ON A VARIANT OF A QUESTION PROPOSED BY K. MAHLER CONCERNING LIOUVILLE NUMBERS

DIEGO MARQUES AND CARLOS GUSTAVO MOREIRA

ABSTRACT. In this note, we shall prove the existence of an uncountable subset of Liouville numbers (which we call the set of *ultra-Liouville numbers*) for which there exists uncountably many transcendental analytic functions mapping the subset into itself.

1. Introduction

A real number ξ is called a *Liouville number*, if there exists a rational sequence $(p_k/q_k)_{k\geq 1}$, with $q_k>1$, such that

$$0 < \left| \xi - \frac{p_k}{q_k} \right| < q_k^{-k}, \text{ for } k = 1, 2, \dots$$

The set of the Liouville numbers is denoted by \mathbb{L} .

The name arises because Liouville [4] in 1844 showed that all Liouville numbers are transcendental, establishing thus the first explicit examples of transcendental numbers. The number $\ell := \sum_{n\geq 1} 10^{-n!}$, the so-called *Liouville constant*, is a standard example of a Liouville number. In 1962, Erdős [3] proved that every real number can be written as the sum and (if it is non zero) the product of two Liouville numbers, as a consequence of the fact that $\mathbb L$ is a rather large set in a topological sense: it is a dense G_{δ} set.

In his pioneering book, Maillet [6, Chapitre III] discusses some arithmetic properties of Liouville numbers. One of them is that, given a rational function f, with rational coefficients, if ξ is a Liouville number, then so is $f(\xi)$. We observe that the converse of this result is not valid in general, e.g., taking $f(x) = x^2$, then $\zeta := \sqrt{(3+\ell)/4}$ is not a Liouville number [1, Theorem 7.4], but $f(\zeta)$ is. Also the rational coefficients cannot be taken algebraic (with at least one of them non-rational). For instance, $\ell\sqrt{3/2}$ is not a Liouville number, see [6, Théorème I₃]. In fact, $\ell\sqrt{3/2}$ is a U_2 -number (for the definition of a U_2 -number and this result, see [2]).

An algebraic function is a function f(x) which satisfies P(x, f(x)) = 0, where P(x, y) is a polynomial with complex coefficients. For instance, functions that can be constructed using only a finite number of elementary operations are examples of algebraic functions. A function which is not algebraic is, by definition, a transcendental function. Common examples are the trigonometric functions, the exponential function, and their inverses.

In 1984, in one of his last papers, K. Mahler [5] stated several questions for which, according to him, 'perhaps further research might lead to interesting results'. His

²⁰¹⁰ Mathematics Subject Classification. Primary 11J04.

Key words and phrases. Liouville numbers, ultra-Liouville numbers, transcendental function.

first question is related to Liouville numbers. In particular, this question asks the following:

Question. Are there transcendental entire functions f(z) such that if ξ is any Liouville number, then so is $f(\xi)$?

He also said that: 'The difficulty of this problem lies of course in the fact that the set of all Liouville numbers is non-enumerable'.

The study of similar problems has attracted the attention of several mathematicians. Let A and B be subsets of $\mathbb C$ with $A \subset B$ and let $\Sigma_A(B)$ be the set of all transcendental analytic functions $f:B \to B$ such that $f(A) \subseteq A$. In 1886, Weierstrass proved that the set $\Sigma_{\mathbb Q}(\mathbb R)$ has the power of continuum. Moreover, he asserted that $\Sigma_{\mathbb Q}(\mathbb C) \neq \emptyset$. In 1896, Stäckel [7] confirmed the Weierstrass assertion by proving that for each countable subset $\Sigma \subseteq \mathbb C$ and each dense subset $T \subseteq \mathbb C$, there is a transcendental entire function f such that $f(\Sigma) \subseteq T$. In particular, if f is a countable dense subset of $\mathbb C$, then $\Sigma_A(\mathbb C)$ is uncountable. Consult the very extensive annotated bibliography of [8] for additional references and history. Note that the Mahler question can be rephrased as: is $\Sigma_{\mathbb L}(\mathbb C) \neq \emptyset$?

Set, inductively, $\exp^{[n]}(x) = \exp(\exp^{[n-1]}(x))$ and $\exp^{[0]}(x) = x$. Now, let us define the following class of numbers:

Definition. A real number ξ is called an ultra-Liouville number, if for every positive integer k, there exist infinitely many rational numbers p/q, with q > 1, such that

$$0 < \left| \xi - \frac{p}{q} \right| < \frac{1}{\exp^{[k]}(q)}.$$

The set of the ultra-Liouville numbers will be denoted by \mathbb{L}_{ultra} .

It follows from the definition that $\mathbb{L}_{\text{ultra}} \subseteq \mathbb{L}$ is also a dense G_{δ} set (in particular it is uncountable) which means that $\mathbb{L}_{\text{ultra}}$ is a large set in a topological sense. In particular, every real number can be written as the sum and (if it is not zero) the product of two ultra-Liouville numbers, as in [3]. However, from a metrical point of view, both sets \mathbb{L} and $\mathbb{L}_{\text{ultra}}$ are very small: they have Hausdorff dimension zero.

The aim of this paper is to investigate a problem related to Mahler's question concerning \mathbb{L}_{ultra} . More precisely, our main result is the following

Theorem 1. The set $\Sigma_{\mathbb{L}_{ultra}}(\mathbb{C})$ is uncountable.

In order to prove that, we shall prove a stronger result about the behavior of some functions in $\Sigma_{\mathbb{Q}}(\mathbb{C})$. For a rational number z, we denote by den(z) its denominator. We prove that

Theorem 2. There exist uncountably many functions $f \in \Sigma_{\mathbb{Q}}(\mathbb{C})$ with $1/2 < f'(x) < 3/2, \forall x \in \mathbb{R}$, such that

$$(*) \qquad \operatorname{den}(f(p/q)) < q^{8q^2},$$

for all $p/q \in \mathbb{Q}$, with q > 1. In particular, $den(f(p/q)) < e^{e^q} - 1$, if $q \ge 7$.

2. The proofs

2.1. **Proof that Theorem 2 implies Theorem 1.** Given an ultra-Liouville number ξ and a positive integer k, there exist infinitely many rational numbers p/q with

 $q \geq 7$ and such that

$$0 < \left| \xi - \frac{p}{q} \right| < \frac{1}{\exp^{[k+2]}(q)}.$$

Let f be a function as in Theorem 2. By the Mean Value Theorem, we obtain

$$\left| f(\xi) - f\left(\frac{p}{q}\right) \right| \le \frac{3}{2} \left| \xi - \frac{p}{q} \right| < \frac{3}{2 \exp^{[k+2]}(q)}.$$

We know that f(p/q) = a/b, with $b < e^{e^q} - 1$. Then $\frac{3}{2} \exp^{[k]}(b) < \exp^{[k+2]}(q)$ and hence

$$\left| f(\xi) - \frac{a}{b} \right| = \left| f(\xi) - f\left(\frac{p}{q}\right) \right| < \frac{1}{\exp^{[k]}(b)}.$$

This implies that $f(\xi)$ is an ultra-Liouville number as desired.

- 2.2. **Proof of Theorem 2.** Before starting the proof, we shall state three useful facts (which can be easily proved)
 - For any distinct $y, b \in [-1, 1]$, we have $|\sin(y b)| > |y b|/3$. (Indeed, the function $\sin(x)/x$ is decreasing for $x \in (0, \pi]$, and $\sin(2)/2 > 1/3$.)
 - For any distinct $x, y \in \mathbb{Q} \cap [0, 1/2]$, with $den(x), den(y) \leq n$, we have

$$|\cos(2\pi x) - \cos(2\pi y)| \ge \frac{4}{n^3}.$$

(Indeed, we can assume x < y; we can also assume $y \le 1/4$: if $1/4 \le x \le 1/2$, we use that $|\cos(2\pi x) - \cos(2\pi y)| = |\cos(2\pi(1/2 - x)) - \cos(2\pi(1/2 - y))|$, and, if x < 1/4 < y we use that $|\cos(2\pi x) - \cos(2\pi y)| > |\cos(2\pi x) - \cos(2\pi x) - \cos(2\pi x)| > 1 - 4x \ge 1/n \ge 4/n^3$, since $den(y) \ge 2$; now we have two cases: if x = 0 then $\cos(2\pi x) - \cos(2\pi y) = 1 - \cos(2\pi y) = 2\sin^2(\pi y) \ge 8/n^2 \ge 4/n^3$; and, if 0 < x < y then $x \ge 1/n$ and, by the mean value theorem, $|\cos(2\pi x) - \cos(2\pi y)| \ge 2\pi \sin(2\pi \xi)(2\pi y - 2\pi x) \ge 8\pi x(y - x) \ge 8\pi (y - x)/n \ge 8\pi/n^3 > 4/n^3$.)

• For every $\epsilon \in (0,2]$, any interval of length $> \epsilon$ contains at least two rational numbers with denominator $\leq \lceil 2/\epsilon \rceil$. (Indeed, if $m = \lceil 2/\epsilon \rceil$ and (a,b) is the interior of the interval, we have $b-a > \epsilon \geq 2/m$, and so, for $k = \lfloor ma \rfloor + 1$, we have $ma < k \leq ma + 1$, and so $ma < k < k + 1 \leq ma + 2 < ma + m(b-a) = mb$, which implies a < k/m < (k+1)/m < b.)

Consider the following enumeration of $\mathbb{Q} \cap [0, 1/2]$:

$$\{x_1, x_2, \ldots\} = \{\frac{0}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{5}, \frac{1}{6}, \ldots\},\$$

where we consider only irreducible fractions ordered in the following way: $x_1 = 0/1$; for every $k \ge 1$, if $x_k = p/q$ with 2p < q-2 then $x_{k+1} = r/q$ where r is the minimum with $p < r \le q/2$ and $\gcd(r,q) = 1$, and if $2p \ge q-2$ then $x_{k+1} = 1/(q+1)$. The set $A = \mathbb{Q} \cap [0,1/2]$ has the properties that $\cos(2\pi x) \ne \cos(2\pi y)$ for every $x \ne y$ in A, and that for every $z \in \mathbb{Q}$ there is (exactly one) $x \in A$ with $\cos(2\pi x) = \cos(2\pi z)$.

One can see that $den(x_n) \ge \sqrt{n}$, for all $n \ge 1$: indeed, the number of positive integers n for which the denominator of x_n is equal to k is at most k for every $k \ge 1$, so the maximum positive integer n for which the denominator of x_n is at most k is at most $k \ge 1$.

Define $B_n = \{y_1, y_2, \dots, y_n\}$ with $y_k := \cos(2\pi x_k)$ and define f by

$$f(x) = x + g(\cos(2\pi x)),$$

where $g(y) = \sum_{n=1}^{\infty} c_n g_n(y)$ and $g_n(y) = \prod_{b \in B_n} \sin(y-b)$. Note that f(x+1) = f(x) + 1 and so it is enough to consider $\mathbb{Q} \cap [0,1)$ in order to characterize f on \mathbb{Q} . Notice also that, in order to show that $f(x) \in \mathbb{Q}$ for every $x \in \mathbb{Q}$, it is enough to prove this for $x \in A$. Indeed, given $z \in \mathbb{Q}$, take $x \in A$ with $\cos(2\pi x) = \cos(2\pi z)$. Then we have $f(z) - z = g(\cos(2\pi z)) = g(\cos(2\pi x)) = f(x) - x$, and so, if $f(x) \in \mathbb{Q}$, then $f(z) = f(x) + z - x \in \mathbb{Q}$; in particular, if $z \in \mathbb{Z}$ then f(z) = z, since f(0) = 0.

Now, we shall choose inductively the constants c_n so that f will satisfy the desired conditions in Theorem 2. The first requirements are $c_n = 0$ for $1 \le n \le 5$ and $|c_n| < 1/n^n$ for every positive integer n. On the other hand, for all y belonging to the open ball B(0,R) one has that

$$|g_n(y)| < \prod_{b \in B_n} e^{|y-b|} \le e^{n(R+1)},$$

where we used the fact that $b \in [-1,1]$. Thus, since $|c_n| < 1/n^n$, we get $|c_n g_n(y)| \le (e^{R+1}/n)^n$ from which g (and so f) is an entire function, since the series $g(y) = \sum_{n=1}^{\infty} c_n g_n(y)$, which defines g, converges uniformly in any of these balls. Moreover, for $x \in \mathbb{R}$, we have $|g'_n(x)| \le n$, and so $f'(x) = 1 - 2\pi \sin(2\pi x) \sum_{n=1}^{\infty} c_n g'_n(\cos(2\pi x)) \in (1/2, 3/2)$, since $\sum_{n=6}^{\infty} n/n^n < 1/4\pi$.

Suppose that c_1, \ldots, c_{n-1} have been chosen such that $f(x_1), \ldots, f(x_n)$ have the desired property (notice that the choice of c_1, \ldots, c_{n-1} determines the values of $f(x_1), \ldots, f(x_n)$, independently of the values of $c_k, k \geq n$; in particular, since $c_k = 0$ for $1 \leq k \leq 5$, we have $f(x_n) = x_n$ for $1 \leq n \leq 6$). Now, we shall choose c_n for which $f(x_{n+1})$ satisfies the requirements.

Let $t \leq n$ be positive integers with $n \geq 5$. Then $\operatorname{den}(x_{n+1}), \operatorname{den}(x_t) \leq n$ (indeed, $\operatorname{den}(x_6) = 5$ and $\operatorname{den}(x_{n+1}) - \operatorname{den}(x_n) \leq 1, \forall n \geq 1$). Since $\cos(2\pi x_{n+1}) \neq \cos(2\pi x_t)$, then $|y_{n+1} - y_t| \geq 4/n^3$. Therefore

$$|\sin(y_{n+1} - y_t)| > \frac{|y_{n+1} - y_t|}{3} > \frac{4}{3n^3} > \frac{1}{n^3}$$

yielding $|g_n(y_{n+1})| > n^{-3n}$. Thus $c_n g_n(y_{n+1})$ runs through an interval of length larger than $2/n^{4n}$. Now, we may choose (in at least two ways) c_n such that $g(y_{n+1})$ is a rational number with denominator at most n^{4n} .

Given $z \in \mathbb{Q}$, let $q = \operatorname{den}(z)$; if q = 1 then $z \in \mathbb{Z}$ and so f(z) = z and thus $\operatorname{den}(f(z)) = 1 \le q^{8q^2}$. Otherwise, q > 1, and there is a positive integer k with $\cos(2\pi x_k) = \cos(2\pi z)$, so x_k and z have the same denominator; indeed, in this case, we have $z - x_k \in \mathbb{Z}$ or $z + x_k \in \mathbb{Z}$. Thus $\operatorname{den}(f(z) - z) = \operatorname{den}(g(\cos(2\pi z)) = \operatorname{den}(g(\cos(2\pi x_k))) = \operatorname{den}(g(y_k)) \le (k-1)^{4(k-1)} < k^{4(k-1)}$. Since $q = \operatorname{den}(z) = \operatorname{den}(x_k) \ge \sqrt{k}$, we get $\operatorname{den}(f(z) - z) \le k^{4(k-1)} \le (q^2)^{4(q^2-1)} = q^{8(q^2-1)}$. Then we have

$$\mathrm{den}(f(z)) \leq \mathrm{den}(z)\,\mathrm{den}(f(z)-z) = q\,\mathrm{den}(f(z)-z) \leq q\cdot q^{8(q^2-1)} \leq q^{8q^2}$$

as desired

The proof that we can choose f to be transcendental follows because there is a binary tree of different possibilities for f. (If we have choosen $c_1, c_2, \ldots, c_{n-1}$, different choices of c_n give different values of $f(y_{n+1})$, which does not depend on the values of c_k for k > n, and so different functions f.) Thus, we have constructed uncountably many possible functions, and the algebraic entire functions taking \mathbb{Q} into itself must be polynomials belonging to $\mathbb{Q}[z]$, which is a countable subset.

In fact, we can prove that all functions constructed above are transcendental, unless $c_n=0, \forall n\in\mathbb{N}$: if such a function f is not transcendental, then f would be polynomial, since it is an entire function. However, the property f(x+1)=f(x)+1 would imply f(x)=x+c, for some c>0. Then $g(\sin(2\pi x))$ is a constant, but this leads to a contradiction, since $g(y_1)=0$ and $g(y_{k+1})=c_k\prod_{b\in B_k}\sin(y_{k+1}-b)\neq 0$, where k is minimal such that $c_k\neq 0$.

ACKNOWLEDGEMENT

The authors would like to express their gratitude to the referee for his/her helpful comments. The first author was supported in part by CNPq and FAP-DF.

References

- 1. Y. Bugeaud, Approximation by Algebraic Numbers, Cambridge Tracts in Mathematics Vol. 160), Cambridge University Press, New York (2004).
- 2. A. P. Chaves, D. Marques, An explicit family of U_m-numbers, Elem. Math. 69, 18-22 (2014).
- P. Erdős, Representations of real numbers as sums and products of Liouville numbers, Michigan Math. J. 9, 59–60 (1962).
- 4. J. Liouville, Sur des classes trés-étendue de quantités dont la valeur n'est ni algébrique, ni mêne reductibles à des irrationnelles algébriques, C. R. 18, 883-885 (1844).
- K. Mahler, Some suggestions for further research, Bull. Austral. Math. Soc. 29 (1984), 101–108.
- E. Maillet, Introduction à la Théorie des Nombres Transcendants et des Propriétés Arithmétiques des Fonctions. Gauthier-Villars, Paris (1906).
- P. Stäckel, Ueber arithmetische Eingenschaften analytischer Functionen, Math. Ann. 46 (1895), no. 4, 513–520.
- 8. M. Waldschmidt, Algebraic values of analytic functions, Proceedings of the International Conference on Special Functions and their Applications (Chennai, 2002). *J. Comput. Appl. Math.* **160** (2003), no. 1-2, 323–333.

DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE DE BRASÍLIA, BRASÍLIA, DF, BRAZIL

E-mail address: diego@mat.unb.br

INSTITUTO DE MATEMÁTICA PURA E APLICADA, RIO DE JANEIRO, RJ, BRAZIL E-mail address: gugu@impa.br