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Abstract

A positive integer n is said to be a perfect number, if σ(n) = 2n, where σ(N)
is the sum of all positive divisors of N . In 2000, F. Luca proved that there is
no perfect number in the Fibonacci sequence. For k ≥ 2, the k-generalized
Fibonacci sequence (F

(k)
n )n is defined by the initial values 0, 0, . . . , 0, 1 (k

terms) and such that each term afterwards is the sum of the k preceding
terms. In this paper, we prove, among other things, that there is no even
perfect numbers belonging to k-generalized Fibonacci sequences when k 6≡ 3
(mod 4).
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1. Introduction

Let σ(N) be the sum of all positive divisors of N . A natural number n
is called perfect if σ(n) = 2n. Perfect numbers have a very rich history (see
[7, Chapter 1] and [20, Chapter 1]) and were already considered by Euclid,
who proved that if the number 2n − 1 is a prime then its product by 2n−1

is perfect. Euler was the first to prove that Euclid’s method gives all even
perfect numbers:
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Euclid-Euler Theorem. An even integer n is perfect if and only if there
exists a prime number p, such that 2p−1 is also prime and n = 2p−1(2p−1).

Although being studied since the ancient Greek, there are many open
questions related to perfect numbers, as for instance:

- Are there infinitely many perfect numbers?
- Does exist an odd perfect number?
Let (Fn)n≥0 be the Fibonacci sequence given by Fn+2 = Fn+1 + Fn, for

n ≥ 0, where F0 = 0 and F1 = 1. These numbers are well-known for
possessing amazing properties (consult [10] together with its very extensive
annotated bibliography for additional references and history).

In 2000, F. Luca [12] proved that there is no perfect Fibonacci number.
More generally, Luca and Huguet [13] and Phong [19] showed, independently,
that there is no perfect number of the form Fmk/Fk. Both proofs used that
an odd perfect number has the form pax2, where p is a prime number with
p ≡ a ≡ 1 (mod 4). However, Phong used the, to the best of authors’
knowledge, unproved fact that every prime factor of x is congruent to 3
modulo 4.

Let k ≥ 2 and denote F (k) := (F
(k)
n )n≥−(k−2), the k-generalized Fibonacci

sequence whose terms satisfy the recurrence relation

F
(k)
n+k = F

(k)
n+k−1 + F

(k)
n+k−2 + · · ·+ F (k)

n , (1)

with initial conditions 0, 0, . . . , 0, 1 (k terms) and such that the first nonzero

term is F
(k)
1 = 1.

The above sequence is one among the several generalizations of Fibonacci
numbers. Clearly for k = 2, we obtain the classical Fibonacci numbers (Fn)n,
for k = 3, the Tribonacci numbers (Tn)n, for k = 4, the Tetranacci numbers
(Qn)n, etc.

Recently, these sequences have been the main subject of many works.
We refer to [3] for results on the largest prime factor of F

(k)
n and we refer

to [1] for the solution of the problem of finding powers of two belonging to
these sequences. In 2013, two conjectures concerning these numbers were
proved. The first one, proved by Bravo and Luca [4] is related to repdigits
(i.e., numbers with only one distinct digit in its decimal expansion) among
k-Fibonacci numbers (proposed by Marques [16]) and the second one, a con-
jecture (proposed by Noe and Post [18]) about coincidences between terms of
these sequences, proved independently by Bravo-Luca [2] and Marques [14]
(see [15] for results on the spacing between terms of these sequences).
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The aim of this paper is to search for even perfect numbers belonging to
generalized Fibonacci numbers. In other words, we shall study the Diophan-
tine equation

F (k)
n = 2p−1(2p − 1) (2)

with p and 2p − 1 primes. More precisely, our main result is the following

Theorem 1. The Diophantine equation (2) has no solution in positive inte-
gers n, k and p, where p and 2p − 1 are prime numbers, if at least one of the
following conditions is satisfied:

(i) 2 ≤ k ≤ 167.

(ii) n 6= 2p+ 1.

(iii) n = 2p+ 1 and p ≥ k.

(iv) n = 2p+ 1, p < k and k 6≡ 3 (mod 4).

(v) n = 2p+ 1, p < k, k ≡ 3 (mod 4) and 2p− k + 1 6= 2k−p+1.

In particular, there is no even perfect number in F (k) when k 6≡ 3 (mod 4).

Our proof combines lower bounds for linear forms in three logarithms,
a variation of a Dujella and Pethő reduction lemma and a fruitful method
developed by Bravo and Luca concerning approximation of some convenient
number (related to the dominant root of the characteristic polynomial of

F
(k)
n ) by a power of 2. In order to finish the proof (solve the particular case

when n = 2p+1), it is still necessary to use a helpful trick related to a simple

closed form to F
(k)
n when n ≤ 2k + 2.

2. Auxiliary results

Before proceeding further, we shall recall some facts and tools which will
be used after.

We know that the characteristic polynomial of (F
(k)
n )n is

ψk(x) := xk − xk−1 − · · · − x− 1

and it is irreducible over Q[x] with just one zero outside the unit circle.
That single zero is located between 2(1− 2−k) and 2 (as can be seen in [22,
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Lemma 3.6]). Also, in a recent paper, Dresden and Du [8, Theorem 1] gave

a simplified “Binet-like” formula for F
(k)
n :

F (k)
n =

k∑
i=1

αi − 1

2 + (k + 1)(αi − 2)
αn−1
i , (3)

for α = α1, . . . , αk being the roots of ψk(x). Also, it was proved in [4, Lemma
1] that

αn−2 ≤ F (k)
n ≤ αn−1, for all n ≥ 1, (4)

where α is the dominant root of ψk(x). Also, the contribution of the roots
inside the unit circle in formula (3) is almost trivial. More precisely, it was
proved in [8] that

|F (k)
n − g(α, k)αn−1| < 1

2
, (5)

where we adopt throughout the notation g(x, y) := (x−1)/(2+(y+1)(x−2)).
Another tool to prove our theorem is a lower bound for a linear form

logarithms à la Baker and such a bound was given by the following result of
Matveev (see [17] or Theorem 9.4 in [5]).

Lemma 1. Let γ1, . . . , γt be real algebraic numbers and let b1, . . . , bt be non-
zero rational integer numbers. Let D be the degree of the number field
Q(γ1, . . . , γt) over Q and let Aj be a real number satisfying

Aj ≥ max{Dh(γj), | log γj|, 0.16}, for j = 1, . . . , t.

Assume that
B ≥ max{|b1|, . . . , |bt|}.

If γb11 · · · γbtt 6= 1, then

|γb11 · · · γbtt − 1| ≥ exp(−1.4 · 30t+3 · t4.5 ·D2(1 + logD)(1 + logB)A1 · · ·At).

As usual, in the previous statement, the logarithmic height of an s-degree
algebraic number γ is defined as

h(γ) =
1

s
(log |a|+

s∑
j=1

log max{1, |γ(j)|}),

where a is the leading coefficient of the minimal polynomial of γ (over Z)
and (γ(j))1≤j≤s are the conjugates of γ (over Q).



Even perfect numbers among generalized Fibonacci sequences 5

After finding an upper bound on n which is too large for practical pur-
poses, the next step is to reduce it. For that, our last ingredient can be
found in [4, Lemma 4] and it is a variant of the famous Dujella and Pethő
[9, Lemma 5 (a)] reduction lemma. For a real number x, we use ‖ x ‖=
min{|x− n| : n ∈ Z} for the distance from x to the nearest integer.

Lemma 2. Suppose that M is a positive integer. Let p/q be a convergent of
the continued fraction expansion of the irrational number γ such that q > 6M
and let A,B be some real numbers with A > 0 and B > 1. Let ε =‖ µq ‖
−M ‖ γq ‖, where µ is a real number. If ε > 0, then there is no solution to
the inequality

0 < mγ − n+ µ < A ·B−k

in positive integers m,n and k with

m ≤M and k ≥ log(Aq/ε)

logB
.

Now, we are ready to deal with the proof of the theorem.

3. Some key lemmas

In light of the main result of [12], throughout this paper we shall assume
k ≥ 3. Also, p will denote always (unless otherwise stated) a prime number
with 2p − 1 also prime.

3.1. Upper bounds for n and c in terms of k

Since F
(k)
n is a power of 2, for all 1 ≤ n ≤ k + 1, we may suppose that

n > k + 1.
In this section, we shall prove the following result

Lemma 3. If (n, k, p) is an integer solution of Diophantine equation (2)
with n > k + 1, then

n < 1.7 · 1014k4 log3 k and p < 1.2 · 1014k4 log3 k. (6)

Proof. By using Eq. (2), we obtain

g(α, k)αn−1 − 22p−1 = −2p−1 − Ek(n) < 0, (7)
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where Ek(n) :=
∑k

i=2 g(αi, k)αn−1
i . Thus∣∣∣∣g(α, k)αn−1

22p−1
− 1

∣∣∣∣ < 1

2p−1
, (8)

where we used that |Ek(n)| < 1/2 (which follows from (3) and (5)).
In order to use Lemma 1, we take t := 3,

γ1 := g(α, k), γ2 := 2, γ3 := α

and
b1 := 1, b2 := −2p+ 1, b3 := n− 1.

For this choice, we have D = [Q(α) : Q] = k. In [1, p. 73], an estimate for
h(g(α, k)) was given. More precisely, it was proved that

h(γ1) = h(g(α, k)) < log(4k + 4).

Note that h(γ2) = log 2 and h(γ3) < 0.7/k. It is a simple matter to deduce
from inequality 2(1 − 2−k) < α < 2 that 1/4 < g(α, k) < 1. Thus, we can
take A1 := k log(4k + 4), A2 := k log 2 and A3 := 0.7.

Note that max{|b1|, |b2|, |b3|} = max{2p−1, n−1}. By using (4) and (2),

we get 2n−1 ≥ F
(k)
n = 2p−1(2p−1) > 23p/2−1 (where we used that 2p−1 > 2p/2,

for p ≥ 2) and αn−2 ≤ F
(k)
n = 2p−1(2p− 1) = 22p−1− 2p−1 < 22p−1. Therefore

n > 3p/2 and 2p− 1 > 0.8n− 1.7, (9)

where we used that 7/4 < α < 2 (since k ≥ 3). Thus, we can choose
B := 2n − 3. Since g(α, k)αn−12−2p+1 < 1 (by (7)), we are in position to
apply Lemma 1. This lemma together with a straightforward calculation
gives∣∣∣∣g(α, k)αn−1

22p−1
− 1

∣∣∣∣ > exp(−3.7 · 1011k4 log2 k(1 + log(2n− 3))), (10)

where we used that 1 + log k < 2 log k and log(4k + 4) < 2.6 log k, for k ≥ 3.
By combining (8) and (10), we obtain

n

log n
< 2.7 · 1012k4 log2 k,
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where we used that 1 + log(2n − 3) < 2 log n, for n ≥ 2. Since the function
x/ log x is increasing for x > e, it is a simple matter to prove that

x

log x
< A implies that x < 2A logA. (11)

A proof for that can be found in [1, p. 74].
Thus, by using (11) for x := n and A := 2.7 · 1012k4 log2 k, we have that

n < 1.7 · 1014k4 log3 k (12)

and we use estimates in (9) to get

p < 1.2 · 1014k4 log3 k.

This finishes the proof of lemma. �

3.2. The small cases: 3 ≤ k ≤ 167

In this section, we shall prove the following result

Lemma 4. There is no solution to Diophantine equation (2), with n > k+1
and 3 ≤ k ≤ 167.

Proof. By using Mathematica, Equation (2) has no solutions for p ≤ 23, so
we can assume p ≥ 23. By (7) and (8) one has

0 < (2p− 1) log 2− (n− 1) logα + log(1/g(α, k)) < 1.001 · 2−p+1.

Dividing by logα, we obtain

0 < (2p− 1)γk − (n− 1) + µk < 3.6 · 2−p, (13)

where γk = log 2/ logα(k) and µk = log(1/g(α(k), k))/ logα(k). Here, we
added the superscript to α for emphasizing its dependence on k.

We claim that γk is irrational, for any integer k ≥ 2. In fact, if γk = p/q,
for some positive integers p and q, we have that 2q = (α(k))p and we can
conjugate this relation by some automorphism of the Galois group of the
splitting field of ψk(x) over Q to get 2q = |(α(k)

i )q| < 1, for i > 1, which is an
absurdity, since q ≥ 1. Let qm,k be the denominator of the m-th convergent
of the continued fraction of γk. Taking Mk := 2.41 · 1014k4 log3 k ≤ M167 <
2.6 · 1025, we use Mathematica [21] to get

min
3≤k≤167

q90,k > 7 · 1038 > 6M167.
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Also
max

3≤k≤167
q90,k < 4.4 · 10102.

Define εk :=‖ µkq90,k ‖ −Mk ‖ γkq90,k ‖, for 3 ≤ k ≤ 167, we get (again
using Mathematica)

min
3≤k≤167

εk = 0.0000571469 . . . .

Note that the conditions to apply Lemma 2 are fulfilled for A = 3.6 and
B = 2, and hence there is no solution to inequality (13) (and then no solution
to the Diophantine equation (2)) for p satisfying

2p− 1 < Mk and p ≥ log(Aq90,k/εk)

logB
.

Since 2p− 1 < Mk (Lemma 3), then

p <
log(Aq90,k/εk)

logB
≤ log(3.6 · 4.4 · 10102/0.000057146)

log 2
= 356.917 . . . .

Therefore p ≤ 356. By applying the estimate in (9), we have n ≤ 890.
Since 2p − 1 is a prime number, then

p ∈ {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127}.

Now, we can use Mathematica to conclude that Eq. (2) has no solution
for each of these 12 cases. In particular, we may suppose that p ≥ 521. �

4. The proof of Theorem 1

Note that the item (i) follows directly from Lemma 4.

4.1. The case n 6= 2p+ 1

If n 6= 2p + 1. By Lemma 4, we may consider k ≥ 168. In this case, we
have, by Lemma 3,

n < 1.7 · 1014k4 log3 k < 2k/2. (14)

Now, we use a key argument due to Bravo and Luca [1, p. 77-78]. By
following their same steps, we arrive at

|2n−2 − 22p−1| < 2p +
5 · 2n−2

2k/2
, (15)
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or equivalently

|1− 22p−n+1| < 2p−n+2 +
5

2k/2
. (16)

By using (9) and after some manipulations, we obtain

|1− 22p−n+1| < 4

2n/3
+

5

2k/2
<

9

( 3
√

2)k
, (17)

where we used that n > k. Since n 6= 2p+1, then either 2p ≥ n or n ≥ 2p+2.
In any case, we have |1−22p−n+1| > 1/2 and then ( 3

√
2)k < 18 yielding k ≤ 13

which is a contradiction. This finishes the proof of this case.

�

4.2. The case n = 2p+ 1

The proof of the case n = 2p+ 1 splits in two parts and in both of them
we shall use the helpful fact that

F
(k)
k+i = 2k+i−2 − i2i−3,

for all 2 ≤ i ≤ k + 2 (see [6, Theorem 2.2]).
Thus, we shall prove that there is no solution for

F
(k)
2p+1 = 2p−1(2p − 1) (18)

in the following two cases:

Case 1. p ≥ k. Indeed, in this case, we claim that

F
(k)
2p+1 < 2p−1(2p − 1),

for all p ≥ k (it is not necessary to suppose primality of p). Let us proceed
by induction on p. The base step p = k follows because

2k−1(2k − 1)− F (k)
2k+1 = 2k−1(2k − 1)− 22k−1 + (k + 1)2k−2

= (k + 1)2k−2 − 2k−1 > 0,

if k ≥ 2. By induction hypothesis, suppose that F
(k)
2p+1 < 2p−1(2p − 1). Now,

we use that F
(k)
n+1 ≤ 2F

(k)
n to obtain

F
(k)
2p+3 ≤ 4F

(k)
2p+1 < 2p(2p+1 − 2) < 2p(2p+1 − 1)
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which finished the inductive process. �

Case 2. p < k. Since, we are supposing that 2p + 1 > k + 1 (to avoid the
powers of two), then k/2 < p < k. Thus 2 ≤ 2p+ 1− k ≤ k and we can used

the closed form for F
(k)
k+i to get

F
(k)
2p+1 = 22p−1 − (2p+ 1− k)22p−k−2.

Combining with (18) we obtain

2p+ 1− k = 2k−p+1.

In particular, k is odd (on the contrary k − p + 1 = 0 and 2p + 1 − k = 1).
If k ≡ 1 (mod 4), then the 2-adic valuation of 2p + 1 − k is 1. On the
other hand, the above equality leads to p = k which is a contradiction (since
p < k).

�
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