > (sa(H)—1)exp(G/H) + sa(G/H).
Then S has an A-zero-sum subsequence of length exp(H )exp(G/H). In
particular, if exp(G) = exp(H ) exp(G/H), then
sA(G) < (sa(H) —1)exp(G/H) + sa(G/H).

Proposition 7. For A ={-1,1}, we have

(i) 54(C3) =4x3%—3, foralla>1

(i) 8 x 3% —7 < 54(C%) <10x3*—9, for alla > 1
(i1i) 16 x 3¢ — 15 < 54(C3.) <22 x 3% — 21, for alla > 1
Proof. It follows of (i) from Theorem 3 that so(C35) =4 x 3 —3 =09.
Now assume that s4(C3,_,) = 4-3*! — 3. Thus, Proposition 6 yiclds

s4(C5.) < 3x (sA(Cg’a,l) — 1)+ s4(C3)
< 4x3*-3

On the other hand, Theorem 1 gives s4(C3.) > 4 x 3% — 3, concluding
the proof of (i).

Again by (i) from Theorem 3, we have that s4(C3) = 10x3—9 = 21.
Now, assume that SA(Cg‘a_l) < 10-3%"1 —9. It follows from Proposition
6 that

54(C%) < 3x (54(Cgazr) — 1) + 54(C%)
< 10x3*-9

On the other hand, Theorem 1 gives the lower bound s4(C4.) >
8 x 3%—7, concluding the proof of (ii). The proof of item (iii) is analogous
to the proof of item (ii), again using (i) of the Theorem 3 and Theorem
1. O
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