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Abstract. In this note, we shall prove the existence of an uncountable sub-

set of Liouville numbers (which we call the set of ultra-Liouville numbers) for

which there exists uncountably many transcendental analytic functions map-
ping the subset into itself.

1. Introduction

A real number ξ is called a Liouville number, if there exists a rational sequence
(pk/qk)k≥1, with qk > 1, such that

0 <

∣∣∣∣ξ − pk
qk

∣∣∣∣ < q−kk , for k = 1, 2, . . ..

The set of the Liouville numbers is denoted by L.
The name arises because Liouville [4] in 1844 showed that all Liouville numbers

are transcendental, establishing thus the first explicit examples of transcendental
numbers. The number ` :=

∑
n≥1 10−n!, the so-called Liouville constant, is a

standard example of a Liouville number. In 1962, Erdős [3] proved that every real
number can be written as the sum and (if it is non zero) the product of two Liouville
numbers, as a consequence of the fact that L is a rather large set in a topological
sense: it is a dense Gδ set.

In his pioneering book, Maillet [6, Chapitre III] discusses some arithmetic prop-
erties of Liouville numbers. One of them is that, given a rational function f , with
rational coefficients, if ξ is a Liouville number, then so is f(ξ). We observe that
the converse of this result is not valid in general, e.g., taking f(x) = x2, then

ζ :=
√

(3 + `)/4 is not a Liouville number [1, Theorem 7.4], but f(ζ) is. Also
the rational coefficients cannot be taken algebraic (with at least one of them non-

rational). For instance, `
√

3/2 is not a Liouville number, see [6, Théorème I3]. In

fact, `
√

3/2 is a U2-number (for the definition of a U2-number and this result, see
[2]).

An algebraic function is a function f(x) which satisfies P (x, f(x)) = 0, where
P (x, y) is a polynomial with complex coefficients. For instance, functions that
can be constructed using only a finite number of elementary operations are exam-
ples of algebraic functions. A function which is not algebraic is, by definition, a
transcendental function. Common examples are the trigonometric functions, the
exponential function, and their inverses.

In 1984, in one of his last papers, K. Mahler [5] stated several questions for which,
according to him, ‘perhaps further research might lead to interesting results’. His
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first question is related to Liouville numbers. In particular, this question asks the
following:

Question. Are there transcendental entire functions f(z) such that if ξ is any
Liouville number, then so is f(ξ)?

He also said that: ‘The difficulty of this problem lies of course in the fact that
the set of all Liouville numbers is non-enumerable’.

The study of similar problems has attracted the attention of several mathemati-
cians. Let A and B be subsets of C with A ⊂ B and let ΣA(B) be the set of
all transcendental analytic functions f : B → B such that f(A) ⊆ A. In 1886,
Weierstrass proved that the set ΣQ(R) has the power of continuum. Moreover, he
asserted that ΣQ(C) 6= ∅. In 1896, Stäckel [7] confirmed the Weierstrass assertion
by proving that for each countable subset Σ ⊆ C and each dense subset T ⊆ C,
there is a transcendental entire function f such that f(Σ) ⊆ T . In particular, if
A is a countable dense subset of C, then ΣA(C) is uncountable. Consult the very
extensive annotated bibliography of [8] for additional references and history. Note
that the Mahler question can be rephrased as: is ΣL(C) 6= ∅?

Set, inductively, exp[n](x) = exp(exp[n−1](x)) and exp[0](x) = x. Now, let us
define the following class of numbers:

Definition. A real number ξ is called an ultra-Liouville number, if for every pos-
itive integer k, there exist infinitely many rational numbers p/q, with q > 1, such
that

0 <

∣∣∣∣ξ − p

q

∣∣∣∣ < 1

exp[k](q)
.

The set of the ultra-Liouville numbers will be denoted by Lultra.

It follows from the definition that Lultra ⊆ L is also a dense Gδ set (in particular
it is uncountable) which means that Lultra is a large set in a topological sense. In
particular, every real number can be written as the sum and (if it is not zero) the
product of two ultra-Liouville numbers, as in [3]. However, from a metrical point
of view, both sets L and Lultra are very small: they have Hausdorff dimension zero.

The aim of this paper is to investigate a problem related to Mahler’s question
concerning Lultra. More precisely, our main result is the following

Theorem 1. The set ΣLultra
(C) is uncountable.

In order to prove that, we shall prove a stronger result about the behavior of some
functions in ΣQ(C). For a rational number z, we denote by den(z) its denominator.
We prove that

Theorem 2. There exist uncountably many functions f ∈ ΣQ(C) with 1/2 <
f ′(x) < 3/2,∀x ∈ R, such that

(*) den(f(p/q)) < q8q
2

,

for all p/q ∈ Q, with q > 1. In particular, den(f(p/q)) < ee
q − 1, if q ≥ 7.

2. The proofs

2.1. Proof that Theorem 2 implies Theorem 1. Given an ultra-Liouville num-
ber ξ and a positive integer k, there exist infinitely many rational numbers p/q with
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q ≥ 7 and such that

0 <

∣∣∣∣ξ − p

q

∣∣∣∣ < 1

exp[k+2](q)
.

Let f be a function as in Theorem 2. By the Mean Value Theorem, we obtain∣∣∣∣f(ξ)− f
(
p

q

)∣∣∣∣ ≤ 3

2

∣∣∣∣ξ − p

q

∣∣∣∣ < 3

2 exp[k+2](q)
.

We know that f(p/q) = a/b, with b < ee
q − 1. Then 3

2 exp[k](b) < exp[k+2](q) and
hence ∣∣∣f(ξ)− a

b

∣∣∣ =

∣∣∣∣f(ξ)− f
(
p

q

)∣∣∣∣ < 1

exp[k](b)
.

This implies that f(ξ) is an ultra-Liouville number as desired. �

2.2. Proof of Theorem 2. Before starting the proof, we shall state three useful
facts (which can be easily proved)

• For any distinct y, b ∈ [−1, 1], we have | sin(y − b)| > |y − b|/3.
(Indeed, the function sin(x)/x is decreasing for x ∈ (0, π], and sin(2)/2 >
1/3.)
• For any distinct x, y ∈ Q ∩ [0, 1/2], with den(x),den(y) ≤ n, we have

| cos(2πx)− cos(2πy)| ≥ 4

n3
.

(Indeed, we can assume x < y; we can also assume y ≤ 1/4: if 1/4 ≤ x ≤
1/2, we use that | cos(2πx)− cos(2πy)| = | cos(2π(1/2−x))− cos(2π(1/2−
y))|, and, if x < 1/4 < y we use that | cos(2πx)− cos(2πy)| > | cos(2πx)−
cos(2π · 1/4)| > 1 − 4x ≥ 1/n ≥ 4/n3, since den(y) ≥ 2; now we have two
cases: if x = 0 then cos(2πx) − cos(2πy) = 1 − cos(2πy) = 2 sin2(πy) ≥
8/n2 ≥ 4/n3; and, if 0 < x < y then x ≥ 1/n and, by the mean value
theorem, | cos(2πx)− cos(2πy)| ≥ 2π sin(2πξ)(2πy − 2πx) ≥ 8πx(y − x) ≥
8π(y − x)/n ≥ 8π/n3 > 4/n3.)
• For every ε ∈ (0, 2], any interval of length > ε contains at least two rational

numbers with denominator ≤ d2/εe. (Indeed, if m = d2/εe and (a, b) is the
interior of the interval, we have b−a > ε ≥ 2/m, and so, for k = bmac+1, we
have ma < k ≤ ma+1, and so ma < k < k+1 ≤ ma+2 < ma+m(b−a) =
mb, which implies a < k/m < (k + 1)/m < b.)

Consider the following enumeration of Q ∩ [0, 1/2]:

{x1, x2, . . .} = {0

1
,

1

2
,

1

3
,

1

4
,

1

5
,

2

5
,

1

6
, . . .},

where we consider only irreducible fractions ordered in the following way: x1 = 0/1;
for every k ≥ 1, if xk = p/q with 2p < q−2 then xk+1 = r/q where r is the minimum
with p < r ≤ q/2 and gcd(r, q) = 1, and if 2p ≥ q − 2 then xk+1 = 1/(q + 1). The
set A = Q∩ [0, 1/2] has the properties that cos(2πx) 6= cos(2πy) for every x 6= y in
A, and that for every z ∈ Q there is (exactly one) x ∈ A with cos(2πx) = cos(2πz).

One can see that den(xn) ≥
√
n, for all n ≥ 1: indeed, the number of positive

integers n for which the denominator of xn is equal to k is at most k for every
k ≥ 1, so the maximum positive integer n for which the denominator of xn is at
most k is at most 1 + 2 + · · ·+ k = k(k + 1)/2 ≤ k2.

Define Bn = {y1, y2, . . . , yn} with yk := cos(2πxk) and define f by

f(x) = x+ g(cos(2πx)),
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where g(y) =
∑∞
n=1 cngn(y) and gn(y) =

∏
b∈Bn

sin(y − b). Note that f(x + 1) =

f(x) + 1 and so it is enough to consider Q ∩ [0, 1) in order to characterize f on Q.
Notice also that, in order to show that f(x) ∈ Q for every x ∈ Q, it is enough to
prove this for x ∈ A. Indeed, given z ∈ Q, take x ∈ A with cos(2πx) = cos(2πz).
Then we have f(z)−z = g(cos(2πz)) = g(cos(2πx)) = f(x)−x, and so, if f(x) ∈ Q,
then f(z) = f(x) + z− x ∈ Q; in particular, if z ∈ Z then f(z) = z, since f(0) = 0.

Now, we shall choose inductively the constants cn so that f will satisfy the
desired conditions in Theorem 2. The first requirements are cn = 0 for 1 ≤ n ≤ 5
and |cn| < 1/nn for every positive integer n. On the other hand, for all y belonging
to the open ball B(0, R) one has that

|gn(y)| <
∏
b∈Bn

e|y−b| ≤ en(R+1),

where we used the fact that b ∈ [−1, 1]. Thus, since |cn| < 1/nn, we get |cngn(y)| ≤
(eR+1/n)n from which g (and so f) is an entire function, since the series g(y) =∑∞
n=1 cngn(y), which defines g, converges uniformly in any of these balls. Moreover,

for x ∈ R, we have |g′n(x)| ≤ n, and so f ′(x) = 1−2π sin(2πx)
∑∞
n=1 cng

′
n(cos(2πx)) ∈

(1/2, 3/2), since
∑∞
n=6 n/n

n < 1/4π.
Suppose that c1, . . . , cn−1 have been chosen such that f(x1), . . . , f(xn) have the

desired property (notice that the choice of c1, . . . , cn−1 determines the values of
f(x1), . . . , f(xn), independently of the values of ck, k ≥ n; in particular, since
ck = 0 for 1 ≤ k ≤ 5, we have f(xn) = xn for 1 ≤ n ≤ 6). Now, we shall choose cn
for which f(xn+1) satisfies the requirements.

Let t ≤ n be positive integers with n ≥ 5. Then den(xn+1),den(xt) ≤ n (indeed,
den(x6) = 5 and den(xn+1)−den(xn) ≤ 1,∀n ≥ 1). Since cos(2πxn+1) 6= cos(2πxt),
then |yn+1 − yt| ≥ 4/n3. Therefore

| sin(yn+1 − yt)| >
|yn+1 − yt|

3
>

4

3n3
>

1

n3

yielding |gn(yn+1)| > n−3n. Thus cngn(yn+1) runs through an interval of length
larger than 2/n4n. Now, we may choose (in at least two ways) cn such that g(yn+1)
is a rational number with denominator at most n4n.

Given z ∈ Q, let q = den(z); if q = 1 then z ∈ Z and so f(z) = z and thus

den(f(z)) = 1 ≤ q8q
2

. Otherwise, q > 1, and there is a positive integer k with
cos(2πxk) = cos(2πz), so xk and z have the same denominator; indeed, in this
case, we have z − xk ∈ Z or z + xk ∈ Z. Thus den(f(z)− z) = den(g(cos(2πz)) =
den(g(cos(2πxk)) = den(g(yk)) ≤ (k − 1)4(k−1) < k4(k−1). Since q = den(z) =

den(xk) ≥
√
k, we get den(f(z) − z) ≤ k4(k−1) ≤ (q2)4(q

2−1) = q8(q
2−1). Then we

have

den(f(z)) ≤ den(z) den(f(z)− z) = q den(f(z)− z) ≤ q · q8(q
2−1) ≤ q8q

2

as desired.
The proof that we can choose f to be transcendental follows because there is

a binary tree of different possibilities for f . (If we have choosen c1, c2, . . . , cn−1,
different choices of cn give different values of f(yn+1), which does not depend on
the values of ck for k > n, and so different functions f .) Thus, we have constructed
uncountably many possible functions, and the algebraic entire functions taking Q
into itself must be polynomials belonging to Q[z], which is a countable subset.
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In fact, we can prove that all functions constructed above are transcendental,
unless cn = 0,∀n ∈ N: if such a function f is not transcendental, then f would be
polynomial, since it is an entire function. However, the property f(x+1) = f(x)+1
would imply f(x) = x+ c, for some c > 0. Then g(sin(2πx)) is a constant, but this
leads to a contradiction, since g(y1) = 0 and g(yk+1) = ck

∏
b∈Bk

sin(yk+1− b) 6= 0,
where k is minimal such that ck 6= 0. �
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