ALGEBRAIC NUMBERS OF THE FORM $P(T)^{Q(T)}$, WITH T TRANSCENDENTAL

DIEGO MARQUES

ABSTRACT. Let $P(x), Q(x) \in \mathbb{Q}[x]$ be non-constant polynomials. We show the existence of algebraic numbers which can be written of the form $P(T)^{Q(T)}$, for some T transcendental.

1. INTRODUCTION

When I was a high-school student, I liked writing rational numbers as "combination" of irrational ones, for instance

$$2 = \sqrt{\sqrt[3]{2 + \sqrt{-121}} + \sqrt[3]{2 - \sqrt{-121}}} = \sqrt{2}^{\sqrt{2}^{\sqrt{2}}} = \sqrt{3}^{\frac{\log 4}{\log 3}} = e^{\log 2}$$

In particular, the last equality above shows us one way of writting the algebraic number 2 as power of two transcendental numbers. In 1934, the mathematicians A. O. Gelfond [2] and T. Schneider [3], proved the following well-known result: if $\alpha \in \overline{\mathbb{Q}} \setminus \{0,1\}$ and $\beta \in \overline{\mathbb{Q}} \setminus \mathbb{Q}$, then α^{β} is a transcendental number. This result, named as Gelfond-Schneider theorem, classifies completely the arithmetic nature of the numbers of the form $A_1^{A_2}$, for A_1 , $A_2 \in \overline{\mathbb{Q}}$. Returning to our subject, but now using Gelfond-Schneider theorem, we also can easily write 2 as T^T , for some T transcendental. Actually, all prime number and all algebraic number $A \ge e^{-1/e}$, satisfying $A^n \notin \mathbb{Q}$ for all $n \ge 1$, can be written in this form, for a more general result see [4, Proposition 1]. Using again the Gelfond-Schneider theorem and Galois Theory, we show that for all non-constant polynomials $P(x), Q(x) \in \mathbb{Q}[x]$, there are infinitely many algebraic numbers which can be written in the particular "complicated" form $P(T)^{Q(T)}$, for some T transcendental.

2. Main result

Proposition. Fix non-constant polynomials $P(x), Q(x) \in \mathbb{Q}[x]$. Then the set of algebraic numbers of the form $P(T)^{Q(T)}$, with T transcendental, is dense in some connected subset either of \mathbb{R} or \mathbb{C} .

As we said in Section 1, all algebraic numbers $A \ge e^{-1/e}$ satisfying $A^n \notin \mathbb{Q}$ for all $n \ge 1$, can be written in the form T^T , for some $T \notin \overline{\mathbb{Q}}$. An example of such A is $1 + \sqrt{2}$. But that is only one case of our Proposition, namely when P(x) = Q(x) = x. So for proving our result we need a stronger condition satisfied for an algebraic number A and that is exactly what our next result asserts

²⁰⁰⁰ Mathematics Subject Classification. Primary 11J81; Secondary 12F10.

 $Key\ words\ and\ phrases.$ Gelfond-Schneider theorem, Galois Theory.

Lemma. Let Q(x) be a polynomial in $\mathbb{Q}[x]$ and set $\mathcal{F} = \{Q(x) - d : d \in \mathbb{Q}\}$. Then there exists $\alpha \in \mathbb{R} \cap \overline{\mathbb{Q}}$, such that

(2.1)
$$\alpha^n \notin \mathbb{Q}(\mathcal{R}_{\mathcal{F}}), \text{ for all } n \ge 1,$$

where $\mathcal{R}_{\mathcal{F}}$ denotes the set $\{x \in \mathbb{C} : f(x) = 0 \text{ for some } f \in \mathcal{F}\}.$

Proof. Set $\mathcal{F} = \{F_1, F_2, \dots\}$, and for each $n \geq 1$, set $K_n = \mathbb{Q}(\mathcal{R}_{F_1 \dots F_n})$ and $[K_n : \mathbb{Q}] = t_n$. Since $K_n \subseteq K_{n+1}$, then $t_n | t_{n+1}$, for all $n \geq 1$. Therefore, there are integers $(m_n)_{n\geq 1}$ such that $t_n = m_{n-1} \cdots m_1 t_1$. Note that $K_{n+1} = K_n(\mathcal{R}_{F_{n+1}})$ and deg $F_{n+1} = \deg Q$. It follows that $[K_{n+1} : K_n] \leq (\deg Q)!$. Because $\mathbb{Q} \subseteq K_n \subseteq K_{n+1}$, we also have that $\frac{t_{n+1}}{t_n} \leq (\deg Q)!$ for all $n \geq 1$. On the other hand $\frac{t_{n+1}}{t_n} = m_n$, so the sequence $(m_n)_{n\geq 1}$ is bounded. Thus, we ensure the existence of a prime number $p > \max_{n\geq 1}\{m_n, t_1, 3\}$. Hence p does not divide t_n , for $n \geq 1$. We pick a real number α that is a root of the irreducible polynomial $F(x) = x^p - 4x + 2$ and we claim that $\alpha \notin \mathbb{Q}(\mathcal{R}_{\mathcal{F}})$. Indeed, if this is not the case, then there exists a number $s \geq 1$, such that $\alpha \in \mathbb{Q}(\mathcal{R}_{F_1 \dots F_s}) = K_s$. Since $[\mathbb{Q}(\alpha) : \mathbb{Q}] = p$, we would have that $p|t_s$, however this is impossible. Moreover, given $n \geq 1$, we have the field inclusions $\mathbb{Q} \subseteq \mathbb{Q}(\alpha^n) \subseteq \mathbb{Q}(\alpha)$. So $[\mathbb{Q}(\alpha^n) : \mathbb{Q}] = 1$ or p, but α^n can not be written as radicals over \mathbb{Q} , since that F(x) is not solvable by radicals over \mathbb{Q} , see [1, p. 189]. Hence $\mathbb{Q}(\alpha) = \mathbb{Q}(\alpha^n)$ and then such α satisfies the condition (2.1).

Without referring the Lemma, we have the following special remarks:

Remark 1. If deg Q(x) = 1, then $\mathbb{Q}(\mathcal{R}_{\mathcal{F}}) = \mathbb{Q}$. Therefore $\alpha = 1 + \sqrt{2}$ satisfies our desired condition (2.1).

Remark 2. More generally, if deg $Q \leq 4$, then we take α one of the real roots of the polynomial $F(x) = x^5 - 4x + 2$. I assert that this α satisfies (2.1). In fact, note that all element of the field $\mathbb{Q}(\mathcal{R}_{\mathcal{F}})$ is solvable by radicals (over \mathbb{Q}), on the other hand the Galois group of F(x) = 0 over \mathbb{Q} is isomorphic to S_5 (the symmetric group), see [1, p. 189]. Hence if $\alpha^n \in \mathbb{Q}(\mathcal{R}_{\mathcal{F}})$, it would be expressed as radicals over \mathbb{Q} , but this can not happen.

Now we are able to prove our main result

Proof. (Proposition) Let us suppose that P assumes a positive value. In this case, we have $0 < P(x) \neq 1$ for some interval $(a, b) \subseteq \mathbb{R}$. Therefore, the function $f:(a,b) \to \mathbb{R}$, given by $f(x) := P(x)^{Q(x)}$ is well defined. Since f is a non-constant and continue function, then f((a,b)) is a non-degenerate interval, say (c,d). Now, take α as in the Lemma. Note that the set $\{\alpha Q : Q \in \mathbb{Q} \setminus \{0\}\}$ is dense in (c,d). For a such $\alpha Q \in (c,d)$, we have

(2.2)
$$\alpha Q = P(T)^{Q(T)}$$

for some $T \in (a, b)$. We must prove that T is a transcendental number. Supposing the contrary, then P(T) and Q(T) are algebraic numbers. Since $P(T) \notin \{0, 1\}$, then by Gelfond-Schneider theorem, we infer that $Q(T) = \frac{r}{s} \in \mathbb{Q}$, s > 0. It follows that $T \in \mathcal{R}_{Q(x)-\frac{r}{s}} \subseteq \mathcal{R}_{\mathcal{F}}$, so $P(T)^r \in \mathbb{Q}(\mathcal{R}_{\mathcal{F}})$. By (2.2), $(\alpha Q)^s = P(T)^r$, hence $\alpha^s \in \mathbb{Q}(\mathcal{R}_{\mathcal{F}})$, but that contradicts the Lemma.

For the case that $P(x) \leq 0$ for all $x \in \mathbb{R}$, we can consider a subinterval $(a, b) \subseteq \mathbb{R}$ such that $\mathcal{R}_P \cap (a, b) = \emptyset$, therefore the proof follows the same idea. But in this case the image of (a, b) under f is a connected subset of \mathbb{C} and our basic dense subset (in \mathbb{C}) is the set { $\alpha Q : Q \in \mathbb{Q}(i) \setminus \{0\}$ }.

Acknowledgement

I would like to thank Angelo Papa and the Professor Matzat for their helpful suggestions, also I thank to Professor Paques for enjoyable talks on this subject.

References

- 1. F. Lorenz, "Algebra, volume 1: fields and Galois theory". Springer-Verlag, New York, USA, 2006.
- 2. A. O. Gelfond, "Sur le septième probl
me de Hilbert", Investia Akad. Nauk. 7 (1934), 623-630.
- T. Schneider, "Transzendenzuntersuchungen periodischer Funktionen: I transzendenz von Potenzen; II transzendenzeigenschaften elliptischer Funktionen", J. Reine Angew. Math. 172 (1934), 65-74.
- 4. J. Sondow, D. Marques, "Algebraic, irrational, and transcendental solutions of some exponential equations", Preprint, 2009.

DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE DE BRASÍLIA, BRASÍLIA, DF, BRAZIL

E-mail address: diego@mat.unb.br