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Abstract. Let Fn be the nth Fibonacci number. In this note, we prove that

the Fibonacci version of a variant of the Brocard-Ramanujan Diophantine
equation n! + 1 = m2, that is, Fn · · ·F1 + 1 = F t

m, has at most finitely many

solutions in positive integers n,m, t. Moreover, we prove that there is no

solution when 1 ≤ t ≤ 10.

1. Introduction

In 1876, Brocard [3] and independently Ramanujan [15],[16, p. 327], in 1913,
posed the problem of finding all integral solutions of the Diophantine equation

(1.1) n! + 1 = m2

which is then known as Brocard-Ramanujan Diophantine equation.
The only known solutions to (1.1) are (n,m) ∈ {(4, 5), (5, 11), (7, 71)}. In 1906,

Gérardin [7] claimed that, if m > 71, then m must have at least 20 digits. Gupta
[8] stated that calculations of n! up to n = 63 gave no further solutions. Also,
there are no solutions up to n = 109, see [1]. We also point out the existence of
several variants for this equation, for instance, see [6] and the recent paper [9] for
the equation

(1.2) n! +A = m2.

When A = s2, 2 ≤ s ≤ 50, Berndt and Galway [1] searched for solutions of (1.2)
up to n = 105 and found either zero or one solution in each case. The largest n
giving a solution was 11! + 182 = 63182.

Another possible variant for equation (1.1) is the equation

(1.3) n! + 1 = mt, with t ≥ 2

It is almost unnecessary to stress that the solubility of such equations are still
open problems.

Let (Fn)n≥0 be the Fibonacci sequence given by F0 = 0, F1 = 1 and Fn+2 =
Fn+1 + Fn, for n ≥ 0. The first few terms are 0, 1, 1, 2, 3, 5, 8, 13, 21, ....

Several authors become interested in Diophantine equations involving Fibonacci
numbers. For instance, we mention here that the problem of showing that the only
perfect powers in the Fibonacci sequence are 0, 1, 8 and 144 was solved by Bugeaud
et al [4] and its generalization can be found in [12], as well as the more recent
[10, 13, 14].
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Also, a number of authors have considered, in varying degrees of generality,
Fibonacci numbers appearing in additive Diophantine problems. For instance, the
equation Fn + 1 = y2 and more generally Fn ± 1 = y` with integer y and ` ≥ 2
have been solved in [17] and [5], respectively. In a very recent paper, we prove that
F1 · · ·Fn + 1 = F 2

m has no solution in positive integers m,n, see [13, Theorem 1.1].
In this note, we consider the solubility of the Fibonacci version of equation (1.3)

when we replace m,n with their respective Fibonacci numbers and we use the usual
notation nF ! = Fn · · ·F1. Our main result is the following

Theorem 1. Let t ≥ 1 be an integer. If n,m are solutions of the Diophantine
equation

(1.4) F1 · · ·Fn + 1 = F t
m,

then n < 4t+ 7 and consequently m < 8t2 + 27t+ 25.

As application, we generalize the case n = 1 of Theorem 1.1 in [13] by solving
the equation (1.4) for 1 ≤ t ≤ 10.

Theorem 2. The Diophantine equation (1.4) has no solution in positive integers
n,m, t, with 1 ≤ t ≤ 10.

We point out that Luca and Shorey [11] proved, in particular, that if t is any
fixed rational number which is not a perfect power of a different rational number,
then the equation

F1 · · ·Fn + t = ym

has only finitely many integer solutions n, y, m ≥ 2. However this does not apply
to (1.4) since t = 1 is a perfect power.

2. Proof of the Theorems

2.1. Auxiliary results. Before proceeding further, some considerations will be
needed for the convenience of the reader.

We recall that the problem of the existence of infinitely many prime numbers in
the Fibonacci sequence remains open, however several results on the prime factors
of a Fibonacci number are known. For instance, a primitive divisor p of Fn is a
prime factor of Fn which does not divide

∏n−1
j=1 Fj . It is known that a primitive

divisor p of Fn exists whenever n ≥ 13. The above statement is usually referred to
the Primitive Divisor Theorem (see [2] for the most general version).

We cannot go very far in the lore of Fibonacci numbers without encountering
the sequence of Lucas numbers (Ln)n≥0 which follows the same recursive pattern
as the Fibonacci numbers, but with initial values L0 = 2 and L1 = 1.

By the Binet’s formulae, we have

Fn =
αn − βn

α− β
and Ln = αn + βn, for all n ≥ 1,

where α = (1 +
√

5)/2 and β = (1−
√

5)/2 = (−α)−1. The first identity allows us
to show that

(2.1) αn−2 < Fn < αn−1,

holds for all n ≥ 1.
We may note that the Fibonacci and Lucas sequences can be extrapolated back-

wards using Fn = Fn+2 − Fn+1 and Ln = Ln+2 − Ln+1. Thus, for example,
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F−1 = 1, F−2 = −1, and so on. Since that the Binet’s formulae remain valid for
Fibonacci and Lucas numbers with negative indices, one can deduce the following
result (which we shall prove for the sake of completeness)

Lemma 1. For any integers a, b, we have

FaLb = Fa+b + (−1)bFa−b.

Proof. The identity α = (−β)−1 leads to

FaLb =
αa − βa

α− β
(αb + βb) = Fa+b +

αaβb − βaαb

α− β
= Fa+b + (−1)bFa−b.

�

Lemma 1 gives immediately the following factorizations for Fn ± 1, depending
on the class of n modulo 4:

F4` + 1 = F2`−1L2`+1 ; F4` − 1 = F2`+1L2`−1(2.2)

F4`+1 + 1 = F2`+1L2` ; F4`+1 − 1 = F2`L2`+1

F4`+2 + 1 = F2`+2L2` ; F4`+2 − 1 = F2`L2`+2

F4`+3 + 1 = F2`+1L2`+2 ; F4`+3 − 1 = F2`+2L2`+1

Now, we are ready to deal with the proof of theorems.

2.2. The proof of Theorem 1. The equation (1.4) can be rewritten as F1 · · ·Fn =

(Fm − 1)
∑t−1

j=0 Fj . By the relations in (2.2), we have that Fm − 1 = FaLb, where

2a ∈ {m− 2,m− 1,m+ 1}. Therefore, our equation becomes

(2.3) F1 · · ·Fn = FaLb(F
t−1
m + · · ·+ 1)

Now, the estimates in (2.1) and the identity (1.4) yield

αt(m−1) > F t
m > F1 · · ·Fn > αn(n−3)/2,

and so m > n(n−3)
2t +1. We claim that n < 4t+7. Towards a contradiction, suppose

that n ≥ 4t+ 7. It is a simple matter to prove that the inequality

4t+ 3 ≤ 3 + 4t+
√

16t2 + 32t+ 9

2
< 4t+ 4

holds for all t ≥ 1, yielding that b(3+4t+
√

16t2 + 32t+ 9)/2c+4 = 4t+7. It follows
that 4t + 7 is greater than the largest root of the polynomial x2 − (3 + 4t)x − 2t,
then n2 − (3 + 4t)n− 2t > 0 or equivalently n(n− 3)/2t > 2n+ 1. In view, of the
lower bound on m, we get m > 2n + 2 and thus a ≥ (m − 2)/2 > n. If m > 26,
then a ≥ (m − 2)/2 > (26 − 2)/2 = 12, the Primitive Divisor Theorem implies in
the existence of a primitive divisor p of Fa, but this contradicts the identity (2.3),
because a > n. In the case of m ≤ 26, we get n(n − 3) < 50t which implies that
n < 2t+ 9 < 4t+ 7. This completes the proof.
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2.3. The proof of Theorem 2. The possible solutions of equation (1.4), with
1 ≤ t ≤ 10, occurs when n < 4 · 10 + 7 = 47 (since 4t+ 7 is an increasing function
in t). We then use Mathematica to print all the values of F1 · · ·Fn + 1 in the range
1 ≤ n ≤ 46. By looking at the sequence of perfect powers (sequence A001597 in
OEIS [18]), we convince ourselves that there is no any such power in that list. In
order to facilitate this task, we point out that F1 · · ·Fn + 1 ends in 0...01 with at
least bn/5c − 1 zeros.

�
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