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Abstract

Let (Cn)n≥0 be the Lucas sequence Cn+2 = aCn+1+bCn for all n ≥ 0, where C0 = 0
and C1 = 1. For 1 ≤ k ≤ m − 1 let

[

m

k

]

C

=
CmCm−1 · · ·Cm−k+1

C1 · · ·Ck

be the corresponding C-nomial coefficient. When Cn = Fn is the Fibonacci sequence
(the numbers

[m
k

]

F
are called Fibonomials), or Cn = (qn − 1)/(q − 1), where q > 1

is an integer (the numbers
[

m
k

]

q
are called q-binomial, or Gaussian coefficients), we

show that there are no nontrivial solutions to the Diophantine equation
[

m

k

]

F

=

[

n

l

]

F

or

[

m

k

]

q

=

[

n

l

]

q

with (m,k) 6= (n, l) other than the obvious ones (n, l) = (m,m − k). We also show
that the difference

∣

∣

∣

∣

[

m

k

]

F

−
[

n

l

]

F

∣

∣

∣

∣

tends to infinity when (m,k, n, l) are such that 1 ≤ k ≤ m/2, 1 ≤ l ≤ n/2,
(m,k) 6= (n, l) and max{m,n} tends to infinity in an effective way.
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1 Introduction

A famous unsolved problem in Diophantine equations is to find all pairs of
binomial coefficients having the same value. That is, to find all solutions of

(

m

k

)

=

(

n

l

)

. (1)

Here, 1 ≤ k ≤ m−1 and 1 ≤ l ≤ n−1. To avoid the obvious symmetry of the
Pascal triangle, we may assume that k ≤ m/2 and l ≤ n/2. As of the time of
this writing, the above problem has not yet been solved in its full generality.
The only nontrivial solutions known at this time are

(

16

2

)

=

(

10

3

)

= 120,

(

21

2

)

=

(

10

4

)

= 210,

(

56

2

)

=

(

22

3

)

= 1540,

(

120

2

)

=

(

36

3

)

= 7140,

(

153

2

)

=

(

19

5

)

= 11638,

(

221

2

)

=

(

17

8

)

= 24310,

(

78

2

)

=

(

15

5

)

=

(

14

6

)

= 3003,

and

(

F2i+2F2i+3

F2iF2i+3

)

=

(

F2i+2F2i+3 − 1

F2iF2i+3 + 1

)

for i = 1, 2, . . . , (2)

where Fn is the nth Fibonacci number defined by F0 = 0, F1 = 1 and Fn+2 =
Fn+1+Fn for all n ≥ 0. See [5] for a proof of the fact that the above list contains
all the nontrivial solutions of the Diophantine equation (1) with k ≤ l and
(k, l) ∈ {(2, 3), (2, 4), (2, 6), (2, 8), (3, 4), (3, 6), (4, 6)} and the recent paper [?]
for the case (k, l) = (2, 5).

Let us now look at the sequence of Fibonomial coefficients, which are defined
by

[

m

k

]

F

=
F1F2 · · ·Fm

(F1 · · ·Fk)(F1 · · ·Fm−k)
=

FmFm−1 · · ·Fm−k+1

F1 · · ·Fk

for 1 ≤ k ≤ m − 1. These numbers are always integers as first proved by E.
Lucas in [9]. Various parts of this sequence with fixed small values of k appear
in Sloane’s On Line Encyclopedia of Integer Sequences [11] (see, for example,
A001655, A056565, A001658, etc.). More generally, given any sequence C =
(Cn)n≥0 of nonzero real numbers, one can define the C-nomial coefficients as

[

m

k

]

C

=
CmCm−1 · · ·Cm−k+1

C1 · · ·Ck
.

Bachmann [1, p. 81], Carmichael [4, p. 40], and Jarden and Motzkin [7], all
showed that if C is a Lucas sequence; i.e., it has C0 = 0, C1 = 1 and satisfies
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the recurrence Cn+2 = aCn+1 + bCn for all nonnegative integers n with some
nonzero integers a and b such that the quadratic equation x2 − ax − b = 0
has two distinct roots α and β whose ratio is not a root of unity, then all the
C-nomial coefficients are integers. The Fibonomial coefficients are particular
cases of this instance with a = b = 1. When a = q + 1 and b = −q, where
q > 1 is some fixed integer, the C-nomial coefficients become the so-called
q-binomial coefficients given by

[

m

k

]

q

=
(qm − 1) · · · (qm−k+1 − 1)

(q − 1) · · · (qk − 1)
.

In this paper, we study the analogous Diophantine equation (1) when the bi-
nomial coefficients are replaced by C-nomial coefficients, and, more generally,
we study the spacings between the C-nomial coefficients. While our results
can be formulated for general C-nomial coefficients when C = (Cn)n≥0 is a
general Lucas sequence, we restrict our attention to the particular cases of
the Fibonomial coefficients, for which C = F = (Fn)n≥0, or to the case of the
q-binomial coefficients, when Cn = (qn − 1)/(q − 1) for all n ≥ 0, where q > 1
is a fixed integer. Our results are the following.

Theorem 1 None of the Diophantine equations

[

m

k

]

F

=

[

n

l

]

F

or

[

m

k

]

q

=

[

n

l

]

q

(3)

has any positive integer solutions 1 ≤ k ≤ m/2, 1 ≤ l ≤ n/2, (m, k) 6= (n, l)
and q > 1.

Next, let us put

F =

{[

m

k

]

F

: 1 ≤ k ≤ m/2

}

= {f1, f2, . . .},

where 1 = f1 < f2 < f3 · · · are all the elements of F arranged increasingly.
Note that

F = {1, 2, 3, 5, 6, 8, 13, 15, 21, 34, 40, 55, 60, 89, 104, . . .}.

This is sequence A144712 in [11]. Our next result shows that fN+1−fN → ∞.

Theorem 2 We have

fN+1 − fN � (log fN)1/2,

where the implied constant is effective. In particular, fN+1−fN tends to infinity

with N .
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Our arguments for the proof of Theorem 2 are entirely explicit. In particular,
if fN+1 − fN ≤ 100, then N ≤ 26.

2 The proof of Theorem 1

Letting α and β be the two roots of the quadratic equation x2−ax−b = 0 of the
Lucas sequence (un)n≥0 with u0 = 0, u1 = 1 of recurrence un+2 = aun+1 + bun

for all n ≥ 0, we have

un =
αn − βn

α − β
for n = 0, 1, . . . .

We make the convention that |α| ≥ |β|. We write ∆ = (α − β)2 and we call
it the discriminant of the sequence. In the particular case of the Fibonacci
sequence, we have α = (1 +

√
5)/2, β = (1 −

√
5)/2, and ∆ = 5, while in the

particular case of the Lucas sequence involved in the q-binomial coefficient we
have α = q, β = 1, and ∆ = (q − 1)2.

A Primitive Divisor p of the nth term un of a Lucas sequence (un)n≥0 is a
prime factor of un which does not divide ∆

∏

1≤m≤n−1 um. It is known that
a primitive divisor p of un exists whenever n ≥ 13 if α and β are real and
13 can be replaced by 7 if α and β are integers (see, for example, [4]). The
above statement is usually referred to as the Primitive Divisor Theorem (see
[3] for the most general version). It is also known that such a primitive divisor
p satisfies p ≡ ±1 (mod n).

We are now ready to deal with equation (3). We may assume that m 6= n and
that l 6= k. Since m 6= n, we may assume that n > m. If l ≥ k, then

[

n

l

]

F

=
(

Fn

F1

)(

Fn−1

F2

)

· · ·
(

Fn−l+1

Fl

)

≥
(

Fn

F1

)

· · ·
(

Fn−k+1

Fk

)

>
(

Fm

F1

)

· · ·
(

Fm−k+1

Fk

)

=

[

m

k

]

F

,

where we used the fact that Fn > Fm because n ≥ 3 (which follows because
n > m ≥ 2k ≥ 2). Hence, assuming that n > m in equation (3) for the
Fibonomial coefficients, we deduce that l < k. Thus, n > m ≥ 2k > 2l.
A similar argument holds for the case of the q-binomial coefficients. Now if
n ≥ 13, then by the Primitive Divisor Theorem there exists a primitive prime
factor p for Fn. This prime will obviously divide

[

n
l

]

F
, since p does not divide

F1 · · ·Fl, but it cannot divide
[

m
k

]

F
, because p does not divide F1 · · ·Fm. This

shows that n ≤ 12 and a quick computation reveals that there are no equal
Fibonomial coefficients in the range 2 ≤ 2l < 2k ≤ m < n ≤ 12.
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In the case of the q-binomial coefficients, the Primitive Divisor Theorem tells
us that n ≤ 6. Since 2 ≤ 2k < 2l ≤ m < n ≤ 6, the only possibilities
are (k, l, m, n) = (1, 2, 4, 5), (1, 2, 4, 6), (1, 2, 5, 6). In the case (k, l, m, n) =
(1, 2, 4, 5), the Diophantine equation (3) for q-binomial coefficients leads to

(q4 − 1)(q3 − 1)

(q − 1)(q2 − 1)
=

q5 − 1

q − 1
,

which is equivalent to q3 + q4 = q2 + q5, which is impossible because of the
uniqueness of the base q expansion of a positive integer. The cases (k, l, m, n) =
(1, 2, 4, 6) and (1, 2, 5, 6) of the Diophantine equation (3) for q-binomial coef-
ficients lead to

(q4 − 1)(q3 − 1)

(q − 1)(q2 − 1)
=

q6 − 1

q − 1
, or q7 + q6 + q2 = q8 + q4 + q3,

and

(q5 − 1)(q4 − 1)

(q − 1)(q2 − 1)
=

q6 − 1

q − 1
, or q9 + q6 + q2 = q8 + q5 + q4,

respectively, both of which are impossible again by the uniqueness of the base
q expansion of a positive integer.

3 The proof of Theorem 2

We keep the notations from the previous section, and start with some estimates

for

[

m

k

]

F

. Let

p :=
∏

i≥1



1 −
(

β

α

)i


 =
∏

i≥1

(

1 − (−α2)−i
)

∼ 1.226742 · · · . (4)

Lemma 1 We have
[

m

k

]

F

=
αmk−k2

p
(1 + ζm,k),

where ζm,k is a real number satisfying

|ζm,k| <
2

α2k+1
.

Proof We have
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[

m

k

]

F

=
FmFm−1 · · ·Fm−k+1

F1F2 · · ·Fk

= αm+(m−1)+···+(m−k+1)−1−2−···−k
∏

1≤i≤k



1 −
(

β

α

)i




−1

= αmk−k2
∏

1≤i≤k



1 −
(

β

α

)i




−1

.

Now observe that

∏

1≤i≤k



1 −
(

β

α

)i




−1

= p−1
∏

i≥k+1



1 −
(

β

α

)i


 = p−1(1 + ζm,k).

It remains to estimate ζm,k. We use the inequality

ez > 1 + z >











ez/2 if z ∈ (0, 1/4),

e2z if z ∈ (−1/4, 0).
(5)

We shall use the above inequality (4) with z = −(β/α)i for i ≥ k + 1. Note
that the inequality |z| ≤ α−2(k+1) ≤ α−4 < 1/4 holds for all k ≥ 1. We get
that

1 + ζm,k =
∏

i≥k+1



1 −
(

β

α

)i


 < exp



−
∑

i≥k+1

(

β

α

)i




= exp

(

(−1)k+2

α2k+2(1 − β/α)

)

≤ exp

(

1√
5α2k+1

)

≤ 1 +
2√

5α2k+1
< 1 +

1

α2k+1
.

Thus,

ζm,k <
1

α2k+1
. (6)

By a similar calculation using the right hand side of inequalities (4), we get

1 + ζm,k ≥ exp



−2
∑

i≥k+1

∣

∣

∣

∣

∣

β

α

∣

∣

∣

∣

∣

i


 = exp

(

− 2

α2k+2(1 − α−2)

)

= exp
(

− 2

α2k+1

)

> 1 − 2

α2k+1
,

yielding

ζm,k > − 2

α2k+1
. (7)

The desired inequality now follows from estimates (5) and (6). 2
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Lemma 2 We have
[

m

k

]

F

=
αmk−k(k−1)/2

5k/2F1 · · ·Fk
(1 + ζ ′

m,k),

where

|ζ ′
m,k| <

2

α2m−2k+1
.

Proof We write
[

m

k

]

F

=
FmFm−1 · · ·Fm−k+1

F1F2 · · ·Fk

=
αm+(m−1)+···+(m−k+1)

5k/2F1F2 · · ·Fk

k−1
∏

i=0



1 −
(

β

α

)m−i


 .

We now study the last product above. When k = 1, then the above product
is

1 + ζ ′
m,1 = 1 − (−1)m

α2m
.

Thus,

|ζ ′
m,1| =

1

α2m
<

2

α2m−1
,

so the desired inequality holds in this case. Assume now that k ≥ 2. We then
have, again by inequalities (4), that

1 + ζ ′
m,k =

k−1
∏

i=0



1 −
(

β

α

)m−i


 < exp

(

k−1
∑

i=0

1

α2(m−i)

)

≤ exp

(

1

α2(m−k+1)(1 − α−2)

)

= exp
(

1

α2m−2k+1

)

< 1 +
2

α2m−2k+1
.

In the above inequality, we used again inequality (4) with z = 2/α2m−2k+1

together with the fact that z ≤ 2/α2k+1 ≤ 2/α5 < 1/4 holds for all integers
k ≥ 2. Thus,

ζ ′
m,k <

2

α2m−2k+1
.

Using now the right hand side of inequality (4), we get

1 + ζ ′
m,k ≥ exp

(

−2
k−1
∑

i=0

1

α2(m−i)

)

≥ exp
(

− 2

α2m−2k+1

)

≥ 1 − 2

α2m−2k+1
,

leading to

ζ ′
m,k > − 2

α2m−2k+1
.

This completes the proof of this lemma. 2
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Lemma 3 The inequality

∣

∣

∣

∣

∣

αk(k+1)/2−l(l+1)/2

5(k−l)/2Fl+1 · · ·Fk
− 1

∣

∣

∣

∣

∣

>
1

α2l+5
(8)

holds for all k > l ≥ 1.

Proof Clearly,

∣

∣

∣

∣

∣

αk(k+1)/2−l(l+1)/2

5(k−l)/2Fl+1 · · ·Fk
− 1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

k
∏

i=l+1



1 −
(

β

α

)i




−1

− 1

∣

∣

∣

∣

∣

∣

∣

.

If k = l + 1, then the above expression becomes

∣

∣

∣

∣

1

1 ± α−2l−2
− 1

∣

∣

∣

∣

=
1

α2l+2(1 ± α−2l−2)
>

1

α2l+2(1 + α−1)
=

1

α2l+3
.

Assume now that k ≥ l + 2. Observe that if i is odd, then



1 −
(

β

α

)i+1






1 −
(

β

α

)i+2


 =
(

1 − 1

α2i+2

)(

1 +
1

α2i+4

)

= 1 − 1

α2i+2
+

1

α2i+4
− 1

α4i+6

= 1 − 1

α2i+3
− 1

α4i+6
< 1 − 1

α2i+3
.

In particular, if l is odd, then

k
∏

i=l+1



1 −
(

β

α

)i


 < 1 − 1

α2l+3
,

so that

∣

∣

∣

∣

∣

∣

∣

k
∏

i=l+1



1 −
(

β

α

)i




−1

− 1

∣

∣

∣

∣

∣

∣

∣

>
1

1 − 1/α2l+3
− 1 >

1

α2l+3(1 − α−2)
>

1

α2l+3
.

However, if i is even, then



1 −
(

β

α

)i+1






1 −
(

β

α

)i+2


 =
(

1 +
1

α2i+2

)(

1 − 1

α2i+4

)

= 1 +
1

α2i+2
− 1

α2i+4
− 1

α4i+6

> 1 +
1

α2i+3
− 1

α2i+5
= 1 +

1

α2i+4
,
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so that, if l is even, then

k
∏

i=l+1



1 −
(

β

α

)i


 > 1 +
1

α2l+4
,

leading to

∣

∣

∣

∣

∣

∣

∣

k
∏

i=l+1



1 −
(

β

α

)i




−1

− 1

∣

∣

∣

∣

∣

∣

∣

≥ 1 − 1

1 + 1/α2l+4
>

1

α2l+5
,

which completes the proof of this lemma. 2

It is known that the number p appearing at (??) is transcendental (apply, for
example, Lemma 1 and Lemma 2 from [6] to the function f(z) = η(z) and
the algebraic number q = β/α). In particular, it cannot be of the form 5l/2/αs

for any positive integers l and s The next lemma tells us even more, namely
that the number p cannot be approximated too well by numbers of the form
5l/2/αs for positive integers l and s.

Lemma 4 The inequality

∣

∣

∣

∣

∣

αs

5l/2
− 1

p

∣

∣

∣

∣

∣

>
1

53l/2

holds for all positive integers s and l with finitely many exceptions.

Proof Assume that s is large and that

∣

∣

∣

∣

∣

αs

5l/2
− 1

p

∣

∣

∣

∣

∣

<
1

53l/2

holds with some positive integer l. Then also the inequality

∣

∣

∣

∣

∣

5l/2

αs
− p

∣

∣

∣

∣

∣

� 1

α3s

holds, where we can take the above implied constant as 2/p2 once s is suffi-
ciently large. By Euler’s pentagonal formula,

p =
∑

n≥1

(−1)n





(

β

α

)n(3n−1)/2

+

(

β

α

)n(3n+1)/2




=
∑

n≥1

(

εn,1

αn(3n−1)
+

εn,2

αn(3n+1)

)

,

9



for some signs εn,1, εn,2 ∈ {±1}. Let N := Ns be the minimal positive integer
such that N(3N + 1) > 2s + 10. Then both estimates

N(3N + 1) = 2s + O(s1/2),

and

(N + 1)(3(N + 1) − 1) − N(3N + 1) = 4N + 2 ∈ (c0s
1/2, c1s

1/2)

hold for large s with some positive constants c0 and c1. Thus,

∣

∣

∣

∣

∣

5l/2

αs
−

N
∑

n=1

(

εn,1

αn(3n−1)
+

εn,2

αn(3n+1)

)

∣

∣

∣

∣

∣

= O
(

1

α3s
+

1

α(N+1)(3(N+1)−1)

)

.

Multiplying both sides of the above approximation by αN(3N+1) we get

|5l/2αN(3N+1)−s −
N
∑

n=1

(εn,1α
un,1 + εn,2α

un,2) | � 1

αs+O(s1/2)
+

1

α4N

� 1

αc0s1/2

(9)

provided that s is sufficiently large. Here, un,1 and un,2 stand for the nonnega-
tive exponents of the form N(3N+1)−n(3n−1) and N(3N+1)−n(3n+1), re-
spectively, for all positive integers n = 1, . . . , N . Put now u = N(3N +1)−s >
s + 10 and observe that the number

γ = 5l/2αu −
N
∑

n=1

(εn,1α
un,1 + εn,2α

un,2)

is an algebraic integer in K = Q[
√

5]. Its absolute value is, by (8), bounded
above by O(α−c0

√
s). Its conjugate in K is

σ(γ) = ±5l/2βu −
N
∑

n=1

(εn,1β
un,1 + εn,2β

un,2) .

Since s is assumed to be large, it follows that αs � 5l/2, therefore |5l/2βu| =
5l/2α−u < 5l/2α−s � 1. Since also

∣

∣

∣

∣

∣

∣

∑

n≤N

(εn,1β
un,1 + εn,2β

un,2)

∣

∣

∣

∣

∣

∣

<
∑

n≥0

|β|n =
1

1 − |β| � 1,

it follows that σ(γ) � 1. Thus,

|NK/Q(γ)| = |γ||σ(γ)| � 1

αc0
√

s
.

However, |NK/Q(γ)| is an integer. For large s, the above inequality is possible
only when γ = 0.

10



We now study this last condition and show that it is impossible, which will
complete the proof of the lemma. Assume that γ = 0. Then we get

5l/2 =
∑

n≤N

(

εn,1α
un,1−u + εn,2α

un,2−u
)

. (10)

Conjugating in K, we get that

ε5l/2 =
∑

n≤N

(

εn,1β
un,1−u + εn,2β

un,2−u
)

, (11)

where ε ∈ {±1} according to whether l is even or odd. Suppose say that ε = 1.
Then subtracting the above relations (9) and (10) and dividing both sides of
the resulting relation by

√
5, we get

∑

n≤N

(

εn,1Fun,1−u + εn,2Fun,2−u

)

= 0. (12)

Observe that the indices in the above relation (11) satisfy

u1,1 − u < u1,2 − u < u2,1 − u < u2,2 − u < · · · < uN,1 − u < uN,2 − u. (13)

Let
M = {|un,i − u| : 1 ≤ n ≤ N, i = 1, 2} = {m1, m2, . . . , mt},

where m1 < m2 < · · · < mt := M . Observe that all members of M are
nonnegative. Furthermore, because of inequalities (12) for each mj ∈ M, there
are at most two numbers un,i − u in the string (12) such their absolute values
is mj , and if there are two then one of them is the negative of the other.
Observe also that since un,i is always even, it follows that all the numbers
in M have the same parity. Finally, let us observe that the first three large
values of M appear only once. Indeed, the largest positive member in (12) is
uN,2 −u = N(3N +1)− (N(3N +1)− s) = s, whereas the first three negative
ones in (12) are

u1,1 − u = −(N(3N + 1) − (s + 2)) < −(s + 8),

u1,2 − u = −(N(3N + 1) − (s + 4)) < −(s + 6),

u2,1 − u = −(N(3N + 1) − (s + 10) < −s.

Thus,

M = mt = N(3N + 1) − (s + 2),

mt−1 = N(3N + 1) − (s + 4) = M − 2,

mt−2 = N(3N + 1) − (s + 10) = M − 8,

are the first three largest elements in M, and for each of them, there is only
one element (namely the corresponding negative one) in the string (12) whose

11



absolute value is this given element. From the above discussion, and using also
the fact that F−m = (−1)m−1Fm, we deduce that relation (11) leads to the
inequality

FM ≤ FM−2 + FM−8 + 2
∑

5≤k≤M/2

FM−2k. (14)

Using the fact that Fm = αm/
√

5 + O(1), we get that

∑

5≤k≤M/2

FM−2k < FM−10 + FM−9 + · · · + F1

=
1√
5
(αM−10 + αM−9 + · · · + 1) + O(M)

=
1√

5(α − 1)
αM−9 + O(M).

Thus, relation (13) leads to

αM

√
5
≤ αM−2

√
5

+
αM−8

√
5

+
2αM−9

√
5(α − 1)

+ O(M),

or

α9 ≤ α7 + α +
2

α − 1
+ O

(

M

αM

)

, (15)

and this is false for large M ; hence, for large s.

The case when ε = −1 is similar. In this case, we sum up relations (9) and
(10) and get a relation similar to (11), except that the Fibonacci numbers
are replaced by the Lucas numbers (Ln)n≥0, where L0 = 0, L1 = 1 and
Ln+2 = Ln+1 + Ln for all n ≥ 0. The general term of the Lucas sequence
(Ln)n≥0 is Ln = αn + βn. A similar argument leads to inequality (14) from
which the same contradiction as in the case ε = 1 is derived. This shows that
γ cannot be zero and completes the proof of the lemma. 2

The proof of Theorem 2.

In parallel with the proof of this theorem, we also show that fN+1 − fN > 100
for N > 26.

Let N be sufficiently large, say at least such that log log log fN > 1. Let K
be tending to infinity with N . We need to show that if K tends to infinity
with N sufficiently slowly, say, if K < c2(log fN)1/2 with a sufficiently small
positive constant c2, then the Diophantine inequality

∣

∣

∣

∣

∣

[

m

k

]

F

−
[

n

l

]

F

∣

∣

∣

∣

∣

≤ K (16)

12



has only finitely many positive integer solutions (m, k, n, l) with 1 ≤ k ≤
m/2, 1 ≤ l ≤ n/2, (m, k) 6= (n, l). We assume that n ≥ m. Observe that by
Lemma 1, we have that for N large,

fN = exp(mk − k2 + O(1)) = exp(nl − l2 + O(1)),

so that both inequalities mk − k2 � log fN and nl − l2 � log fN hold. Since
mk − k2 = k(m − k) ≤ (m/2)2, we get that m � (log fN )1/2. Let c3 be the
implied constant above. Assume that K ≤ c3(log fN )1/2−3. Then m > K +2.
For large N ; hence, for large m, Fm has a primitive divisor which is at least
as large as m − 1 ≥ K + 1.

In the particular case that we take K = 100, we also assume that m > 100
since the remaining cases can be checked using Mathematica.

Assume first that n = m. Let P be some primitive prime factor of Fn. Then

certainly P divides both

[

m

k

]

F

and

[

n

l

]

F

, therefore it divides their difference

which is ≤ K by inequality (15). Since P ≡ ±1 (mod n), we get that P ≥
n − 1 ≥ K + 1. Thus, P ≥ K + 2, so the only possibility is therefore that the
difference appearing in the left hand side of inequality (15) is zero. However,
this is impossible for (m, k) 6= (n, l) by Theorem 1.

Thus, we may assume that n > m. Assume next that l ≥ k. Then

[

n

l

]

F

−
[

m

k

]

F

≥
[

n

k

]

F

−
[

n − 1

k

]

F

=
Fn−1 · · ·Fn−k+1(Fn − Fn−k)

F1 · · ·Fk

≥ (Fn − Fn−1)
(

Fn−1

F2

)

· · ·
(

Fn−(k−1)

Fk

)

> Fn−2 > exp(c3(log fN)1/2),

(17)

where we used the fact that n − i ≥ i + 1 for all i = 1, . . . , k − 1. So, in
particular, the above difference exceeds c3(log fN)1/2 > K for N sufficiently
large. Thus, we may assume that n > m ≥ 2k > 2l. In particular, n ≥ 2l + 3.

Next, let us notice that m ≤ n − l. Indeed, assume that this is not so. Let P

be a primitive prime factor of Fm. Then P divides both

[

m

k

]

F

and

[

n

l

]

F

, so

again P divides their difference which is ≤ K. Since P ≥ K + 2, we get again
a contradiction. Thus, m ≤ n − l.

13



Next, we write

[

m

k

]

F

=
αmk−k2

p
(1 + ζm,k) and

[

n

l

]

F

=
αnl−l2

p
(1 + ζn,l).

Put u = max{nl − l2, mk − k2}. By inequality (15) together with Lemma 1,
we have

|αmk−k2 − αnl−l2| < Kp + αup(|ζm,k| + |ζn,l|) < Kp +
4pαu

α2l+1
.

Dividing both sides of the above inequality by αu, putting λ = (mk − k2) −
(nl − l2), and observing that

u ≥ l(n − l) ≥ l(l + 3),

we get that

|1 − α−|λ|| ≤ Kp

αl(l+3)
+

4p

α2l+1
. (18)

We now distinguish two cases according to whether λ 6= 0 or λ = 0, respec-
tively.

The Case λ 6= 0.

This is the heart of the proof. We find it easier to explain it in the particular
case when K = 100, and to treat the general case later.

The case K = 100.

In this case, the left hand side of the above inequality (17) is > 0.38, and we
therefore get the inequality

0.38 <
123

αl(l+3)
+

5

α2l+1
,

leading to l = 1, 2. Since l = 1, 2, by Lemma 2, we have

[

n

l

]

F

=
αnl−l(l−1)/2

5l/2
(1 + ζ ′

n,l),

where

|ζ ′
n,l| ≤

2

α2n−3
.

Thus, inequality (15) together with Lemma 2 now lead to

14



∣

∣

∣

∣

∣

αnl−l2+l(l+1)/2

5l/2
− αmk−k2

p

∣

∣

∣

∣

∣

< 100 + αu

(

αl(l+1)/2

5l/2
|ζ ′

n,l| +
|ζm,k|

p

)

< 100 + αu

(

2α3

√
5α2n−3

+
2

pα2k+1

)

< 100 + αu

(

1

α2n−6
+

2

pα2k+1

)

.

Observe that since n > m ≥ 2k, we have that 2n − 6 ≥ 2(2k + 1) − 6 =
4k−4 ≥ 2k+2 provided that k ≥ 3. The inequality 2n−6 ≥ 2k+2 holds also
when k = 2 since n > 100. We thus get that the inequality 2n − 6 ≥ 2k + 2
holds always in our range, which leads to

∣

∣

∣

∣

∣

αnl−l2+l(l+1)/2

5l/2
− αmk−k2

p

∣

∣

∣

∣

∣

< 100 +
αu

α2k+1

(

1

α
+

3

p

)

< 100 +
αu

α2k−2
,

where we also used the fact that 1/α + 3/p < α3. We now divide both sides
of the above inequality again by αu getting

∣

∣

∣

∣

∣

αnl−l2+l(l+1)/2−u

5l/2
− αmk−k2−u

p

∣

∣

∣

∣

∣

<
100

αk2
+

1

α2k−2
. (19)

In the last inequality above, we also used the fact that u ≥ k(m − k) ≥ k2.
Note that the left side of the above inequality is either

∣

∣

∣

∣

∣

αl(l+1)/2

5l/2
− α−|λ|

p

∣

∣

∣

∣

∣

, or

∣

∣

∣

∣

∣

αl(l+1)/2−|λ|

5l/2
− 1

p

∣

∣

∣

∣

∣

, (20)

according to whether u = nl − l2 or mk − k2. Since λ 6= 0, in the first case we
get that α−|λ|/p < α−1/1.22 < 0.51, while αl(l+1)/2/5l/2 ≥ α/

√
5 ≥ 0.71. Thus,

in the first case the left hand side of inequality (18) exceeds 0.2. In the second
case, again since λ 6= 0, it follows that the inequality |λ| ≥ l(l + 1)/2 holds in
all cases except when |λ| = 1, 2 and l = 2. Hence,

αl(l+1)/2−|λ|

5l/2
≤ max

{

1

51/2
,
α2

5

}

=
α2

5
.

This shows that in this second case the left hand side of inequality (18) is at
least 1/p − α2/5 > 0.2. Thus, in both cases we have that

0.2 <
100

αk2
+

1

α2k−2
, (21)

giving k ≤ 3.
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Hence, (l, k) ∈ {(1, 2), (1, 3), (2, 3)}. Next, we use again inequality (15) and
Lemma 2 together with the obvious fact that

max

{

αmk−k(k−1)/2

5k/2F1 · · ·Fk
,

αnl−l(l−1)/2

5l/2F1 · · ·Fl

}

≤ αu

51/2
,

to get that

∣

∣

∣

∣

∣

αmk−k(k−1)/2

5k/2F1 · · ·Fk

− αnl−l(l−1)/2

5l/2F1 · · ·Fl

∣

∣

∣

∣

∣

< 100 +
αu

√
5

(

2

α2n−3
+

2

α2m−5

)

< 100 +
αu

α2m−7
,

(22)

where we used the fact that

2

α2n−3
+

2

α2m−5
≤ 1

α2m−5

(

2

α2n−2m+2
+ 2

)

<
1

α2m−7
,

since
2

α2n−2m+2
+ 2 ≤ 2

α4
+ 2 < α2.

Dividing again both sides of the above inequality (21) by αu and using the
fact that u ≥ k(m − k) ≥ 2(m − 2), we get that

∣

∣

∣

∣

∣

αmk−k2−u+k(k+1)/2

5k/2F1 · · ·Fk

− αnl−l2−u+l(l+1)/2

5l/2F1 · · ·Fl

∣

∣

∣

∣

∣

<
100

α2m−4
+

1

α2m−7
. (23)

The left hand side above is either

∣

∣

∣

∣

∣

αk(k+1)/2

5k/2F1 · · ·Fk

− αl(l+1)/2−|λ|

5l/2F1 · · ·Fl

∣

∣

∣

∣

∣

, or

∣

∣

∣

∣

∣

αk(k+1)/2−|λ|

5k/2F1 · · ·Fk

− αl(l+1)/2

5l/2F1 · · ·Fl

∣

∣

∣

∣

∣

, (24)

according to whether u = nl − l2 or mk − k2. In the first case, we have that

αk(k+1)/2/(5k/2F1 · · ·Fk) ≥ 0.8

for k = 2, 3, while αl(l+1)/2−|λ|/(5l/2F1 · · ·Fl) ≤ 1/51/2 < 0.5 by an argument
already used. Thus, in this case the left hand side of inequality (22) is at least
0.3. In the second case, we have that

αl(l+1)/2/(5l/2F1 · · ·Fl) ≥ 0.72

for l = 1, 2, while

αk(k+1)/2−|λ|

5k/2F1 · · ·Fk

≤ max

{

α2

5
,

α5

2 · 53/2

}

< .53
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for k = 2, 3 and λ 6= 0, therefore the left hand side of inequality (22) exceeds
0.19 in this case. Thus, in both cases we have

0.19 <
100

α2m−4
+

1

α2m−7
, (25)

leading to m < 9, which is false.

This takes care of the case λ 6= 0 when K = 100.

The case of the general K.

In the case of the general K and when λ 6= 0, the inequality (17) shows that
l = O((log K)1/2). Then the arguments from the case K = 100 show that the
analog inequality (18) holds with 100 replaced by K and with the exponent
2k − 2 replaced by 2k + O(log K). Indeed, the only inequality to justify is the
fact that the difference n − k grows faster than any fixed multiple of log K
once N is sufficiently large.

Well, assuming that this were not so, we would get that infinitely often n−k <
c4 log K holds with some positive constant c4. Thus, k ≤ m−k < n−k � log K
implying k � log K, and later that m < n ≤ k + O(log K) � log K. Thus,
k(m − k) � (log K)2 � (log log fN)2, which combined with the fact that
k(m − k) � log fN gives only finitely many possibilities for N . Thus, if N is
sufficiently large, we get to inequality (18) with the right hand side replaced
by α−2k+O(log K).

Now inequality (18) with 100 replaced by K together with the lower bound
given by Lemma 4 on the expression appearing in the right hand side in display
(19) lead to an inequality of the form

1

53l/2
� 1

α2k+O(log K)
,

implying k � l + O(log K). Since also l � (log K)1/2, we get that k � log K.

We thus bounded both l and k in terms of K. Following through the arguments
from the case when K = 100, we arrive at the analog of inequality (22) with
100 replaced by K, which implies that

∣

∣

∣

∣

1 − αk(k+1)/2−l(l+1)/2±|λ|5−(k−l)/2(Fl+1 · · ·Fk)
−1
∣

∣

∣

∣

� 1

α2m+O(log K)
. (26)

The right hand side above is not zero. Indeed, if it were, then since no power of
α of nonzero exponent can be an integer, we get that the exponent of α in the
left hand side of equation (25) is zero, and further that Fl+1 · · ·Fk = 5(k−l)/2.
By the Primitive Divisor Theorem, the above relation is false for k > 12,
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and it can be checked that it does not hold for any 1 ≤ l < k ≤ 12 either.
Thus, the left hand side of equation (25) is indeed nonzero. Furthermore, since
αk(k+1)/2 ∼ p5k/2F1 · · ·Fk as k → ∞, it follows that the only chance the above
expression from the right hand side has of being small is when λ = O(1).
We now use a linear form in logarithms á la Baker [2], which states that if
α1, α2, α3 are algebraic numbers of heights H1, H2, H3, respectively, and
b1, b2, b3 are integers of absolute value at most B such that

Λ = αb1
1 αb2

2 αb3
3 − 1 6= 0,

then

|Λ| > exp(−c5 log(H1 + 2) log(H2 + 2) log(H3 + 2) log(B + 2))

for some positive constant c5 depending on the degree of the field Q[α1, α2, α3]
over Q. Recall that the height of an algebraic number is the maximum absolute
value of the coefficients of its minimal polynomial over the integers. We apply
this with

α1 = α, α2 =
√

5, α3 = Fl+1 · · ·Fk,

and

b1 = k(k + 1)/2 − l(l + 1)/2 ± |λ|, b2 = −(k − l), b3 = −1.

Note that H1 = O(1), H2 = O(1), H3 = αO(k2) and B = O(k2). We thus get
that the left hand side of (25) is bounded below by exp(−c6k

2 log k), where c6

is some absolute constant. Thus, we get the inequality

m + O(log K) � k2 log k � (log K)2 log log K,

yielding
m � (log K)2 log log K.

Hence,
mk � (log K)3 log log K � (log log fN )3 log log log fN .

However, mk > k(m − k) � log fN , which gives

log fN � (log log fN)3(log log log fN),

and this has only finitely many solutions N . This takes care of the case λ 6= 0.

The case λ = 0.

Here too we distinguish between the instance when K = 100 and the gen-
eral K.

The case when K = 100.
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We use inequality (15) with K = 100 together with Lemma 2 to get

∣

∣

∣

∣

∣

αmk−k(k−1)/2

5k/2F1 · · ·Fk
− αnl−l(l−1)/2

5l/2F1 · · ·Fl

∣

∣

∣

∣

∣

≤ 100 +
2αmk−k(k−1)/2

5k/2F1 · · ·Fkα2m−2k+1

+
2αnl−l(l−1)/2

5l/2F1 · · ·Flα2n−2l+1
.

We divide both sides of the above inequality by αnl−l(l−1)/2/
(

5l/2F1 · · ·Fl

)

,

and recalling that mk − k2 = nl − l2 we obtain

∣

∣

∣

∣

∣

αk(k+1)/2−l(l+1)/2

5(k−l)/2Fl+1 · · ·Fk

− 1

∣

∣

∣

∣

∣

<
100 · 5l/2F1 · · ·Fl

αnl−l(l−1)/2

+
2αk(k+1)/2−l(l+1)/2

5(k−l)/2Fl+1 · · ·Fkα2m−2k+1
+

2

α2n−2l+1
.

(27)

Next, we estimate the terms involved in the right hand side of (26). Observe
that

5l/2F1 · · ·Fl < α1+···+l
l
∏

i=1

(

1 +
1

α2i

)

< 1.8αl(l+1)/2,

while

αk(k+1)/2−l(l+1)/2

5(k−l)/2Fl+1 · · ·Fk

≤
k
∏

i=l+1

(

1 − 1

α2i

)

<
∏

i≥1

(

1 − 1

α2i

)−1

< 2.1.

Thus, using also the facts that l < k, n − l ≥ m − k + 1, and nl − l2 =
k(m − k) ≥ 2(m − k), we get that the right hand side of inequality (26) is

<
1

α2m−2k

(

180 +
4.2

α
+

2

α3

)

<
184

α2m−2k
<

1

α2m−2k−11
. (28)

As for the left hand side of inequality (26), we use inequality (7) of Lemma 3,
to arrive at

1

α2l+5
<

1

α2m−2k−11
, (29)

which leads to 2m < 2k + 2l + 16.

Thus, m ≤ k + l + 7. Since m ≥ 2k, we get that k ≤ l + 7. Hence, mk − k2 =
k(m−k) ≤ (l+7)2 = l2+14l+49. Since l(n−l) = k(m−k) ≤ l2+14l+49, we get
that n−l ≤ l+14+49/l, therefore n ≤ 2l+14+49/l. Thus, n−l ≤ l+14+49/l.
Since m ≤ n− l, we get that 2k ≤ m ≤ n− l ≤ l + 14 + 49/l. Since k ≥ l + 1,
we get that 2l + 2 ≤ l + 14 + 49/l, or l ≤ 12 + 49/l, leading to l ≤ 15. Thus,
k ≤ l +7 ≤ 22 and m ≤ k + l+7 ≤ 22+15+7 ≤ 44, which is a contradiction.
Hence, inequality (15) has no solutions with n ≥ m > 100.

The case of the general K.

19



Arguments identical to the ones used in when K = 100 lead to the analogue
of inequality (28) with 2m − 2k − 11 replaced by 2m − 2k + O(log K), which
leads to m ≤ k+ l+O(logK). The argument used in the final step of the proof
of the argument for K = 100 shows first that k = l + O(log K), then that
n = 2l+O(log K), so that n−l = l+O(log K). Since n−l ≥ 2k = 2l+O(1), we
get 2l+O(log K) ≤ l+O(log K); thus, l = O(logK), therefore n = O(log K).
Thus, mk = O((log K)2) = O((log log fN)2). Since also mk � log fN , we get
that log fN � (log log fN)2, so again only finitely many possibilities for N .
This finishes the proof of the theorem.

As for the computational case when K = 100 and m ≤ 100, by going through
the previous bounds, a very rough estimate renders the bound n ≤ 5000. A
computer program exhausted easily this entire range, revealing that fN+1 −
fN ≤ 100, only if N ≤ 18, or N = 26.

4 Further comments and a generalization

A similar result as Theorem 2 holds when instead of the Fibonomials, we
arrange all the q-binomial coefficients in increasing order, or, more generally,
all the C-nomial coefficients, when C = (Cn)n≥0 is a Lucas sequence of integers
satisfying the property that |α| > |β| (in particular, its roots are real). In
order to prove this, at least for q-binomial coefficients, one would need to
prove obvious analogues of Lemmas 1, 2, 3 and 4. For example, the analogue
of Lemma 4 would state that the inequality

∣

∣

∣

∣

qs

(q − 1)l
− 1

pq

∣

∣

∣

∣

>
1

(q − 1)3l

holds for all but finitely many pairs (l, s), once q is fixed, where

pq =
∏

n≥1

(

1 − 1

qn

)

.

It would be of interest to study mixed Diophantine equations of the type

[

n

l

]

C1

=

[

m

k

]

C2

,

where C1 and C2 are two distinct Lucas sequences. For example, what can one
say about the number of solutions of the Diophantine equation

[

n

l

]

F

=

[

m

k

]

q

,
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where 1 ≤ l ≤ n/2, 1 ≤ k ≤ m/2 in unknowns (k, l, m, n) once q > 1 is a fixed
integer? Does this have finitely or infinitely many solutions? When k and l
are fixed, then the two sides of the above equation become linear recurrent
sequences (of orders depending on k and l) with dominant roots (powers of α
and q, respectively), where these dominant roots are multiplicatively indepen-
dent. Standard results from the theory of Diophantine equations (see [10], for
example), will then lead to the conclusion that there are only finitely many
possibilities for the pair (m, n) once the pair (k, l) is fixed. We do not have an
argument to the effect that the above Diophantine equation has only finitely
many solutions in all four variables (k, l, m, n). Of a somewhat related form is
the main result from [8], where it is shown that there is no non-abelian finite
simple group whose order is a Fibonacci number.

Finally, let us look at the series

∑

N≥1

1

fN
. (30)

The fact that it is convergent follows because for each n ≥ 1, row n contains
b(n + 1)/2c Fibonomial coefficients the smallest one being

[

n
1

]

F
= Fn. This

shows that series (29) is bounded above by

�
∑

n≥1

n

Fn
,

and this last series is certainly convergent. What is the nature of the number
(29)? Is it algebraic or transcendental? We recall that it is known that the
sum of the reciprocals of the odd indexed Fibonacci numbers is transcendental
(see [6]).
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