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Abstract

For k ≥ 2, the k-generalized Fibonacci sequence (F
(k)
n )n is defined by the

initial values 0, 0, . . . , 0, 1 (k terms) and such that each term afterwards is
the sum of the k preceding terms. In this paper, we find all generalized
Fibonacci numbers written in the form 2a + 3b + 5c. This work generalizes a
recent Marques-Togbé result [19] concerning the case k = 2.
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1. Introduction

Let (Fn)n≥0 be the Fibonacci sequence given by Fn+2 = Fn+1 + Fn, for
n ≥ 0, where F0 = 0 and F1 = 1. These numbers are well-known for
possessing amazing properties (consult [11] together with its very extensive
annotated bibliography for additional references and history).

The problem of searching for Fibonacci numbers of a particular form has
a very rich history, see for example [5] and references therein. In this same
paper, Bugeaud et al [5, Theorem 1] showed that 0, 1, 8, 144 are the only
perfect powers in the Fibonacci sequence. Other related papers searched for
Fibonacci numbers of the forms px2 +1, px3 +1 [22], k2 +k+2 [13], pa±pb+1
[14], pa±pb [15], yt±1 [6], qkyt [7] and 2a+3b+5c [19]. In particular, Marques
and Togbé proved that the only solutions of the Diophantine equation

Fn = 2a + 3b + 5c (1)
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in integers n, a, b, c, with 0 ≤ a, b ≤ c are

(n, a, b, c) ∈ {(4, 0, 0, 0), (6, 1, 0, 1)}.

Let k ≥ 2 and denote F (k) := (F
(k)
n )n≥−(k−2), the k-generalized Fibonacci

sequence whose terms satisfy the recurrence relation

F
(k)
n+k = F

(k)
n+k−1 + F

(k)
n+k−2 + · · ·+ F (k)

n , (2)

with initial conditions 0, 0, . . . , 0, 1 (k terms) and such that the first nonzero

term is F
(k)
1 = 1.

The above sequence is one among the several generalizations of Fibonacci
numbers. Such a sequence is also called k-step Fibonacci sequence, Fibonacci
k-sequence, or k-bonacci sequence. Clearly for k = 2, we obtain the classical
Fibonacci numbers (Fn)n, for k = 3, the Tribonacci numbers (Tn)n, for k = 4,
the Tetranacci numbers (Qn)n, etc.

Recently, these sequences have been the main subject of many works.
We refer to [3] for results on the largest prime factor of F

(k)
n and we refer

to [1] for the solution of the problem of finding powers of two belonging to
these sequences. In 2013, two conjectures concerning these numbers were
proved. The first one, proved by Bravo and Luca [4] is related to repdigits
(i.e., numbers with only one distinct digit in its decimal expansion) among
k-Fibonacci numbers (proposed by Marques [18]) and the second one, a con-
jecture (proposed by Noe and Post [21]) about coincidences between terms of
these sequences, proved independently by Bravo-Luca [2] and Marques [16]
(see [17] for results on the spacing between terms of these sequences).

The aim of this paper is to find all generalized Fibonacci numbers which
can be written in the form 2a + 3b + 5c, with 0 ≤ a, b ≤ c. More precisely,
our main result is the following

Theorem 1. The solutions of the Diophantine equation

F (k)
n = 2a + 3b + 5c (3)

in integers n, k, a, b, c, with 0 ≤ a, b ≤ c and n > k + 1 are

(n, k, a, b, c) ∈ {(4, 2, 0, 0, 0), (6, 2, 1, 0, 1), (5, 3, 0, 0, 1), (15, 3, 1, 2, 5),

(15, 3, 3, 1, 5)}.
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We remark that the condition n > k + 1 is to avoid the infinitely many
(uninteresting) solutions related to powers of two written in the form 2a+3b+
5c (since the first nonzero terms of F (k) are 1, 1, 2, . . . , 2k−1) as for instance

F
(k)
7 = 22 + 31 + 52,

for all k ≥ 6.
Let us give a brief overview of our strategy for proving Theorem 1. First,

we use a Dresden formula [8, Formula (2)] to get an upper bound for a linear
form in three logarithms related to equation (3). After, we use a lower bound
due to Matveev to obtain an upper bound for n and c (and so for a and b)

in terms of k. Very recently, Bravo and Luca solved the equation F
(k)
n = 2m

and for that they used a nice argument combining some estimates together
with the Mean Value Theorem (this can be seen in pages 77 and 78 of [1]).
In our case, we use this Bravo and Luca approach to get an upper bound for
a linear form in two logarithms (before using Bravo-Luca method, we solved
some small cases, by using a reduction argument due to Dujella and Pethő).
After, we use a result due to Laurent to get an absolute upper bound for
the variables k, n and c. In the final section, we use some facts on continued
fractions to deal with the case c ≤ k. For the case c ≥ k, we use again Dujella
and Pethő lemma to make the final calculations feasible. The computations
in the paper were performed using Mathematica R©.

We remark some differences between our work and the one by Bravo and
Luca in [1]. In their paper, the equation F

(k)
n = 2m was studied. By applying

a key method, they get directly an upper bound for |2m− 2n−2|. In our case,

the equation F
(k)
n = 2a + 3b + 5c needs a little more work, because we get an

upper bound for |2n−2−5c|. Then we use a lower bound for linear forms in two
logarithms due to Laurent to get absolute upper bounds for the variables.
Moreover, we also use two facts on convergents of continued fractions to
solve quickly the case c ≤ k. Our presentation is therefore organized in a
similar way that the one in the papers [1, 2, 3, 4], since we think that those
presentations are intuitively clear.

2. Auxiliary results

Before proceeding further, we shall recall some facts and tools which will
be used after.
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We know that the characteristic polynomial of (F
(k)
n )n is

ψk(x) := xk − xk−1 − · · · − x− 1

and it is irreducible over Q[x] with just one zero outside the unit circle. That
single zero is located between 2(1−2−k) and 2 (as can be seen in [24]). Also,
in a recent paper, G. Dresden [8, Theorem 1] gave a simplified “Binet-like”

formula for F
(k)
n :

F (k)
n =

k∑
i=1

αi − 1

2 + (k + 1)(αi − 2)
αn−1
i , (4)

for α = α1, . . . , αk being the roots of ψk(x). Also, it was proved in [4, Lemma
1] that

αn−2 ≤ F (k)
n ≤ αn−1, for all n ≥ 1, (5)

where α is the dominant root of ψk(x). Also, the contribution of the roots
inside the unit circle in formula (4) is almost trivial. More precisely, it was
proved in [8] that

|F (k)
n − g(α, k)αn−1| < 1

2
, (6)

where we adopt throughout the notation g(x, y) := (x−1)/(2+(y+1)(x−2)).
Another tool to prove our theorem is a lower bound for a linear form

logarithms à la Baker and such a bound was given by the following result of
Matveev (see [20] or Theorem 9.4 in [5]).

Lemma 1. Let γ1, . . . , γt be real algebraic numbers and let b1, . . . , bt be non-
zero rational integer numbers. Let D be the degree of the number field
Q(γ1, . . . , γt) over Q and let Aj be a real number satisfying

Aj ≥ max{Dh(γj), | log γj|, 0.16}, for j = 1, . . . , t.

Assume that
B ≥ max{|b1|, . . . , |bt|}.

If γb11 · · · γbtt 6= 1, then

|γb11 · · · γbtt − 1| ≥ exp(−1.4 · 30t+3 · t4.5 ·D2(1 + logD)(1 + logB)A1 · · ·At).
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As usual, in the previous statement, the logarithmic height of an s-degree
algebraic number γ is defined as

h(γ) =
1

s
(log |a|+

s∑
j=1

log max{1, |γ(j)|}),

where a is the leading coefficient of the minimal polynomial of γ (over Z)
and (γ(j))1≤j≤s are the conjugates of γ (over Q).

After finding an upper bound on n which is general too large, the next
step is to reduce it. For that, our last ingredient is a variant of the famous
Baker-Davenport lemma, which is due to Dujella and Pethő [9, Lemma 5
(a)]. For a real number x, we use ‖ x ‖= min{|x − n| : n ∈ N} for the
distance from x to the nearest integer.

Lemma 2. Suppose that M is a positive integer. Let p/q be a convergent of
the continued fraction expansion of the irrational number γ such that q > 6M
and let A,B be some real numbers with A > 0 and B > 1. Let ε =‖ µq ‖
−M ‖ γq ‖, where µ is a real number. If ε > 0, then there is no solution to
the inequality

0 < mγ − n+ µ < A ·B−k

in positive integers m,n and k with

m ≤M and k ≥ log(Aq/ε)

logB
.

See Lemma 5, a.) in [9].
Now, we are ready to deal with the proof Theorem 1.

3. The proof of Theorem 1

In light of Theorem 1.1 of [19], throughout this paper we shall assume
k ≥ 3.

3.1. Upper bounds for n and c in terms of k

In this section, we shall prove the following result

Lemma 3. If (n, k, a, b, c) is an integer solution of Diophantine equation (3),
with 0 ≤ a, b ≤ c and n > k + 1, then

c < 9 · 1014k4 log3 k and n < 26.2 · 1014k4 log3 k. (7)
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Proof. First, note that if c = 0 or 1, then F
(k)
n ∈ {3, 7, 8, 9, 11} and so the

only solutions satisfying the previous conditions are

(n, k, a, b, c) ∈ {(4, 2, 0, 0, 0), (6, 2, 1, 0, 1), (5, 3, 0, 0, 1)}.

Thus, we may suppose that c ≥ 2.
Now, we use Eq. (3) together with (4) and (6) to obtain

g(α, k)αn−1 − 5c = 2a + 3b − Ek(n) > 0, (8)

where Ek(n) :=
∑k

i=2 g(αi, k)αn−1
i . Thus∣∣∣∣g(α, k)αn−1

5c
− 1

∣∣∣∣ < 1

(1.35)c
, (9)

where we used that |Ek(n)| < 1/2 together with 2c + 3c + 1/2 < (3.7)c, for
c ≥ 2.

In order to use Lemma 1, we take t := 3,

γ1 := g(α, k), γ2 := 5, γ3 := α

and
b1 := 1, b2 := −c, b3 := n− 1.

For this choice, we have D = [Q(α) : Q] = k. In [1, p. 73], an estimate for
h(g(α, k)) was given. More precisely, it was proved that

h(γ1) = h(g(α, k)) < log(4k + 4).

Note that h(γ2) = log 5 and h(γ3) < 0.7/k. It is a simple matter to deduce
from inequality 2(1 − 2−k) < α < 2 that 1/4 < g(α, k) < 1. Thus, we can
take A1 := k log(4k + 4), A2 := k log 5 and A3 := 0.7.

Note that max{|b1|, |b2|, |b3|} = max{c, n− 1}. By using the inequalities

in (5), we get αn−1 ≥ F
(k)
n > 5c and αn−2 ≤ F

(k)
n < 2 · 5c. Therefore

n− 1 > 2.3c and n− 1 < 2.3 + 2.9c, (10)

where we used that 7/4 < α < 2 (since k ≥ 3). Thus, we can choose
B := 2.9c + 2.3. Since g(α, k)αn−15−c > 1 (by (8)), we are in position to
apply Lemma 1. This lemma together with a straightforward calculation
gives ∣∣∣∣g(α, k)αn−1

5c
− 1

∣∣∣∣ > exp(−3.8 · 1012k4 log c log2 k), (11)
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where we used that 1+log k < 2 log k, for k ≥ 3, 1+log(2.9c+2.3) < 4.5 log c,
for c ≥ 2, and log(4k + 4) < 2.6 log k, for k ≥ 3.

By combining (9) and (11), we obtain

c

log c
< 1.3 · 1013k4 log2 k.

Since the function x/ log x is increasing for x > e, it is a simple matter to
prove that

x

log x
< A implies that x < 2A logA. (12)

A proof for that can be found in [1, p. 74].
Thus, by using (12) for x := c and A := 1.4 · 1013k4 log2 k, we have that

c < 2(1.4 · 1013k4 log2 k) log(1.4 · 1013k4 log2 k).

Now, the inequality log(1.4) + 13 log 10 + 2 log log k < 28 log k, for k ≥ 3,
yields

c < 9 · 1014k4 log3 k, (13)

and we use estimates in (10) to get

n < 26.2 · 1014k4 log3 k.

This finishes the proof of lemma. �

3.2. The small cases: 3 ≤ k ≤ 176

In this section, we shall prove the following result

Lemma 4. If (n, k, a, b, c) is an nonnegative integer solution of Diophantine
equation (3), with 3 ≤ k ≤ 176, max{a, b, 2} ≤ c and n > k + 1, then

(n, k, a, b, c) ∈ {(15, 3, 1, 2, 5), (15, 3, 3, 1, 5)}.

Proof. By using (8) and (9), we have that

0 < (n− 1) logα− c log 5 + log g(α, k) < (1.35)−c.

Dividing by log 5, we obtain

0 < (n− 1)γk − c+ µk < 0.63 · (1.35)−c, (14)
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where γk = logα(k)/ log 5 and µk = log g(α(k), k)/ log 5. Here, we added the
superscript to α for emphasizing its dependence on k.

We claim that γk is irrational, for any integer k ≥ 2. In fact, if γk = p/q,
for some positive integers p and q, we have that 5p = (α(k))q and we can
conjugate this relation by some automorphism of the Galois group of the
splitting field of ψk(x) over Q to get 5p = |(α(k)

i )q| < 1, for i > 1, which is an
absurdity, since p ≥ 1. Let qm,k be the denominator of the m-th convergent
of the continued fraction of γk. Taking Mk := 26.2 · 1014k4 log3 k ≤ M176 <
3.5 · 1026, we use Mathematica [23] to get

min
3≤k≤176

q90,k > 6.8 · 1033 > 6M176.

Also
max

3≤k≤176
q90,k < 1.3 · 1053.

Define εk :=‖ µkq90,k ‖ −Mk ‖ γkq90,k ‖, for 3 ≤ k ≤ 176, we get (again
using Mathematica)

min
3≤k≤176

εk > 7.7 · 10−12.

Note that the conditions to apply Lemma 2 are fulfilled for A = 0.63 and
B = 1.35, and hence there is no solution to inequality (14) (and then no
solution to the Diophantine equation (3)) for n and c satisfying

n < Mk and c ≥ log(Aq90,k/εk)

logB
.

Since n < Mk (Lemma 3), then

c <
log(Aq90,k/εk)

logB
≤ log(0.63 · 1.3 · 1053/7.7 · 10−12)

log(1.35)
= 491.25 . . . .

Therefore 3 ≤ k ≤ 176 and 2 ≤ c ≤ 491. Now, by applying the estimate
in (10), we have n ≤ 1427.

Now, we use the Mathematica routine

Catch[Do[{n, k, a, b, c};

If[F[n, k] == 2^a + 3^b + 5^c, Print[{n, k, a, b, c}]], {k, 3,

176}, {n, k + 2, 1427}, {c, 0, 491}, {a, 0, c}, {b, 0, c}]]

where the defined command
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F[n_, k_] :=

SeriesCoefficient[Series[x/(1-Sum[x^j, {j,1,k}]), {x,0,1400}],

n]

finds the n-th k-bonacci number.
The program return us {15, 3, 3, 1, 5}, {15, 3, 1, 2, 5} in roughly 23 hours

on 2.5 GHz Intel Core i5 4GB Mac OSX. This finishes the proof. �

3.3. An absolute upper bound

In this section, we shall prove the following result

Lemma 5. If (n, k, a, b, c) is a solution in integers of Diophantine equation
(3), with 0 ≤ a, b ≤ c and n > k + 1. Then

k ≤ 777194, c < 8.2 · 1041 and n < 2.4 · 1042. (15)

Proof. By Lemma 3, we may consider k ≥ 177. In this case, we have

n < 26.2 · 1014k4 log3 k < 2k/2. (16)

Now, we use a key argument due to Bravo and Luca [1, p. 77-78]. How-
ever, we shall present it for the sake of completeness.

Setting λ = 2−α, we deduce that 0 < λ < 1/2k−1 (because 2(1− 2−k) <
α < 2). So

αn−1 = (2− λ)n−1 = 2n−1

(
1− λ

2

)n−1

> 2n−1(1− (n− 1)λ),

since that the inequality (1−x)n > 1−2nx holds for all n ≥ 1 and 0 < x < 1.
Moreover, (n− 1)λ < 2k/2/2k−1 = 2/2k/2 and hence

2n−1 − 2n

2k/2
< αn−1 < 2n−1 +

2n

2k/2
,

yielding

|αn−1 − 2n−1| < 2n

2k/2
. (17)

Now, we define for x > 2(1 − 2−k) the function f(x) := g(x, k) which is
differentiable in the interval [α, 2]. So, by the Mean Value Theorem, there
exists ξ ∈ (α, 2), such that f(α)− f(2) = f ′(ξ)(α− 2). Thus

|f(α)− f(2)| < 2k

2k
, (18)
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where we used the bounds |α− 2| < 1/2k−1 and |f ′(ξ)| < k (see p. 77 of [1]).
For simplicity, we denote δ = αn−1−2n−1 and η = f(α)−f(2) = f(α)−1/2.
After some calculations, we arrive at

2n−2 = f(α)αn−1 − 2n−1η − δ

2
− δη.

Therefore

|2n−2 − 5c| ≤ 2a + 3b + 1/2 + 2n−1|η|+
∣∣∣∣δ2
∣∣∣∣+ |δη|

≤ 2a + 3b + 1/2 +
2nk

2k
+

2n−1

2k/2
+

2n+1k

23k/2
,

where we used (17) and (18). Since n > k + 1, one has that 2n−2/2k/2 ≥
2k/2 > 7/4 (for k ≥ 3) and we rewrite the above inequality as

|2n−2 − 5c| < 2a + 3b + 1/2 +

(
4k

2k/2

)
2n−2

2k/2
+ 2 · 2n−2

2k/2
+

(
8k

2k

)
2n−2

2k/2
.

Since the inequalities 4k < 8k < 2k/2 < 2k hold for all k > 13, then

|2n−2 − 5c| < 2a + 3b +
4.5 · 2n−2

2k/2
. (19)

After some manipulations, we arrive at

|1− 5c · 2−(n−2)| < 7

(1.3)`
, (20)

where we used that n > 2.3c + 1 and ` := min{k, c}. One can rewrite the
above inequality as

|eΛ∗ − 1| < 7

(1.3)`
,

where Λ∗ = c log 5 − (n − 2) log 2. Clearly, Λ∗ 6= 0. If Λ∗ > 0, then Λ∗ <
eΛ∗ − 1 < 7/(1.3)`. In the case of Λ∗ < 0, it holds that |1− eΛ∗| = 1− e−|Λ∗|

yielding e|Λ
∗| < 1/(1−7/(1.3)`). Therefore |Λ∗| < e|Λ

∗|−1 < 50/(1.3)`, where
we used that 1− 7/(1.3)` > 0.14, for all c ≥ 8 (in the case of 2 ≤ c ≤ 7, the
equation is easily solved as in the beginning of subsection 3.1). Thus, in any
case, we have |Λ∗| < 50/(1.3)` and by applying the log function, we obtain

log |Λ∗| < log 50− ` log(1.3). (21)
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Now, we will determine a lower bound for log |Λ∗|. We remark that the
bounds available for linear forms in two logarithms are substantially better
than those available for linear forms in three logarithms. Here we choose to
use a result due to Laurent [12, Corollary 2] with m = 24 and C2 = 18.8
(we can use that because 5 and 2 are multiplicatively independent). First
let us introduce some notations. Let α1, α2 be real algebraic numbers, with
|αj| ≥ 1, b1, b2 be positive integer numbers and

Γ = b2 logα2 − b1 logα1.

Let Aj be real numbers such that

logAj ≥ max{h(αj), | logαj|/D, 1/D}, j ∈ {1, 2},

where D is the degree of the number field Q(α1, α2) over Q. Define

b′ =
b1

D logA2

+
b2

D logA1

.

Laurent’s result asserts that if α1, α2 are multiplicatively independent, then

log |Γ| ≥ −18.8 ·D4 (max{log b′ + 0.38,m/D, 1})2 · logA1 logA2.

We then take

b1 = n− 2, b2 = c, α1 = 2, α2 = 5.

So, D = 1 and we can choose logA1 = 1 and logA2 = log 5. We then get

b′ =
n− 2

log 5
+ c < 2.9c+ 0.9,

where we used that n− 2 < 2.9c+ 1.3.
Thus, by Corollary 2 of [12] we get

log |Λ∗| ≥ −21 · (max{log(2.9c+ 0.9) + 0.38, 24})2 . (22)

Now, we combine the estimates (21) and (22) to obtain

` < 81 · (max{log(2.9c+ 0.9) + 0.38, 24})2 (23)

which yields

k ≤ 777194, c < 8.2 · 1041 and n < 2.4 · 1042

as desired. Here we used (13) when ` = k. �



The equation F
(k)
n = 2a + 3b + 5c 12

3.4. Finishing the proof

We shall split the proof in two cases:

3.4.1. If ` = c

For this case, we already get by Lemma 4 that c ≤ 777194 and so n ≤
2253865 a serious improvement. Now, we shall improve these estimates to
solve completely this case.
Case 1. If Λ∗ > 0, then we can use the estimate in (21) to obtain

0 <
log 5

log 2
− n− 2

c
<

50

c(1.3)c log 2
.

If c ≤ 39, then n ≤ 116 and so k < n− 1 ≤ 115 and these cases were treated
in Lemma 4. Thus, assume that c ≥ 40. Then (1.3)c > 902c and we get∣∣∣∣ log 5

log 2
− n− 2

c

∣∣∣∣ < 50

902c2 log 2
. (24)

By a criterion of Legendre, the previous inequality implies that (n− 2)/c
is a convergent of the continued fraction of log 5/ log 2 = [a1; a2, a3, . . .] =
[2; 3, 9, 2, 2, 4, 6, 2, 1, 1, . . .] = lims→∞ ps/qs. Thus, (n− 2)/c = pt/qt for some
t > 0. Since gcd(pt, qt) = 1, then qt | c yielding

c ≥ qt ≥ 1838395 > 777194 ≥ c,

if t ≥ 13. Therefore t ≤ 12. On the other hand, a well-known fact on
continued fractions gives∣∣∣∣ log 5

log 2
− n− 2

c

∣∣∣∣ > 1

(at+1 + 2)q2
t

.

But max1≤s≤12{as+1} = a3 = 9 and so∣∣∣∣ log 5

log 2
− n− 2

c

∣∣∣∣ > 1

11c2
. (25)

Combining (24) and (25) we reach the absurdity that 550 > 902 log 2 =
625.219 . . .. This completes the proof in this case.

Case 2. If Λ∗ < 0, then we can use that 0 < −Λ∗ = |Λ∗| together with
estimate (21) to get

0 <
log 2

log 5
− c

n− 2
<

36.4

(n− 2)(1.08)n−2
,
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where we used that c > (n − 3.3)/2.9 > 0.3n − 1.2. If n ≤ 152, then
k < n − 1 ≤ 151 and these cases were treated in Lemma 4. Assume that
n ≥ 153. Then (1.08)n−2 > 737(n− 2) and we obtain∣∣∣∣ log 2

log 5
− c

n− 2

∣∣∣∣ < 36.4

737(n− 2)2
. (26)

Again, by the criterion of Legendre, we infer that c/(n−2) is a convergent
of the continued fraction of log 2/ log 5 = [b1; b2, b3, . . .] = [0; 2, 3, 9, 2, 2, . . .] =
lims→∞ms/ns. Thus, c/(n−2) = mν/nν for some ν > 0. Since gcd(mν , nν) =
1, then nν | n− 2. Therefore

n− 2 ≥ nν ≥ 4268621 > 2253863 ≥ n− 2,

if ν ≥ 14. Therefore ν ≤ 13. On the other hand, we have∣∣∣∣ log 2

log 5
− c

n− 2

∣∣∣∣ > 1

(bν+1 + 2)n2
ν

.

But max1≤s≤13{bs+1} = b14 = 18 and so∣∣∣∣ log 2

log 5
− c

n− 2

∣∣∣∣ > 1

20(n− 2)2
. (27)

Combining (26) and (27) we reach the absurdity that 36.4 · 20 = 728 > 737.
This completes the proof in this case. �

3.4.2. If ` = k

In this case, we use all machinery and definitions given in Subsection 6
with

εk :=‖ µkq1000,k ‖ −Mk ‖ γkq1000,k ‖, for 177 ≤ k ≤ 777194,

to get
min

177≤k≤777194
q1000,k > 6 · 1041 > 6M777194,

max
177≤k≤777194

q1000,k < 5.3 · 1021311

and
min

177≤k≤777194
εk > 1.5 · 10−20315.

Now, we apply Lemma 2 to obtain that c ≤ 319382 and then n ≤ 926210.
To finish, we use the Mathematica routine given previously adding the con-
dition k < c. It was needed roughly 18 days (on 2.5 GHz Intel Core i5 4GB
Mac OSX) to the program return us that there is solution in this case. �
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Remark 1. We point out that we split the use of Dujella-Pethő reduction
lemma in two parts in order to make our presentation more natural to the
reader, since at the first point we only needed k ≥ 177 to obtain the inequality
(16).
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[10] F. Heppner, Über Primzahlen der Form n2n+1 bzw. p2p+1, Monatsh.
Math. 85 (1978), 99-103.

[11] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley,
New York, 2001.

[12] M. Laurent, Linear forms in two logarithms and interpolation deter-
minants II, Acta Arith. 133.4 (2008), 325–348.

[13] F. Luca, Fibonacci numbers of the form k2 + k + 2. Applications of
Fibonacci numbers, Vol. 8 (Rochester, NY, 1998), 241–249, Kluwer
Acad. Publ., Dordrecht, 1999.

[14] F. Luca, L. Szalay, Fibonacci numbers of the form pa±pb+1. Fibonacci
Quart. 45 (2007), no. 2, 98-103.
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