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Abstract. Let Fn be the nth Fibonacci number. For 1 ≤ k ≤ m, let
[m

k

]

F

=
FmFm−1 · · ·Fm−k+1

F1 · · ·Fk

be the corresponding Fibonomial coefficient. In 2003, the problem of deter-
mining the perfect powers in the Fibonacci sequence was completely solved. In
fact, the only solutions of Fm = yt, with m > 2, are (m, y, t) = (6, 2, 3), (12, 12, 2).
In this paper, we prove that the only solutions of the Diophantine equation

[m

k

]

F

= yt,

with m > k + 1 and t > 1, are those related to k = 1, that is (m, k, y, t) =
(6, 1, 2, 3), and (12, 1, 12, 2).

Résumé. Soit Fn le nème nombre de Fibonacci. Pour 1 ≤ k ≤ m, soit
[m

k

]

F

=
FmFm−1 · · ·Fm−k+1

F1 · · ·Fk

le correspondant coéfficient de Fibonôme. En 2003, le problème de la détermination
des puissances parfaites dans la suite de Fibonacci a été complètement res-
olu. En effet, les seules solutions de Fm = yt, avec m > 1, sont (m, y, t) =
(6, 2, 3), (12, 12, 2). Dans cet article, nous montrons que les seules solutions
de l’équation diophantienne

[m

k

]

F

= yt,

avec m > k + 1 et t > 1, sont celles liées à k = 1, qui sont (m, k, y, t) =
(6, 1, 2, 3), et (12, 1, 12, 2).

1. Introduction

Let (Cn)n≥0 be a Lucas sequence given recurrently by Cn+2 = Cn+1 + Cn, for
n ≥ 1, where the values C0 and C1 are previously fixed. For instance, if C0 = 0 and
C1 = 1, then the Cn = Fn are the Fibonacci numbers. Also, if C0 = 2 and C1 = 1,
the sequence Cn = Ln gives the Lucas numbers.

The problem of finding the perfect powers in the Fibonacci sequence was a
classical problem that attracted much attention during the past 40 years. In 2003,
Bugeaud et al [3, Theorem 1] confirmed the expectation: the only perfect powers
in that sequence are 0, 1, 8 and 144. Such result is usually referred to the Fibonacci

Perfect Powers Theorem (FPPT) and its proof combines for the first time two
powerful techniques in number theory, namely, the tools from the Wiles’s proof
of the Last Fermat Theorem and Baker’s theory on linear forms in logarithms.
Furthermore, in the same paper, it was proved that the only Lucas numbers which
are perfect powers are 1 and 4, see [3, Theorem 2]. In 2005, Luca and Shorey [4,
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Theorem 2] proved that the product of two or more consecutive Fibonacci numbers
is never a perfect power except for the trivial case F1F2 = 1.

The Fibonomial coefficient
[

m
k

]

F
is defined, for 1 ≤ k ≤ m, by replacing each

integer appearing in the numerator and denominator of
(

m
k

)

= m(m−1)···(m−k+1)
k(k−1)···1

with its respective Fibonacci number. That is
[

m

k

]

F

=
FmFm−1 · · ·Fm−k+1

F1 · · ·Fk

.

The Fibonacci Perfect Power Theorem asserts that the solutions of the Diophan-
tine equation

[

m
1

]

F
= Fm = yt, with m > 2, are (m, y, t) = (6, 2, 3) and (12, 12, 2).

A natural question arises: what are the possible perfect powers in the sequence
[

m
2

]

F
, with m ≥ 4? In the sequence

[

m
3

]

F
, with m ≥ 5? And so on?

It is not a hard matter to prove that none of the Fibonomial coefficients, with
m − 1 > k > 1, is a Fibonacci number. Thus it would be reasonable to think that
there are finitely many perfect powers in any sequence

[

m
k

]

F
, for a fixed k > 1 and

m ≥ k + 2.
In this paper, we use the Luca-Shorey method [4] to prove that the only perfect

powers which appear in the Fibonomial sequence are those related to k = 1. Our
result is the following.

Theorem 1. The only solutions of the Diophantine equation

(1.1)

[

m

k

]

F

= yt

in positive integers m, k, y, t, with m > k + 1 and t > 1 are (m, k, y, t) = (6, 1, 2, 3),
and (12, 1, 12, 2).

In the next section, we will recall some properties related to the Fibonacci num-
bers that we will be very useful for the proof of Theorem 1.

2. The proof

Before proceeding further, some considerations will be needed for the convenience
of the reader. In fact, a primitive divisor p of Fn is a prime factor of Fn, which does

not divide
∏n−1

j=1 Fj . It is known that a primitive divisor p of Fn exists whenever
n ≥ 13. The above statement is usually referred to the Primitive Divisor Theorem

(see [1] and [2] for the most general version). As an application, it is immediate
that if

[

m
k

]

F
= Fn, then max{m, n} < 13. Hence, assuming that m − 1 > k > 1 a

quick computation reveals that there are no solutions for the previous Diophantine
equation in that range.

Now, we recall some interesting and helpful facts which will be essential ingre-
dients to prove Theorem 1.

(i) gcd(Fm, Fn) = Fgcd(m,n) and F2n = FnLn.
(ii) Let p be a prime number and let ρp be the smallest positive index n such

that p divides Fn (called rank of apparition of p). Then Fn ≡ 0 (mod p) if
and only if n ≡ 0 (mod ρp) and p ≡ (5/p) (mod ρp) (see [7]). Here (5/p)
is the usual Legendre symbol.

(iii) If d = gcd(m, n), then

gcd(Fm, Ln) =

{

Ld, if m/d is even and n/d is odd;
1 or 2, otherwise.
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(iv) (Sylvester Theorem [6]) If n and k are positive integers, with n > k, then
the product of k consecutive integers

∏

n,k = n(n + 1) · · · (n + k − 1)

is necessarily divisible by a prime p > k (i.e., P (
∏

n,k) > k, where P (m)

denotes the greatest prime divisor of a positive integer m).

Let [a, b] denote the set {a, a + 1, . . . , b}, where a, b are integers such that a < b.
Now, we are ready to deal with the proof of Theorem 1.

By FPPT, the only perfect powers in the Fibonacci sequence are F0 = 0, F1 =
F2 = 1, F6 = 8, and F12 = 144 giving the solutions for our Diophantine equation
in the case k = 1. So, we suppose that k > 1. We can rewrite equation (1.1) into
the form

(2.1) Fm · · ·Fm−k+1 = ytF1 · · ·Fk.

Moreover, we can assume that t is a prime number. Using computational tools,
one can see that for all ` ∈ [1, 190], there exists a prime number p > 17, such that
p2 does not divide F`. Suppose that m ∈ [13, 190], then by the Primitive Divisor
Theorem, Fm has a primitive divisor p. By equation (2.1), p must divide y, since
t ≥ 2, then p2 divides Fm but this gives a contradiction. So, we consider m > 190.
We will split our proof in two cases.

Case 1: m ≤ 2k − 1.
We claim that there exists i ∈ [0, k− 1], such that m− i is a power of 2. In fact,

if m = 2k − 1, then [m − k + 1, m] = [k, 2k − 1], while when m ≥ 2k − 2, we have

I =
(m

2
, m

]

⊆ [m − k + 1, m]

and thus the interval I contains a unique power of 2, say m − i = 2µ (in fact, each
interval (x, 2x], with x > 0, contains a unique power of 2). Thus, if j 6= i ∈ [0, k−1],
then ord2(m − j) < µ. Note that 2k − 1 ≥ m ≥ 191 and then k ≥ 96. Since
2µ > m/2 ≥ k/2 ≥ 48, we get µ ≥ 6. Using item (i), we rewrite equation (2.1) into
the form

(2.2) F2µ−1L2µ−1

∏

j∈[0,k−1]
j 6=i

Fm−j = ytF1 · · ·Fk.

As gcd(L2µ−1 , Fj) = 1 for j ∈ [1, k], gcd(L2µ−1 , Fm−j) = 1, for i 6= j ∈ [0, k −
1] we get gcd(L2µ−1 , F2µ−1) = 1 or 2. However Fm is even iff 3|m and then
gcd(L2µ−1 , F2µ−1) = 1. Thus, equation (2.2) leads to L2µ−1 = yt

1, for some in-
teger y1 > 1. Since 2µ−1 ≥ 32, then L2µ−1 cannot be a perfect power, see [3,
Theorem 2], completing the proof in this case.

Case 2: m > 2k − 1 and so m − k + 1 > k.
Since m, m − 1, ..., m − k + 1 are k consecutive numbers greater than k, we get

by Sylvester Theorem, that Q = P (m(m − 1) · · · (m − k + 1)) > k. It follows that
Q ≥ 5. Indeed, suppose that Q = 2, 3. If Q = 2, then k = 1, which is impossible
as we suppose that k > 1. If Q = 3, then k = 1, 2. We need only to consider the
case k = 2. In this case, we have 3 = P (m(m − 1)) and m(m − 1) = 2a3b. Since
gcd(m, m − 1) = 1, then one can see that m = 3b and m − 1 = 2a or m = 2a and
m − 1 = 3b. These systems give the equation 2a − 3b = ±1. We know that the
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only solution of this equation is (a, b) = (3, 2), see [5, p. 178, (3.1)]. Thus we have
m = 32 < 9, which is impossible. Therefore Q ≥ 5.

Since there are exactly k consecutive numbers in the sequence m, m− 1, ..., m−
k + 1, we must have that Q divides a unique m − j, for some j ∈ [0, k − 1]. Write
m− j = Q1t, where Q1 = Qµ and gcd(Q, t) = 1. So, we can rewrite equation (2.1)
into the form

FQ1

(

Fm−j

FQ1

)

∏

i∈[0,k−1]
i6=j

Fm−i = ytF1 · · ·Fk

Observe that gcd(FQ1 , Fm−i) = 1 and gcd(FQ1 , Fj) = 1 because ordQ(m − i) = 1,
for i 6= j and j < k < Q. Also, we have gcd(FQ1 , Fm−j/FQ1) = gcd(FQ1 , t) = 1.
To prove this last equality, we use (ii) to conclude that if p is a prime factor of
FQ1 , then ρp = Qa, with a ∈ [1, µ] and p ≥ 2ρp − 1, because ρp is odd (and then 2
divides p ± 1). Thus

p ≥ 2ρp − 1 = 2Qa − 1 ≥ 2Q − 1 > Q > P (m − j) > P (t)

So gcd(FQ1 , t) = 1. Therefore, for some y1 (factor of y) we have FQ1 = yt
1. By

FPPT, we infer that Q1 is either 6 or 12 (keep in mind that Q1 > 5). However this
is impossible because Q1 = Qµ and Q is a prime number.

Hence, we must only to consider the range 2 ≤ k ≤ 10 and k + 2 ≤ m ≤ 12. We
wrote a simple program in Mathematica to see that no value helps to get a perfect
power. We recall that for being a perfect power, the greatest common divisor of
the exponents needs to be > 2 but this does not happen. Indeed, all number N in
this sequence possess a prime factor p < 17, such that p2 does not divides N . Thus
we have our desired result.
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