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cUFR mathématiques, université de rennes 1, Rennes, France

dMathematics Department, Pennsylvania State University, PA, USA
eMSCS, University of Illinois at Chicago, IL, USA
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Abstract

We study the algebraic independence of two inductively defined sets. Under the
hypothesis of Schanuel’s Conjecture we prove that the exponential power tower E
and its related logarithmic ladder L are linearly disjoint. This generalizes an exercise
given by Serge Lang.
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1 Introduction

We study the algebraic independence of two inductively defined sets: the expo-
nential power tower and its related logarithmic ladder. Under the hypothesis
of Schanuel’s Conjecture we prove that E and L are linearly disjoint. This
work was suggested to us by Professor Michel Waldschmidt and generalizes
an exercise given by Serge Lang [1, p. 31].

Specifically, let E =
⋃
En where En = En−1({ex : x ∈ En−1}) for each integer

n > 0. Similarly let L =
⋃
Ln, with Ln = Ln−1({y : ey ∈ Ln−1}). We take

E0 = L0 = Q as the ground field. Now our conditional result is the following.

Theorem Assuming the validity of the Schanuel Conjecture the sets E and L
are linearly disjoint.

This implies several interesting consequences. Namely E∩L = Q while π /∈ E
and e /∈ L. Furthermore the elements of the power tower e, ee, eee

, . . . are
L−algebraically independent and in the logarithmic ladder π, lnπ, ln lnπ, . . .
are E−algebraically independent.

2 Proof of Theorem

Conjecture (Schanuel) Let x1, . . . , xn be Q-linearly independent complex num-
bers. Then the transcendence degree over Q of the field

Q(x1, . . . , xn, e
x1 , . . . , exn)

is at least n.

Definition Two field extensions K/k and L/k are linearly disjoint (respec-
tively free) over k when all finite subsets of K linearly independent (respec-
tively algebraically independent) over k are again over L.

To prove the theorem first observe that En = Q(exp(En−1)). We also have
Ln = Q(exp−1(Ln−1)). In addition, if x ∈ En the coefficients of the minimal
polynomial of x over Q(exp(En−1)) must be contained in Q(exp(An−1)) for
some finite set An−1 ⊂ En−1.

Lemma For all x ∈ En there exists a finite set A ⊆ En−1 such that A ∪ {x}
is algebraic over Q(exp(A)). Similarly, for all x ∈ Ln there exists a finite set
C ⊆ C with exp(C) ⊆ Ln−1 such that exp(C) ∪ {x} is algebraic over Q(C).

Proof Given the set of coefficients An−1 it follows that An−1 is algebraic
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over Q(exp(An−2)). A descending chain terminates with A1 algebraic over
Q(exp(A0)) for some finite A0 ⊆ E0 = Q. Let A =

⋃
m≤n−1. Since Am ⊆ En−1

is algebraic over Q(exp(Am−1)) and x ∈ Q(exp(A)) it follows that Am is
algebraic over Q(exp(A)). As a result A is algebraic over Q(exp(A)). 2

We state the proof for the exponential case. The logarithmic follows similarly.

Proof of Theorem It suffices to prove Em and Ln are linearly disjoint for
arbitrary m and n. We therefore assume Schanuel’s Conjecture and by induc-
tion also assume Em−1 and Ln are linearly disjoint over Q but Em and Ln are
not linearly disjoint. If {l1, ..., lk} ⊆ Ln are linearly independent over Q and
{e1, . . . , ek} ⊆ Em define the linear combination

∑k
i=1 liei = 0 where at least

one ei 6= 0. Then the Lemma implies there exist a finite set A ⊆ Em−1 such
that A ∪ {ei}ki=1 is algebraic over Q(exp(A)). In addition the Lemma shows
there exists another finite set C ⊆ Ln such that exp(C) ∪ {li}ki=1 is algebraic
over Q(C).

If B ⊆ A and D ⊆ C are sets such that exp(B) and D are transcendence
bases of Q(exp(A)) and Q(C) respectively, we claim that B ∪ D is linearly
independent over Q. By considering∑

b∈B

pbb =
∑
d∈D

qdd

with pb, qd ∈ Z the induction hypothesis implies Em−1 ∩ Ln = Q. However, if
r =

∑
d∈D qdd is an algebraic relation of D with coefficients in Q it must be

trivial because D is Q-algebraically independent. Therefore r = 0 = qd for all
d ∈ D. By exponentiating

∑
b∈B pbb = 0 we have the product∏

b∈B

(exp(b))pb = 1.

This algebraic relation of exp(B) with coefficients in Q is also trivial because
exp(B) is Q-algebraically independent. Thus B∪D is Q-linearly independent.

By Schanuel’s Conjecture trdegQQ(B,D, exp(B), exp(D)) ≥ |B|+ |D|. On the
other hand

trdegQQ(B,D, exp(B), exp(D)) = trdegQQ(B,C, exp(A), exp(D))

= trdegQQ(C, exp(A))

= trdegQQ(D, exp(B))

≤ |B|+ |D|.

We conclude trdegQQ(D, exp(B)) = |B|+ |D|.
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Both Q(exp(B)) and Q(D) as well as their algebraic closures Q(exp(B)) and
Q(D) are Q-free. Now Q(exp(B)) and Q(D) are linearly disjoint over Q (see
[2, Theorem 4.12, p. 367]). So the coefficients {li} are Q(C)-algebraic while
the {ei} are Q(exp(A))-algebraic. Because of this {li} ⊆ Q(D) and {ei} ⊆
Q(exp(B)) render our previously constructed nontrivial linear relation

∑
liei =

0, which is a contradiction. 2

Now from on E and L are the sets constructed in Introduction. Assuming
Schanuel’s conjecture to be true, we have the following results

Corollary 1 The constant π 6∈ E and the constant e 6∈ L.

Proof Follows imediately by Theorem.

2

Corollary 2 The numbers π, ln π, ln lnπ, . . . are E-algebraically independent.

Proof Let us write ln[k] π for the kth-iterated logarithm of π. Observe that
π, lnπ, ln lnπ, . . . ∈ L. By the theorem E and L are free, so it is enough to
prove that iπ, log π, log log π, . . . are algebraically independent over Q, for that
we use Schanuel’s conjecture again. Without loss of generality, we may assume
the statement true for iπ, ln π, ln lnπ, . . . , ln[n−1] π (by induction). Now define
the linear combination

iπq +
n−1∑
k=1

qk ln[k] π = 0

with q, qk ∈ Z. Exponentiation gives

(−1)q
n∏

k=1

(
ln[k−1] π

)qk
= 1

n−1∏
k=0

(
ln[k] π

)qk+1
= (−1)q.

Because the assumption is that iπ, lnπ, ln lnπ, . . . , ln[n−1] π are Q-algebraically
independent this last algebraic relation must be trivial. Therefore the set
A = {iπ, lnπ, ln lnπ, . . . , ln[n] π} is Q-linearly independent, hence Schanuel’s
Conjecture implies the transcendence degree of Q(A, exp(A)) should be at
least n+ 1. The conclusion follows because exp(A) is algebraic over Q(A) and
this implies trdegQQ(iπ, ln π, ln lnπ, . . . , ln[n] π) ≥ n+ 1. 2

Corollary 3 The numbers e, ee, eee
, . . . are L-algebraically independent.

Proof Set exp[n](1) = exp(exp[n−1](1)) and exp[0](1) = 1. Then assuming
{exp[k](1)}nk=1 are Q-algebraically independent the set

A = {1, e, ee, . . . , exp[n](1)} = {exp[k](1)}nk=0
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is Q-linearly independent. Schanuel’s conjecture implies

trdegQQ(exp(A)) = trdegQQ(A, exp(A)) ≥ n+ 1.

Now exp(A) = {exp[k](1)}n+1
k=1 are Q-algebraically independent. The induction

is complete. 2
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