A DIOPHANTINE EQUATION INVOLVING C-NOMIAL COEFFICIENTS

DIEGO MARQUES AND ALAIN TOGBÉ

Abstract. Let C_{n} be the nth Fibonacci number $\left(C_{n}=F_{n}\right)$ or the nth Lucas number $\left(C_{n}=L_{n}\right)$. For $1 \leq k \leq m$, let

$$
\left[\begin{array}{c}
m \\
k
\end{array}\right]_{C}=\frac{C_{m} C_{m-1} \cdots C_{m-k+1}}{C_{1} \cdots C_{k}}
$$

be the corresponding C-nomial coefficient. In this paper, we prove that the only solutions of the Diophantine equation

$$
\left[\begin{array}{c}
m \\
k
\end{array}\right]_{C}=m^{a} k^{b}
$$

in positive integers m, k, a, b with $a>1$, are $(m, k, a, b)=(1,1, a, b),(5,1,1, b)$, $(12,1,2, b)$, and $(5,3,1,1)$, for $C_{n}=F_{n}$ and $(m, k, a, b)=(1,1, a, b)$ in the case $C_{n}=L_{n}$.

1. Introduction

Let $\left(C_{n}\right)_{n \geq 1}$ be a Lucas sequence given by

$$
C_{n+2}=C_{n+1}+C_{n}, \quad \text { for } n \geq 1
$$

where the values C_{0} and C_{1} are previously fixed. For instance, if $C_{0}=0$ and $C_{1}=1$, then $C_{n}=F_{n}$ is the well-known Fibonacci sequence:

$$
0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

Also, if $C_{0}=2$ and $C_{1}=1$, the sequence $C_{n}=L_{n}$ gives the Lucas numbers

$$
2,1,3,4,7,11,18,29,47,76,123,199, \ldots
$$

According to the Binet's formula, for $n \geq 0$

$$
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \text { and } L_{n}=\alpha^{n}+\beta^{n}
$$

where $\alpha=(1+\sqrt{5}) / 2$ (the golden number) and $\beta=(1-\sqrt{5}) / 2=-1 / \alpha$.
It is well-known that the only solutions of $F_{m}=m$ are $m=1$ and 5 and for $L_{m}=m$ one has $m=1$. In fact, we have $C_{m}>m$, for all $m>5$ (this can be proved by mathematical induction).

The C-nomial coefficients are defined by

$$
\left[\begin{array}{c}
m \\
k
\end{array}\right]_{C}=\frac{C_{m} C_{m-1} \cdots C_{m-k+1}}{C_{1} \cdots C_{k}}
$$

for $1 \leq k \leq m$. For instance, if $C_{n}=F_{n}$, we have the well-known Fibonomial coefficients (sequence A001656 in OEIS ${ }^{1}$ [7]). Some results on the spacing of these

Date: August 8, 2011.
2000 Mathematics Subject Classification. Primary 11D45; Secondary 11B39.
Key words and phrases. Fibonacci, Lucas, sequences.
${ }^{1}$ On-Line Encyclopedia of Integer Sequences.
numbers can be found in [5]. We also refer the reader to [6] for several interesting identities involving this sequence.

Since C-nomial coefficients generalize the concept of the Fibonacci and Lucas numbers, as $\left[\begin{array}{c}m \\ 1\end{array}\right]_{C}=C_{m}$, it is worthwhile to find the solutions of the general equation

$$
\left[\begin{array}{c}
m \tag{1.1}\\
k
\end{array}\right]_{C}=m^{a} k^{b} .
$$

The goal of this paper is to determine all the solutions of Diophantine equation (1.1) when $C_{m}=F_{m}, L_{m}$. Our main results are the following.

Theorem 1. The only solutions of the Diophantine equation

$$
\left[\begin{array}{c}
m \\
k
\end{array}\right]_{F}=m^{a} k^{b}
$$

are $(m, k, a, b)=(1,1, a, b),(5,1,1, b),(12,1,2, b)$, and $(5,3,1,1)$.
Theorem 2. The only solution of the Diophantine equation

$$
\left[\begin{array}{c}
m \\
k
\end{array}\right]_{L}=m^{a} k^{b}
$$

is $(m, k, a, b)=(1,1, a, b)$.
We will prove these results in the next section.

2. Proofs of Theorems 1 and 2

Before the proofs of Theorems 1 and 2, we will recall some interesting and helpful properties of these sequences. Their proofs are well-known and can be found in any good text about sequences.

Lemma 1. Let $\left(F_{n}\right)_{n \geq 0}$ be Fibonacci numbers and let $\left(L_{n}\right)_{n \geq 0}$ be Lucas numbers, then
(i) $F_{2 n}=F_{n} L_{n}$;
(ii) $L_{n}^{2}-L_{n-1} L_{n+1}=5(-1)^{n}$;
(iii) For all $n \geq 3$,

$$
\alpha^{n-2} \leq F_{n} \leq \alpha^{n-1} \text { and } \alpha^{n-1} \leq L_{n} \leq 2 \alpha^{n}
$$

(iv) If p is a prime number, then $L_{p} \equiv 1(\bmod p)($ see $[4$, Theorem 7$])$.

Let C_{n} be Fibonacci or Lucas numbers. A primitive divisor p of the C_{n} is a prime factor of C_{n} which does not divide $5 \prod_{1 \leq j \leq n-1} C_{j}$. It is known that a primitive divisor p of C_{n} exists whenever $n \geq 13$ (see, for example, [3]). The above statement is usually referred to as the Primitive Divisor Theorem (see [1] and [2] for the most general version). It is also known that such a primitive divisor p satisfies $p \equiv \pm 1$ $(\bmod n)$. Now, we have the tools to study equation (1.1).
2.1. Proof of Theorem 1: the Fibonacci case. We consider equation (1.1) with $C_{n}=F_{n}$. Suppose that $m>\max \{24, k\}$. By the Primitive Divisor Theorem, there exists a primitive prime factor p for F_{m}. Since

$$
\begin{equation*}
F_{m} F_{m-1} \cdots F_{m-k+1}=m^{a} k^{b} F_{1} \cdots F_{k}, \tag{2.1}
\end{equation*}
$$

and p does not divide $\prod_{j=1}^{k} F_{j}$, then p divides $m^{a} k^{b}$. Therefore, p divides k, because $p \equiv \pm 1(\bmod m)$. So it does not divide m. Moreover, the congruence $p \equiv \pm 1$
$(\bmod m)$ implies that $p \geq m-1$. Thus, we conclude that $m-1 \leq p \leq k<m$ and then $k=p=m-1$ which implies that m is an even number. Now we can use item (i) of Lemma 1 to conclude that $F_{m}=F_{m / 2} L_{m / 2}$. Also equation (2.1) becomes

$$
\begin{equation*}
F_{m}=m^{a}(m-1)^{b} . \tag{2.2}
\end{equation*}
$$

As $m>24$, then $m / 2>12$ and there exists a primitive prime factor q of $F_{m / 2}$. Note that q divides F_{m} but does not divides $m($ because $q \equiv 1(\bmod m / 2))$. It follows that q divides $m-1=p$ and hence $p=q$. This contradicts the fact that p does not divides $F_{m / 2}$.

For the case $k=1$, one can see that the solutions are $(1,1, a, b),(5,1,1, b)$, and $(12,1,2, b)$. For the other cases, we need to determine an upper bound for the sum $a+b$. So we will use item (iii) in Lemma 1. Thus, we have

$$
\left(\frac{F_{m}}{F_{1}}\right)<\alpha^{m-1} \text { and }\left(\frac{F_{m-t}}{F_{t+1}}\right)<\alpha^{m-2 t}, \text { for } 1 \leq t \leq k-1
$$

Therefore, we obtain

$$
\left[\begin{array}{c}
m \tag{2.3}\\
k
\end{array}\right]_{F} \leq \alpha^{m-1+m-2+\cdots+m-2(k-1)}=\alpha^{m-1+(m-k)(k-1)} .
$$

On the other hand, one can see that $\left[\begin{array}{c}m \\ k\end{array}\right]_{F}=m^{a} k^{b} \geq k^{a+b}$. Combining this with inequality (2.3), we immediately get, for $2 \leq k<m \leq 24$,

$$
a+b \leq \frac{(m-1)+(m-k)(k-1)}{2 \log k}<32.542
$$

as $\log \alpha<1 / 2$ and the maximum occurs when $m=24$ and $k=9$. So for the remaining cases, it suffices to test the values in the obtained range. Therefore, we used a simple program in Mathematica [8]. It took a few minutes to show that the only zero of the difference $\left[\begin{array}{c}m \\ k\end{array}\right]_{F}-m^{a} k^{b}$ in the range $2 \leq k<m \leq 24,2 \leq a \leq 32$, and $1 \leq b \leq 32-a$ is $(m, k, a, b)=(5,3,1,1)$. This completes the proof of Theorem 1.
2.2. Proof of Theorem 2: the Lucas case. In that case, equation (1.1) becomes

$$
\begin{equation*}
L_{m} L_{m-1} \cdots L_{m-k+1}=m^{a} k^{b} L_{1} \cdots L_{k} \tag{2.4}
\end{equation*}
$$

Suppose that $m>\max \{12, k\}$, by using the Primitive Divisor Theorem, we get $p=k=m-1>3$. Thus we will only consider the solutions of

$$
\begin{equation*}
L_{m}=m^{a}(m-1)^{b} . \tag{2.5}
\end{equation*}
$$

Here the parity of m is not useful, since there is no multiplicative identity for L_{m}. Actually, one has $L_{2 n}=\left(5 F_{n}^{2}+L_{n}^{2}\right) / 2$. Thus the method in the previous proof is not applicable. Instead, we explore the primality of p.

First, note that $b \geq 1$. Otherwise $L_{m}=m^{a}$ and thus any primitive divisor of L_{m} must divide m which contradicts the congruence $p \equiv \pm 1(\bmod m)$. Therefore, as $p=m-1$, from equation (2.5), we deduce

$$
L_{p+1}=(p+1)^{a} p^{b} \equiv 0 \quad(\bmod p)
$$

By item (ii) of Lemma 1 , one has $-5=L_{p}^{2}-L_{p-1} L_{p+1} \equiv L_{p}^{2}(\bmod p)$. Combining this with item (iv) of Lemma 1 , we see that p divides 6 , which is impossible. Therefore, one must have $m \leq 12$.

Item (iii) of Lemma 1 leads to

$$
k^{a+b} \leq\left(\frac{L_{m}}{L_{1}}\right) \cdots\left(\frac{L_{m-k+1}}{L_{k}}\right) \leq 2^{k} \alpha^{k(m-k+1)}
$$

This implies

$$
a+b \leq \frac{k(\log 2+(m-k+1) \log \alpha)}{\log k}<15.9
$$

and the maximum occurs for $m=11$ and $k=2$. Again here we used a short program written in Mathematica [8] to show in a few seconds that the difference $\left[\begin{array}{c}m \\ k\end{array}\right]_{L}-m^{a} k^{b}$ is not zero in the range $2 \leq k<m \leq 12,2 \leq a \leq 15$ and $1 \leq b \leq 15-a$. This completes the proof of Theorem 2.

Acknowledgement

The authors would like to express their gratitude to Hemar Godinho by his very helpful suggestions. The first author is grateful to FEMAT-Brazil and CNPqBrazil for the financial support. The second author thanks Purdue University North Central for the support.

References

1. M. Abouzaid, Les nombres de Lucas et Lehmer sans diviseur primitif, J. Th. Nombres Bordeaux 18 (2006), 299-313.
2. Yu. Bilu, G. Hanrot and P. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte), J. reine angew. Math. 539 (2001), 75-122.
3. R. D. Carmichael, On the numerical factors of the arithmetic forms $\alpha^{n} \pm \beta^{n}$, Annals of Math. 15 (1913-1914), 30-70.
4. V. E. Hoggatt, Jr., Marjorie Bicknell, Some Congruences of the Fibonacci Numbers Modulo a Prime p, Mathematics Magazine 47, No. 4. 210-214
5. F. Luca, D. Marques, P. Stănică, On the spacings between C-nomial coefficients, J. Number Theory 130, p. 82-100, 2010.
6. J. Seibert, P. Trojovský, On certain identities for the Fibonomial coefficients. Tatra Mt. Math. Publ. 32, p. 119127, 2005.
7. N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at http://www.research.att.com/~njas/sequences/
8. Wolfram Research, Inc., Mathematica, Version 7.0, Champaign, IL (2008).

DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE DE BRASÍLIA, BRASÍLIA, DF, BRAZIL

E-mail address: diego@mat.unb.br
MATHEMATICS DEPARTMENT, PURDUE UNIVERSITY NORTH CENTRAL, 1401 S , U.S. 421, WESTVILLE, IN 46391, USA

E-mail address: atogbe@pnc.edu

