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Abstract. In this note, we prove that the product of certain m-degree
algebraic numbers α by the Liouville constant ` =

∑∞
j=1 10−j! is a Um-

number. Moreover, a transcendence measure for such numbers will be
presented.

1. Introduction

Transcendental number theory began in 1844 with Liouville’s proof [7]
that if an algebraic number α has degree n > 1, then there exists a constant
C > 0 such that |α− p/q| > Cq−n, for all p/q ∈ Q \ {0}. Using this result,
Liouville gave the first explicit examples of transcendental numbers, the so-
called Liouville numbers: a real number ξ is called a Liouville number, if
for any positive real number ω there exist infinitely many rational numbers
p/q, with q ≥ 1, such that

0 <

∣∣∣∣ξ − p

q

∣∣∣∣ < 1

qω
.

A classical example of a Liouville number is the Liouville’s constant `,
defined as a decimal with a 1 in each decimal place corresponding to n!
and 0 otherwise. It can be represented by the fast convergent series ` =∑∞

n=1 10−n! = 0.1100010 . . ..
In 1962, Erdös [4] proved that every nonzero real number can be written

as the sum and the product of two Liouville numbers. Since the set of
the Liouville numbers has null Lebesgue measure, one may interpret this as
saying that in spite of being an “invisible” set, the Liouville numbers are
strategically disposed along the real line.

There exist several classifications of the transcendental numbers in the lit-
erature. One attempt towards a classification was made in 1932 by Mahler
[8], who proposed to subdivide the set of real numbers into four classes (one
of them being the class of algebraic numbers) according to their properties of
approximation by algebraic numbers. For instance, he split the set of tran-
scendental numbers into three disjoint sets named S-, T - and U -numbers.
Particularly, the U -numbers generalize the concept of Liouville numbers.

We denote by ω∗n(ξ) as the supremum of the real numbers ω∗ for which
there exist infinitely many real algebraic numbers α of degree n satisfying
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0 < |ξ − α| < H(α)−ω
∗−1,

where H(α) (so-called the height of α) is the maximum of absolute values
of coefficients of the minimal polynomial1 of α. The number ξ is said to
be a U∗m-number (according to LeVeque [6]) if ω∗m(ξ) = ∞ and ω∗n(ξ) < ∞
for 1 ≤ n < m (m is called the type of the U -number). We point out that
we actually have defined a Koksma U∗m-number instead of a Mahler Um-
number. However, it is well-known that they are the same [3, cf. Theorem
3.6] and [1]. We remark that the set of U1-numbers is precisely the set of
Liouville numbers.

The existence of Um-numbers for all m ≥ 1, was first proved by LeVeque
[6]. Indeed, he was able to exhibit such examples as the m-th root of some

convenient Liouville numbers, e.g., m
√

(3 + `)/4 is a Um-number, for all m ≥
1.

In this note, we use the Gütting’s method [5] to prove that we can find
explicit Um-numbers in a more natural way: the product of certain m-degree
algebraic numbers by `. Moreover, we obtain an upper bound for ω∗n. More
precisely, our result is the following

Theorem 1. Let α be an algebraic number of degree m. Suppose that the
minimal polynomial P of α has leading coefficient of the form 2a · 5b > 1,
and p - P (0), for p = 2, 5, and let ` be the Liouville’s constant. Then α` is
a Um-number, with

(1.1) ω∗n(α`) ≤ 2m2n+m− 1, for n = 1, . . . ,m− 1.

For example, m
√

3/2 · ` is a Um-number for all m ≥ 1.

2. Auxiliary Results

Before starting the proof of the Theorem, two technical results are needed.

Lemma 1. Given P (x) ∈ Z[x] with degree m and a/b ∈ Q\{0}. If Q(x) =
amP (bx/a), then

H(Q) ≤ max{|a|, |b|}mH(P ),

where, as usual, H(P ) denotes the maximum of absolute values of coefficients
of P (the so-called height of P ).

Proof. If P (x) =
∑m

j=0 ajx
j , then Q(x) =

∑m
j=0 ajb

jam−jxj . Supposing,

without loss of generality, that |a| ≥ |b|, we have |a|m|aj | ≥ |a|m−j |aj ||b|j
for 0 ≤ j ≤ m. Hence, we are done. �

In addition to Lemma 1, we use the fact that algebraic numbers are not
well approximable by algebraic numbers.

1Throughout the paper, a polynomial is said to be minimal if it is a primitive minimal
polynomial over Z.
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Lemma 2 (Cf. Corollary A.2 of [3]). Let α and β be two distinct nonzero
algebraic numbers of degree n and m, respectively. Then we have

|α− β| ≥ (n+ 1)−m/2(m+ 1)−n/2 max{(n+ 1)−(m−1)/2

2−n
,
(m+ 1)−(n−1)/2

2−m
}

×H(α)−mH(β)−n.

Proof. A sketch of the proof can be found in the Appendix A of [3]. �

3. Proof of the Theorem

For k ≥ 1, set

pk = 10k!
k∑

j=1

10−j!, qk = 10k! and αk =
pk
qk

.

We observe that H(αk−1) < H(αk) = 10k! = H(αk−1)
k and

(3.1) |`− αk| <
10

9
H(αk)−k−1.

Thus, setting γk = ααk, we obtain of (3.1)

(3.2) |α`− γk| ≤ cH(αk)−k−1,

where c = 10|α|/9. It follows by the Lemma 1 that H(αk)m ≥ H(α)−1H(γk)
and thus we conclude that

(3.3) |α`− γk| ≤ cH(α)(k+1)/mH(γk)−(k+1)/m.

Consequently, α` is a U -number with type at most m (since γk has degree
m).

We claim that H(αk) ≤ H(γk), for all k ≥ 1. In fact, let P (x) =∑m
j=0 ajx

j be the minimal polynomial of α. In particular, P (α) = 0 and a

simple calculation gives Q(γk) = 0, where Q(x) =
∑m

j=1 ajp
m−j
k qjkx

j ∈ Z[x].
Note that degQ = m and γk is an m-degree algebraic number. Thus, in
order to prove that Q is the minimal polynomial of γk, we need to prove
that Q is primitive. In other words, we must prove that

gcd(a0p
m
k , a1p

m−1
k qk, . . . , amq

m
k ) = 1.

This follows immediately from the facts that gcd(a0, . . . , am) = 1 and the
hypotheses on a0 and am (yielding gcd(a0, qk) = gcd(am, pk) = 1), we leave
the details to the reader. Thus, in particular, we have that

H(γk) ≥ max{|a0||pk|n, |an||qk|n} ≥ max{|pk|, |qk|} = H(αk)

as desired.
Now we use this together with Lemma 1 to obtain

(3.4) H(γk+1) ≤ H(α)H(αk+1)
m = H(α)H(αk)(k+1)m ≤ H(α)H(γk)(k+1)m



4 ANA PAULA CHAVES AND DIEGO MARQUES

Now, let γ be an n-degree real algebraic number, with n < m and H(γ) ≥
H(γ1). Thus, there exists a sufficient large k such that

(3.5) H(γk) < H(γ)2m
2
< H(γk+1) ≤ H(α)H(γk)(k+1)m.

On the other hand, Lemma 2 yields

(3.6) |γk − γ| ≥ f(m,n)H(γ)−mH(γk)−n,

where f(m,n) is a positive number which does not depend on k and γ (see
Lemma 2). Therefore by the chain of inequalities in (3.5)

(3.7) |γk − γ| ≥ f(m,n)H(α)−1/2mH(γk)−(k+1)/2−n.

By taking H(γ) large enough, the index k satisfies

(3.8) H(γk)(k+1)/2−n ≥ 2cf(m,n)−1H(α)k+1/2m.

Thus (3.3), (3.7) and (3.8) yield that |γk−γ| ≥ 2|α`−γk|. Therefore, except
for finitely many algebraic numbers γ, of degree n strictly less than m, we
have

|α`− γ| ≥ |γk − γ| − |α`− γk| ≥
1

2
|γk − γ|

≥ f(m,n)

2
H(γ)−mH(γk)−n >

f(m,n)

2
H(γ)−2m

2n−m,

where we used the left-hand side of (3.5). In conclusion, α` is a Um-number
with ω∗n(α`) ≤ 2m2n+m− 1. This finishes the proof. �

We finish by point out that Alniaçik et al [2] showed the existence of Um-
numbers ξ with sharper upper bounds for ω∗n(ξ), where n = 1, . . . ,m − 1.
However, in their method ξ is constructed as the limit of a rapidly converging
sequence of m-degree algebraic numbers and therefore could not be made
explicit.
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