Yet Another "Direct" Proof of the Uncountability of the Transcendental Numbers

Diego Marques^a University of Brasilia Brasilia, DF 70910-900 diego@mat.unb.br

The most known proof of uncountability of the transcendental numbers is based on proving that A is countable and concluding that $\mathbb{R}\setminus\mathbb{A}$ is uncountable since \mathbb{R} is. Very recently, J. Gaspar [1] gave a nice "direct" proof that the set of transcendental numbers is uncountable. In this context, the word *direct* means a proof which does not follow the previous steps. However, we point out that his proof is based on the transcendence of π which is, to the best of the author's knowledge, proved by an *indirect* argument. In this note, in the *spirit* of Gaspar, we present a "direct" proof of the following stronger result.

Theorem. There exist uncountable many algebraically independent real numbers. So the set of the transcendental real numbers is uncountable.

Proof. Let \mathcal{B} be a transcendence basis (which exists by Zorn's lemma) of the field extension \mathbb{R}/\mathbb{Q} . If \mathcal{B} were countable, then $\mathbb{Q}(\mathcal{B})$ would be countable (because its elements are of the form $P(\vec{b})/Q(\vec{c})$ with $n \in \mathbb{N}, P, Q \in \mathbb{Q}[X_1, \ldots, X_n]$ and $\vec{b}, \vec{c} \in \mathcal{B}^n$), so \mathbb{R} would be countable (because its elements are roots of polynomials in $\mathbb{Q}(\mathcal{B})[X]\setminus\{0\}$ and there would be only countable roots), which is false. The elements of \mathcal{B} are uncountable many algebraically independent real numbers.

Acknowledgement. The author would like to thank the anonymous referees for carefully examining this paper and providing it a number of important comments.

References

[1] J. Gaspar, Direct proof of the uncountability of the transcendental numbers, *The American Mathematical Monthly* **121** (1) (2014), p. 80.

^aSupported by FAP-DF and CPNq-Brazil.