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1Departamento de Matemática, Universidade Estadual do Ceará,
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Brazil

September 22, 2010

Abstract

In 1981, F. Beukers used a hyper-geometric method for proving that

the well-known generalized Ramanujan-Nagell equation

x
2
+ C = p

n
, p prime,

has at most one solution in positive integers x and n, where C and p are

previously fixed, with a few exceptions.

In this note, we give an elementary proof of this result when n is even

as well as the complete solution of a such equation when C is a power

of 2009. Moreover, we prove that the previous result is surprisingly con-

nected with the title equation which allows us to find all solutions for

that equation.
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1 Introduction

The Diophantine equation

x2 + C = yn, x ≥ 1, y ≥ 1, n ≥ 3 (1)

has a rich history and it has attracted the attention of several mathematicians.
Several papers have been written on this topic, specially for particular values of
C. The first non-trivial result is due to Lebesgue [21] and date back to the 1850.
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He proved that the above equation has no solutions for C = 1. In 1965, Ko [18]
proved that if C = −1, then the only solution is (x, y, n) = (3, 2, 3). In 2004,
Tengely [31] solved the above equation with C = B2 and B ∈ {3, 4, ..., 501}.
The case when C = pk, where p is a prime number, was studied for p = 2, in
[8, 19, 20] for p = 3 in [6, 7, 22], for p = 5 in [1, 2] and for p = 7 in [25]. Some
advances on an arbitrary prime p appear in [5]. The equations x2 + C = yn

with 1 ≤ C ≤ 100 were completely solved in [12]. Also, the solutions when x
and y are coprime C = 2a · 3b, C = 2a · 5b and C = 5a · 13b can be found in
[23, 24, 3], respectively. The more recent progress on the subject concerns to
cases C = 5a ·11b, C = 2a ·11b, C = 2a ·3b ·11c and can be found in [14, 15, 16].

Also, several authors become interested in the equation (1) when the vari-
able y is replaced by a positive integer number. The equation

x2 + C = tn,

where C and t are given integers, is called the generalized Ramanujan-Nagell
equation. For instance, there is quite an extensive literature concerning the
equation

x2 + C = pn, p prime, (2)

beginning for the case C = 7 and p = 2, which was posed in a work of Ramanu-
jan [28, 29], in 1913 and first solved by Nagell [27] in 1948. The case C = 11
and p = 3 was treated by Cohen [13] in 1976. Consult its very extensive anno-
tated bibliography for additional references and history. As a final remark, we
point out that, in 1960, Apéry [4] showed that equation (2), when p - C, has
at most two solutions.

Here, we are particularly interested in solving the Diophantine equation

32n − 2 · 3m + 1 = k2 (3)

We prove that the possible solutions for the above equation are related to the
solubility of the generalized Ramanujan-Nagell equation for t = 9. Our first
result is the following

Theorem 1. Let C be a positive integer. Then the Diophantine equation

x2 + C = 32n (4)

has at most one solution in positive integers x and n.

It is important to pay attention that Eq. (4) has solution only when C ≡ 0, 2
(mod 3).

After, we shall combine two powerful techniques in number theory, namely,
the Baker’s theory on linear forms in logarithms and some tools from Diophan-
tine approximation, due to Baker and Davenport to find a general method for
solving the equation (4) for values of C previously fixed. As application of it,
we derive the following

Theorem 2. The Diophantine equation

x2 + 2009t = 32n (5)
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has no solution in positive integers x, t and n.

Finally, we prove

Theorem 3. The only solutions of the Diophantine equation

32n − 2 · 3m + 1 = k2

in positive integers m, n and k, are those related to m = n, i.e., (n, m, k) =
(n, n, 3n − 1).

We point out that our method is quite general and can be applied by re-
placing 3 in the title equation by any odd prime number p.

2 The Diophantine equation x2 + C = 32n

2.1 The proof of Theorem 1

It is important to get noticed that Beukers [10, 11] proved that the equation (2)
(and consequently Eq. (4)) has at most one solution except when (p, C) = (3, 2)
or (4t2 + 1, 3t2 + 1), for a positive t. In all these exceptional cases, the pair
(x, n) = (1, 1) is a direct solution and so Theorem 1 is according to Beukers
result. He used refined techniques on hyper-geometric methods for proving
these results.

Here we will present an elementary demonstration of the Theorem 1 which
was discovered by Professor F. A. Germano who has communicated us his nice
proof by e-mail.

Proof. Suppose that x, y, m, n are positive integer numbers such that x2 +
C = 32m and y2+C = 32n. We shall show that m = n and consequently x = y.
First of all, we note that

(3m + x)(3m − x) = C = (3n + y)(3n − y)

Without losing any generality, we can suppose gcd(C, 3) = gcd(x, 3) = 1. In
fact, we have x = 3ua, C = 3vb, where a, b ∈ N, 3 - ab, u and v are nonnegative
integer numbers. Hence

x2 + C = 32ua2 + 3vb = 32m

Of course, 2m ≥ max{2u, v}. Set ` = min{2u, v}, we have ` ≤ 2u, v ≤ 2m
and 3`(32u−`a2 + 3v−`b) = 32m. We then conclude that either 2u = ` = v or
3 - (32u−`a2 + 3v−`b). In the first case, we have

a2 + b = 32(m−u), (6)

with m− u > 0 and whence it is enough to prove the theorem for the equation
(6). In the second case, we infer that 1 = 32u−ta2 + 3v−tb > 1 which is an
absurd.
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We have then C = (3m−x)(3m +x) = r(2 ·3m−r), where 0 < r = 3m−x <
3m. Thus, if (x, m) is a solution of (4), we get an integer number 0 < r < 3m

such that C = r(2 · 3m − r) and 3 - r. Therefore, for another solution (y, n) of
(4), there exists 0 < s = 3n − y < 3n such that h = s(2 · 3n − s) and 3 - s.

We claim that m = n. Towards a contradiction, we may suppose n > m
(the other case can be handled in much the same way). This implies that
C = s(2 · 3n − s) = r(2 · 3m − r) and then 0 < s < r < 3m. Therefore, r and s
have the same parity, since s2 ≡ r2 (mod 2). By considerations modulo 3m, it
is easy to deduce that s2 ≡ r2 (mod 3m) and so 3m|(r − s)(r + s). Recall that
the numbers r − s and r + s can not be both multiples of 3 (otherwise 3|r and
3|s). It follows that r ≡ ±s (mod 3m) which yields

r ± s ∈ {...,−3m+1,−2 · 3m,−3m, 0, 3m, 2 · 3m, 3m+1, ...} = 3mZ.

Since 0 < s < r < 3m, we get 0 < r ± s < 2 · 3m and therefore r ± s = 3m,
but this is an absurd because r± s is even (keep in mind that r and s have the
same parity). Thus m = n as desired.

2.2 The proof of Theorem 2

2.2.1 Auxiliary results

Before proceeding further, we recall some results which will be very useful in
what follows.

The main idea for proving the Theorem 2 is to use bounds à la Baker for
a suitable linear form in three logarithms and then to deduce an upper bound
on t. From the main result of Matveev [26], we extract the following result.

Lemma 1. Let α1, α2, α3 be real algebraic numbers and let b1, b2, b3 be

nonzero integer rational numbers. Define

Λ = b1 log α1 + b2 log α2 + b3 log α3

Let D be the degree of the number field Q(α1, α2, α3) over Q and let A1, A2, A3

be real numbers which satisfy

Aj ≥ max{Dh(αj), | log αj |, 0.16}, for j = 1, 2, 3.

Assume that

B ≥ max{1, max{|bj |Aj/A1; 1 ≤ j ≤ 3}}.

Define also

C1 = 6750000 · e4(20.2 + log(35.5D2 log(eD))).

If Λ 6= 0, then

log |Λ| ≥ −C1D
2A1A2A3 log(1.5eDB log(eD)).

As usual, in the previous statement, the logarithmic height of an s-degree
algebraic number α is defined as

h(α) =
1

s
(log |a| +

s
∑

j=1

log max{1, |α(j)|}),
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where a is the leading coefficient of the minimal polynomial of α (over Z) and
(α(j))1≤j≤s are the conjugates of α.

After finding an upper bound on t which is general too large, the next
step is to reduce it. For this purpose, we need a variant of the famous Baker-
Davenport lemma, which is due to Dujella and Pethö [17]. For a real number
x, we use ‖ x ‖= min{|x − n| : n ∈ N} for the distance from x to the nearest
integer.

Lemma 2. Suppose that M is a positive integer. Let p/q be a convergent

of the continued fraction expansion of the irrational number γ such that q > 6M
and let ε =‖ µq ‖ −M ‖ γq ‖, where µ is a real number. If ε > 0, then there is

no solution to the inequality

0 < mγ − n + µ < A · B−m

in positive integers m, n with

log(Aq/ε)

log B
≤ m < M.

See Lemma 5, a.) in [17].
Now, we are ready to deal with the proof of our result.

2.2.2 The proof

Finding a bound on k
First, note that t in the equation (5) must be odd, say 2k + 1, because

x2 ≡ 0, 1 (mod 3) and 2009 ≡ −1 (mod 3). So, equation (5) can be rewritten
in the form

20092k+1 = (3n − x)(3n + x) (7)

Since 3 - x (because 3 - 2009), we get

{3n − x, 3n + x} = ±{1, 20092k+1}

Hence, we may suppose that 3n − x = 1 and 3n + x = 20092k+1. Thus

2 · 3n − 20092k+1 = 1 (8)

We point out that the above equation has no solution when n = 2k + 1. This
fact is an immediate consequence of a result due to Bennett [9]: for any positive
integer a, the equation

(a + 1)xn − ayn = 1, in integers x ≥ 1, y ≥ 1, n ≥ 3,

has no solution other than given by x = y = 1.
For the remaining cases (n 6= 2k + 1), we shall use bounds for linear forms

in three logarithms of algebraic numbers (for more details on transcendental
methods to Diophantine equations we refer the reader to [30]).

First, on dividing Eq. (8) through by 20092k+1, we get

2 · 3n · 2009−(2k+1) − 1 = 2009−(2k+1)
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Let Λ = (2k+1) log(1/2009)−n log(1/3)+ log 2, then the previous equality
becomes eΛ − 1 = 2009−(2k+1) > 0 and so Λ > 0. Therefore Λ < eΛ − 1 =
2009−(2k+1) which yields

log Λ < −(2k + 1) log 2009 (9)

Now, we will apply Lemma 1. Take

α1 = 1/2009, α2 = 1/3, α3 = 2, b1 = 2k + 1, b2 = −n, b3 = 1.

Observe that Q(α1, α2, α3) = Q and then D = 1. Surely, we can take A1 =
log 2009, A2 = log 3 and A3 = log 2.

Note that

max{1, max{|bj |Aj/A1; 1 ≤ j ≤ 3}} = max{2k + 1, n log 3/ log 2009},

and then it suffices to choose B = 2k + 1 as

2 · 3n = 20092k+1 + 1 < 2 · 20092k+1 and then n log 3 < (2k + 1) log 2009.

Since, for D = 1, it holds that C1 < 9.7 · 109, Lemma 1 yields

log |Λ| > −56.2 · 109 log(4.08(2k + 1)). (10)

Combining the estimates (9) and (10), we get

56.2 · 109 log(4.08(2k + 1)) > (2k + 1) log 2009,

and this inequality implies k < 2 · 1011 (for the sake of preciseness k <
101389315227).

Reducing the bound

Since 0 < Λ < 2009−2k−1, we have that

0 < (2k + 1) logα1 − n log α2 + log α3 < 2009−2k.

On dividing through by log α2, we get

0 < (2k + 1)γ − n + µ < 2009−2k, (11)

with γ = log α1/ logα2 and µ = log α3/ logα2.
Surely γ is an irrational numbera (because 2009 and 3 are multiplicatively

independent). So, let us denote p`/q` be the `th convergent of its continued
fraction.

In order to reduce our bound on k (which is too large!), we will use the
Lemma 2.

For that, take M = 2 · 1011. Since

p27

q27
=

24782374449400

3579857528251
,

aActually, this number is transcendental by Gelfond-Schneider theorem: if α and β are

algebraic numbers, with α 6= 0 or 1, and β irrational, then α β is transcendental.
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then q27 ≥ 3579857528251 > 1.2 · 1012 = 6M . Moreover, a straight calculation
gives

M ‖ q27γ ‖= 0.02760... < 0.02,

and
‖ q27µ ‖= 0.33016... > 0.34

Hence
ε =‖ µq27 ‖ −M ‖ γq27 ‖> 0.34 − 0.02 = 0.32

Thus all the hypotheses of the Lemma 2 are satisfied with A = 1 and B = 20092.
It follows from that lemma that there is no solution of the Diophantine equation
(7) in the range

[⌊

log(Aq27/ε)

log B

⌋

+ 1, M

]

= [115, 2 · 1011]

For the remaining possibilities (that is k < 115), we define a function T :
N → R given by

T (s) :=
log

(

20092s+1+1
2

)

log 3

Thus in view of the relation in (8), if the equation (7) has solution for a certain
k, then T (k) must be an integer number. To finish, we use Mathematica to
print all the values of this function, for 1 ≤ k ≤ 114. This task took less than
one second on a 1.86 GHz Pentium Core Duo. Finally, we convince ourselves
that T (k) is never an integer number in the obtained range. This completes
the proof.

3 The proof of Theorem 3

Note that if m = n, then 32n − 2 · 3n + 1 = (3n − 1)2. If k is positive, then
(n, m, k) = (n, n, 3n − 1) is solution for (3) for all positive integer n. Our goal
is to prove that this one is the only possibility.

For that, in order to facilitate our work, we shall denote δm,n = 32n−2·3m+1
and let m, n, k be positive integer numbers such that δm,n = k2. First, take
p = 3n + k and q = 3n − k. So, we have p > q ≥ 1, p + q = 2 · 3n and
pq = 2 · 3m − 1. Now, if x = 3m − 1 and y = 3n − q = k, we get

x = 3m − 1 = pq − 3m and y = 3n − q = p − 3n = k

yielding
(3m + x)(3m − x) = pq = (3n + y)(3n − y)

Thus (x, n) and (y, m) are solutions of the equation (4) with C = pq. Hence
we apply the Theorem 1 to get m = n and this completes our proof.
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