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Abstract. Most of well-known transcendental functions usually take a tran-

scendental value at an algebraic point belonging to its domain, the algebraic

exceptions forming the so-called exceptional set. For instance, the exceptional

set of the function ez−
√
2 is the set {

√
2}, which follows from the Hermite-

Lindemann theorem. In this paper, we shall use interpolation formulae, to
prove that any subset of Q is the exceptional set of uncountable many hy-

pertranscendental entire functions with order of growth as small as we wish.

Moreover these functions are algebraically independent over C.

1. Introduction: a little survey on transcendental numbers

We say that a complex number α is algebraic if there exists a nonzero polynomial
P ∈ Q[x] with P (α) = 0. If no such polynomial exists, α is transcendental. The set
of algebraic numbers forms a field denoted by Q.

Euler was probably the first person to define transcendental numbers in the
modern sense (see [4]). But transcendental number theory began in 1844 with
Liouville’s proof [10] that if an algebraic number α has degree n > 1, then there
exists a constant C > 0 such that |α − p/q| > Cq−n, for all p/q ∈ Q \ {0}. Using
this result, Liouville gave the first explicit examples of transcendental numbers,
e.g., the “Liouville number”

∑
n≥0 10−n!. There are several classical theorems

on transcendental numbers, Let us state three of them for making this text self-
contained.

In 1872 Hermite [7] proved that e is transcendental, and in 1884 Lindemann
[9] extended Hermite’s method to prove that π is also transcendental. In fact,
Lindemann proved a more general result.

Theorem 1 (Hermite-Lindemann). The number eα is transcendental for any nonzero
algebraic number α.

As a consequence, the numbers e
√

2 and e i are transcendental (i =
√
−1), as are

log 2 and π, since elog 2 = 2 and eπi = −1 are algebraic.
At the 1900 International Congress of Mathematicians in Paris, as the seventh

in his famous list of 23 problems, Hilbert gave a big push to transcendental number
theory with his question of the arithmetic nature of the power α β of two algebraic
numbers α and β. In 1934, Gelfond and Schneider, independently, completely
solved the problem (see [1, p. 9]).

Theorem 2 (Gelfond-Schneider). Assume α and β are algebraic numbers, with
α 6= 0 or 1, and β irrational. Then α β is transcendental.
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In particular, 2
√

2, (−1)
√

2, and eπ = i−2i are all transcendental (we refer the
reader to [18, 13, 6] for recent results on the arithmetic nature of xy, with both x and
y are transcendental). Since the sum of transcendental numbers can be algebraic
(e.g., e+(−e)), one may ask about the nature of the sum of transcendental numbers

as in the Hermite-Lindemann theorem. For istance, is e + e
√

2 transcendental?
This natural question leads to a beautiful generalization of the Hermite-Lindemann
theorem due to Lindemann and Weierstrass.

Theorem 3 (Lindemann-Weierstrass). Let α1, ...αn be algebraic numbers linearly
independent over Q. Then eα1 , ..., eαn are algebraically independent over Q.

An algebraic function is a function f(x) which satisfies P (x, f(x)) = 0, where
P (x, y) is a polynomial with complex coefficients. For instance, functions that can
be constructed using only a finite number of elementary operations are examples of
algebraic functions. A function which is not algebraic is, by definition, a transcen-
dental function, as example the trigonometric functions, the exponential function,
and their inverses. A interesting question is to study the arithmetic nature of a
function at algebraic points. For instance, it is a simple matter to show that an
entire function, namely a function which is analytic in C, is a transcendental func-
tion if and only if it is not a polynomial. Thus, one may interesting to think only
in the case of transcendental functions.

At the end of XIXth century, after the proof by Hermite and Lindemann of the
transcendence of eα for all nonzero algebraic α, a question arose:

(∗) Does a transcendental analytic function usually takes transcendental values
at algebraic points?

In the example of the exponential function ez, the word “usually” stands for
avoiding the exception z = 0. After the Hermite-Lindemann theorem, it was ex-
pected that by evaluating a transcendental function f at an algebraic point of its
domain, we would find a transcendental number, but exceptions can take place.
All these exceptions (i.e., algebraic numbers at which the function assumes alge-
braic values) form the so-called exceptional set, denoted by Sf . This set plays
an important role in transcendental number theory (see, e.g., [23] and references
therein).

In 1886, Weierstrass found a positive answer for the question (∗), when he gave
an example of a transcendental entire function which takes rational values at all
rational points. Later, Stäckel [20] proved that for each countable subset Σ ⊆ C
and each dense subset T ⊆ C, there is a transcendental entire function f such that
f(Σ) ⊆ T . Another construction due to Stäckel [21] produces an entire function f
whose derivatives f (t), for t = 0, 1, 2, . . . , all map Q into Q and so Sf(t) = Q. Two
years later, G. Faber refined this result by showing the existence of a transcendental
entire function such that f (t)(Q) ⊆ Q(i), for all t ≥ 0. A more elegant discussion
on this subject can be found in [11] and [23].

In this paper, we were able to generalize these two Stäckel’s and the Faber’s
result. Before of state our main theorem, we need a couple of definitions: a set of
functions f1, ..., fm is said to be algebraically independent over a field K, if there
is no nonzero polynomial P , with coefficients in K, such that P (f1(z), ..., fm(z)) is
the zero function. Otherwise, they are called algebraically dependent over K. In
1949, Morduhai-Boltovskoi introduce the term hypotranscendental function to f by
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saying that there exists n ≥ 0 such that the functions z, f(z), ..., f (n)(z) are alge-
braically dependent over Q. Otherwise, the function is called hypertranscendental,
or transcendentally transcendental, see [15].

Definition 1. (Order) Let f be an entire function and R > 0, the order of growth
of f is defined to be

lim
R→∞

sup
log log |f |R

logR
, where |f |R = sup

|z|=R
|f(z)|.

By definition, it follows that a function f that satisfies |f |R ≤ eR
ρ

for some ρ > 0
and for all R sufficiently large has order ≤ ρ. Surprisingly, there exists a straight
relation between the order of a function and its integer values, G. Chudnovsky [3]
proved that if f has order ρ, then the set

{z ∈ C : f (t)(z) ∈ Z for all t ≥ 0}
has cardinality at most ρ. For more see [3, Chapter 9].

Let us state our main result

Theorem 4. Let A be a countable subset of C and let ρ be a positive real number.
For any integer s ≥ 0 and any α ∈ A, let Eα,s be a dense subset in C. Then there
exists a set F of entire functions with the following properties:

(a) For any f ∈ F , any α ∈ A and any integer s ≥ 0, f (s)(α) ∈ Eα,s;
(b) Any function f ∈ F has order at most ρ;

If F (s) denotes the set of s-th derivates of functions in F , that is, F (s) = {f (s) :
f ∈ F}, then

(c) For any integer m ≥ 1, any distinct functions f1, . . . , fm ∈
⋃
s≥0 F (s)

and any non zero polynomial P ∈ C[X0, X1, . . . , Xm], the entire function
P (z, f1(z), . . . , fm(z)) is not the zero function;

(d) The set F has the power of continuum.

Note that the property (c) ensures that the functions in F are hypertranscen-
dental.

One basic problem in the theory of transcendental numbers is to determine Sf ,
or at least to find properties of this set. It is almost unnecessary to stress that this
is not an easy problem. The question on the possible exceptional sets was partially
solved in 1965, when K. Mahler [12] proved that if A is closed relative to Q, that
is if α ∈ A then all its algebraic conjugates lie also in A, then it is the exceptional
set of some transcendental function. Since the exceptional sets of a function and
its derivative can be different, in this work we consider a more general definition
(including multiplicity): Let f be an entire function. We define the exceptional
set with multiplicity of f to be the set of pairs (α, t) ∈ Q × (N ∪ {0}), such that
f (t)(α) ∈ Q. We denote it by Mf .

In this paper we solved completely the problem of the possible exceptional sets
with multiplicity of a hypertranscendental function.

Theorem 5. If A × N ⊆ Q × N0, then there is an uncountable set FA,N , of
hypertranscendental entire functions such that

(1.1) Mf = A×N,
for all f ∈ FA,N . Moreover the set

(1.2) {f (t)(α) : (α, t) /∈ A×N and f ∈ FA,N}
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is algebraically independent over C.

2. Preliminary results

One piece of notation: throughout the paper we write L(P ) for the sum of
absolute values of coefficients of a polynomial P , well-known as the length of P ,
N0 denotes the set N ∪ {0} and [a, b] = {a, a+ 1, ..., b}, where a < b are integers.

Before upsetting the reader with a plenty of technical lemmas, we start with a
brief overview of our strategy to prove the Theorem 1. We hope this one becomes
the next lemmas a little more natural. In the Theorem 1, we wish to find functions
with certain prescribed properties. Well, a such function will be taken as f(z) =∑∞
n=0 anPn(z), where the polynomials Pn’s will be appropriately chosen. First of

all, we need ensure that f is an entire function and which has a precribed growth
order, for that the ak’s will be chosen as a center of a ball with radius depending on
Pk and of the required order. Secondly, the sequence (Pn)n≥0 will be explicited and
it must be a key property, namely, for a certain sequence (sn)n≥0 (to be explicited

and depending on an enumeration of Q = {α1, ...}) the set of the indexes for

which P
(sn)
k (αn) 6= 0 is bounded. This ensures that f (s)(α) is actually a finite

sum. After, since f (s)(α) is a finite sum, we can proceed by induction for finding
infinite possibilities for each ak, which can be chosen in a infinite set, namely the
intersection of a ball with a dense set. Finally, the possibility of choosing ak in an

infinite set together with the property of the P
(s)
k ’s guarantee the uncountablity of

these possible functions.
Now, let us to the work.

Lemma 1. Let P (z) ∈ C[z] be a polynomial and d ≥ deg(P ) (in the case of P ≡ 0,
d can be taken as any non-negative real number), then

(2.1) |P (z)| ≤ L(P ) max{1, |z|}d, for all z ∈ C.

Proof. Write

P (z) = a0 + a1z + · · ·+ adeg(P )z
deg(P ).

The triangular inequality yields

|P (z)| ≤ |a0|+ |a1||z|+ · · ·+ |adeg(P )||zdeg(P )|

Since |z|k ≤ max{1, |z|}deg(P ), for all k ∈ [0,deg(P )] and z ∈ C, we get

|P (z)| ≤ (|a0|+ · · ·+ |adeg(P )|) max{1, |z|}deg(P )

≤ L(P ) max{1, |z|}d

�

Lemma 2 (Analicity). Let (Pn(z))n≥0 ∈ C[z] be a sequence of nonzero poly-
nomials, and let ρ be a positive real number. Set m0 = 1 and by recurrence

mk = max{ddeg(Pk)
ρ e,mk−1 + 1} for k ≥ 1. If the sequence (an)n≥0 ∈ C satis-

fies

(2.2) |ak| ≤
1

L(Pk)mk!



ARITHMETIC NATURE OF HYPERTRANSCENDENTAL FUNCTIONS 5

for all k ≥ 0, then the series
∑
anPn(z) converges absolutely and uniformly on any

compact sets, particularly this gives an entire function, moreover its sum f(z) has
order at most ρ.

Proof. We define (Qn(z))n≥0 ∈ C[z] and (bn)n≥0 ∈ C as follows

Qn(z) =

{
0, if n 6= mk

Pk(z), if n = mk

and bmk = ak for k ≥ 0. Since 1 = m0 < m1 < m2 < · · · , we have that the Qn’s
and bn’s are well defined and moreover

∑∞
n=0 anPn(z) =

∑∞
n=0 bnQn(z). Below one

can see the gaps of zeros in the sequence (Qn)n≥0

0, P0(z), 0, ..., 0︸ ︷︷ ︸
m1−m0−1

, P1(z), 0, ..., 0︸ ︷︷ ︸
m2−m1−1

, P2(z), 0, ....

Also, if Qn is nonzero, then n = mk for some k ≥ 0. Hence

deg(Qn) = deg(Qmk) = deg(Pk) ≤ mkρ = nρ.

Thus we get by Lemma 1

|Qn(z)| ≤ L(Qn) max{1, |z|}nρ,

for all n ≥ 0. Let K ⊆ C be a compact set, then |z| ≤ R, for some R > 0 and any
z ∈ K. Therefore, in K, we have

|bmkQmk(z)| ≤ |bmk ||L(Qmk)|max{1, |z|}mkρ
= |ak||L(Pk)|max{1, |z|}mkρ

≤ max{1,|z|}mkρ
mk!

We conclude that |bmkQmk(z)| ≤Mk, for all z ∈ K, where Mk = max{1,R}mkρ
mk! . On

the other hand,

(2.3)

∞∑
k=0

Mk ≤
∞∑
n=0

max{1, R}nρ

n!
= emax{1,R}ρ

Therefore f(z) =
∑∞
k=0 bmkQmk(z) =

∑∞
n=0 anPn(z) is an entire function (Weier-

strass M -test). From the inequality in (2.3), we deduce that f has order at most
ρ. �

Now, let us enumerate the set A in Theorem 4 as {α1, α2, α3, . . .}. All integer

number n ≥ 1 can be written uniquely in form n = mn(mn+1)
2 + jn, for mn ≥ 0

and 1 ≤ jn ≤ mn + 1, define γn = αmn+2−jn . Now, let us construct a sequence of
polynomials as follows

P0(z) = 1 and Pn(z) = (z − γ1) · · · (z − γn) for n ≥ 1,
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Here we list the first few polynomials:

P0(z) = 1

P1(z) = (z − α1)

P2(z) = (z − α1)(z − α2)

P3(z) = (z − α1)2(z − α2)

P4(z) = (z − α1)2(z − α2)(z − α3)

P5(z) = (z − α1)2(z − α2)2(z − α3)

P6(z) = (z − α1)3(z − α2)2(z − α3)

P7(z) = (z − α1)3(z − α2)2(z − α3)(z − α4)

...

The pattern can be seen by following the arrows and picking up the corresponding
term at each node in the figure 1:

Figure 1. Building the Pn’s

With the same notation, we set sn = jn − 1.

Lemma 3 (Truncation). For n ≥ 1, we have P
(sn)
n−1 (γn) 6= 0 and P

(sn)
l (γn) = 0

when l ≥ n.

Proof. Let us partition the set of these polynomials into infinitely many disjoint
sets, of the following way

D0 = {P0} and Dm = {Pdm , Pdm+1, . . . , Pdm+(m−1)}

where dm = m+ (m−1)(m−2)
2 , for m > 0. Explicitly, the m polynomials in Dm are

defined as

Pdm(z) = (z − α1)m−1(z − α2)m−2 · · · (z − αm−2)2(z − αm−1)(z − αm)

and for j ∈ [1,m− 1],

Pdm+j(z) = Pdm(z)

j∏
t=1

(z − αt)
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Also, we may deduce that γdm+k = αm−k and sdm+k = k. Now, by construction
of the polynomials, it is enough to prove the lemma for k = n. Let us distinguish
two cases: the first one, when Pn−1 and Pn are in Dm, for some m ≥ 2. Thus
Pn−1 = Pdm+k and Pn = Pdm+k+1, for some k ∈ [0,m−2]. Therefore we must prove

that P
(k+1)
dm+k (αm−k−1) 6= 0 and P

(k+1)
dm+k+1(αm−k−1) = 0. The result follows because

αm−k−1 is a zero of Pn−1 with multiplicity k + 1, which means P
(sn)
n−1 (γn) 6= 0 and

on the other hand, αm−k−1 is a zero of Pn(z) with multiplicity k+ 2, which implies

P
(sn)
n (γn) = 0.

The second case is when Pn−1 ∈ Dm−1 and Pn ∈ Dm, for some m ≥ 1. In this
case Pn(z) = Pn−1(z)(z − αm), where

Pn−1(z) = (z − α1)m−1 · · · (z − αm−2)2(z − αm−1)

It is easy see that P
(sn)
n−1 (γn) = Pn−1(αm) 6= 0 and P

(sn)
n (γn) = Pn(αm) = 0. �

Lemma 4 (Identity). If
∑∞
k=0 akPk(z) =

∑∞
k=0 bkPk(z) for all z ∈ C, then ak = bk

for each k ≥ 0.

Proof. It suffice to prove that if f(z) :=
∑∞
k=0 akPk(z) = 0 for all z ∈ C, then

(ak)k≥0 is identically 0. Notice that a0 = f(α1) = 0. Assuming a0, a1, . . . , an−1 are
all 0, by Lemma 3, we have

0 =

∞∑
k=0

akP
(sn+1)
k (αγn+1)

=

n−1∑
k=0

akP
(sn+1)
k (γn+1) + anP

(sn+1)
n (αjn+1

) +

∞∑
k=n+1

akP
(sn+1)
k (αjn+1

)

= anP
(sn+1)
n (γn+1)

Since P
(sn+1)
n (γn+1) 6= 0, we have an = 0. Hence the proof will be completed by

induction. �

Now we are able to prove our first theorem.

3. Proof of the Theorem 1

We are going to construct the desired entire function by fixing the coefficients in
the series

∑∞
k=0 akPk(z) recursively, where the sequence (Pk)k≥0 has been defined

in Section 2.
First, as the same notation of Lemma 2, the condition |ak| ≤ tk := 1

L(Pk)mk! will

ensure
∑∞
k=0 akPk(z) to be entire with order at most ρ.

Next, we will fix the coefficients ak recursively. For n ≥ 1, we denote En = Eγn,sn
and let the numbers βn := f (sn)(γn) =

∑∞
k=0 akP

(sn)
k (γn). We are going to choose

the value of ak so that βn ∈ Eγn,sn = En for all n ≥ 1.

By Lemma 2, we know that P
(sn)
l (γn) = 0 when l ≥ n, so βn is actually the finite

sum
∑n−1
k=0 akP

(sn)
k (γn). Notice that β1 = a0P

(0)
0 (α1) = a0 and E1 is dense, so we

can choose a value for a0 in an infinite set I0 such that 0 < |a0| ≤ t0 and β1 ∈ E1.
Now suppose that the values of {a0, a1, · · · , an−1} are well fixed respectively in
infinite sets Ik such that 0 < |ak| ≤ tk and βk ∈ Ek for 0 ≤ k ≤ n− 1. By Lemma

3, we know that P
(sn+1)
n (γn+1) 6= 0, set
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In :=

(
En −An

P
(sn+1)
n (γn+1)

)
∩B (0; tn) \{0},

where An :=
∑n−1
k=0 akP

(sn+1)
k (γn+1). So we can pick a proper value of an in the infi-

nite set In, thus 0 < |an| ≤ tn and βn =
∑n−1
k=0 akP

(sn+1)
k (γn+1)+anP

(sn+1)
n (γn+1) ∈

En.
So now by induction all the ak are well chosen such that for all k ≥ 0 we have

0 < |ak| ≤ tk and βk+1 ∈ Ek+1. Thus f is an entire function satisfying the
conditions (a) and (b).

Let FA be the set of all entire functions satisfying the conditions (a) and (b).
Set I = I0 × I1 × · · · and consider the function φ : I → FA given by φ(a0, a1, ...) =∑∞
n=0 anPn(z). The well definition of φ follows from proof above, also the Lemma

4 implies that φ is one-to-one. Hence FA is uncountable, since that I is.
There exists an uncountable set B := {ξ} ∪ {Tλ,s}λ∈Λ,s≥0 algebraically inde-

pendent over Q (for instance the transcendental basis of the field extension C/Q).
Consider A′ = {ξ}∪A. Fix λ ∈ Λ, set Eλξ,s = {αTλ,s : α ∈ Q\{0}} and Eλαn,s = Eα,s
for all α ∈ A and s ≥ 0. By the all previous discussion, there exists a set Fλ of
entire functions satisfying the conditions (b) and (d), as well as the condition (a)
for the new set A′ (which is still countable). Next, for each λ ∈ Λ take a unique
function fλ ∈ Fλ. Set F = {fλ}λ∈Λ, we shall prove that this one is our desired
set. In fact, by construction, this set satisfies the conditions (a), (b) and (d). To

prove (c), take distinct functions f1, ..., fm ∈
⋃
s≥0 F (s). Therefore fj(z) = f

(sj)
λj

(z)

for j = 1, ...,m and for some pairwise distinct pairs (λ1, s1), ..., (λm, sm) ∈ Λ× N0.
It follows that fj(ξ) = γjTλj ,sj for j = 1, ...,m and some γ’s ∈ Q\{0}. This yields
that the numbers ξ, f1(ξ), ...., fm(ξ) are algebraically independent and then it holds
(c). �

Before going further, it is worth noting some interesting consequences of the
Theorem 4 which give generalizations for classical results on this subject. The
suitable choice of A, Eα,s are noted in parentheses.

Corollary 1 (Generalization of the first Stäckel’s theorem). For each countable
subset Σ ⊆ C and each dense subset T ⊆ C there is a hypertranscendental entire
function f such that f (s)(Σ) ⊆ T for s ≥ 0. (A = Σ, Eα,s = T )

Corollary 2 (Generalization of the second Stäckel’s theorem). Let A ⊆ C be
countable and dense in C, then there is a hypertranscendental entire function f
such that f (s)(A) ⊆ A, for s ≥ 0.(Eα,s = A)

Corollary 3 (Generalization of the Faber’s theorem). There exists a hypertranscen-
dental entire function such that f (s)(Q) ⊆ Q(i), for s ≥ 0.(A = Q, Eα,s = Q(i))

4. Applications to exceptional sets: proof of the Theorem 2

4.1. An overview on exceptional sets. Weierstrass (see [11]) initiated the ques-
tion of investigating the set of algebraic numbers where a given transcendental entire
function f takes algebraic values. For an entire function f , we define the exceptional
set of f as follows

Sf = {α ∈ Q : f(α) ∈ Q}
The study of exceptional sets started in 1886 with a letter of Weierstrass to Strauss.
This study was later developed by Strauss, Stäckel, Faber. Further results are due
to van der Poorten, Gramain, Surroca and others (see [5] and [19]).
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Some exceptional sets...

Example 1. Any finite set {α1, ..., αn} ⊆ Q is exceptional. In fact, if f1(z) =
e(z−α1)···(z−αk), then the Hermite-Lindemann theorem implies Sf1 = {α1, . . . , αk}.
Example 2. The empty set is also exceptional. Indeed, if f2(z) = ez + ez+1, the
Lindemann-Weierstrass theorem implies Sf2 = ∅.
Example 3. Some infinite sets are also known to be exceptional. For instance, if
f3(z) = 2z, f4(z) = eiπz, then Sf3 = Sf4 = Q, by the Gelfond-Schneider theorem.

We point out that is not known an elementary function1 with exceptional set is
either Z or N. For giving such examples, we appeal to Schanuel’s conjecture, one
of the main open problems in transcendental number theory.

Conjecture 1 (Schanuel). If z1, . . . , zn are complex numbers linearly independent
over Q, then among the numbers {z1, . . . , zn, e

z1 , . . . , ezn}, at least n are alge-
braically independent.

This conjecture was introduced in the 1960’s by Schanuel in a course given
by Lang [8]. Several classical consequences of this conjecture, together with an
elegant exposition of it, can be found in [17, Chapter 10, Section 7G]. Very recent
consequences can be found in [2], [14] and [22].

Example 4. Assume that Schanuel’s conjecture is true. If f5(z) = sin(πz)ez,

f6(z) = 23z and f7(z) = 222z−1

, then Sf5 = Sf6 = Z e Sf7 = N.

Summarizing, the sets ∅, Q, Q (take Σ = T = Q in first Stäckel’s theorem) and
all finite sets are exceptional. But, what are all the possible exceptional sets?

Before answering this question, observe that the exceptional sets of a function
f and its derivative f ′, can be distincts. For instance, if f(z) = 2z, then Sf = Q.
However, f ′(z) = 2z log 2 and thus Sf ′∩Sf = ∅ (since log 2 is transcendental). This
fact motives a more general definition where multiplicities are included: let f be
an entire function. We define the exceptional set with multiplicity of f to be

Mf = {(α, t) ∈ Q× N0 : f (t)(α) ∈ Q}

Example 5. If f(z) = ez +
∑

10−n!, g(z) = ez + ez+1 and h(z) = ez, then
Mf = {0} × N, Mg = ∅ and Mh = {0} × N0.

A relation between Sf and Mf is given in the next result

Proposition 1. If Mf = A×N , then Sf(t) = A for all t ∈ N .

Proof. If t ∈ N and α ∈ Q, then α ∈ Sf(t) , if and only if f (t)(α) ∈ Q. Since that

Mf = A×N and t ∈ N , then f (t)(α) ∈ Q if and only if α ∈ A. �

In view of the previous proposition, we can restate our question: what are the
possible subsets of Q × N0 which are exceptional sets with multiplicity of a tran-
scendental function?

How about the previous question where we replace transcendental fucntions by
hypertranscendental functions? Recall that by a hypertranscendental function, we

1A function built from a finite number of exponentials, logarithms, constants, one vari-

able, and nth roots through composition and combinations using the four elementary operations

(+,−,×,÷). By allowing these functions (and constants) to be complex numbers, trigonometric
functions and their inverses become included in the elementary functions
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mean a function which does not satisfy any algebraic differential equations. Clearly,
hypertranscendental functions are transcendental. The exponential function ez

gives an example of a transcendental function which is not hypertranscendental and
the well-known zeta (ζ(z)) and gamma function (Γ(z)) are hypertranscendental, see
[16]. Moreover (see [16]), sums, products, differences, quotients and compositions
of hypotranscendental functions are again hypotranscendental, e.g., the function

sin(ee
1/z − 2π log z) is hypotranscendental.

In view of that, we note that all the previous functions fi, with i ∈ [1, 7] are
hypotranscendental. Hence it arises a very stronger question: what are the possible
exceptional sets with multiplicity of hypertranscendental functions?

All this mistery finishes by the Theorem 5: every A × N ⊆ Q × N0 is the
exceptional set with multiplicity of uncountable many hypertranscendental entire
functions with order of growth as small as we wish. In particular, when N =
N0, A ⊆ Q, Theorem 5 and Proposition 1 yield

Corollary 4. If A ⊆ Q, then there is an uncountable set, FA, of hypertranscen-
dental entire functions such that, if f ∈ FA, then

Sf(t) = A for t ≥ 0

Moreover, the set

(4.1) {f (n)(α) : α ∈ Q\A, n ≥ 0 and f ∈ FA}

is algebraically independent.

Thus, all that remains is to prove the Theorem 5.

4.2. Proof of the Theorem 5. Suppose that A, Q\A, N and N0\N are all infi-
nite sets, thus we can enumerate Q = {α0, α1, . . .} and N0 = {s0, s1, . . .} where
A = {α2, α4, ..., α2n, ...} and N = {s2, s4, ..., s2n, ...}. Consider {Tλ,m,l : λ ∈
Λ and (m, l) ∈ N0 × N0} an uncountable set and algebraically independent and
set Aλ,m,l = {γTλ,m,l : γ ∈ Q\{0}} a dense subset of C. For λ ∈ Λ, define

Eλαn,sk =

{
Q(i), se (n, k) ∈ (2Z)2

Aλ,n,k, se (n, k) /∈ (2Z)2

Now by Theorem 4, there exists an uncountable set Fλ of hypertranscendental entire
functions f with f (l2k)(α2m) ∈ Q(i) and f (l)(αm) ∈ Aλ,m,l, for each (αm, l) /∈ A×N .
Therefore it is plain that Mf = A × N . For all λ ∈ Λ, we take only one function
fλ ∈ Fλ. Set FA,N = {fλ}λ∈Λ, so Mfλ = A×N for all λ ∈ Λ. Also, for all pairwise
distincts ternaries (λ1, αn1

, t1), ..., (λk, αnk , tk) with (α, t)′s /∈ A ×N and λ′s ∈ Λ,

the numbers f
(t1)
λ1

(αn1), ..., f
(tk)
λk

(αnk) lie respectively in Aλ1,n1,t1 , ..., Aλk,nk,tk hence
they are algebraically independent.

For the case that A is finite, we can suppose A = {α1, ..., αm}. Take Eλαk,s2l =

Q(i) for any k ∈ [1,m] and any l ≥ 0, denote Eλαk,l = Aλ,k,l for each (αk, l) ∈
Q × N0 \ A × N . Then for this case we proceed as in the proof above. The other
possibilities are solved of the same way. �

Returning to the exceptional sets, we still have the following last corollary

Corollary 5. Let P (z1, ..., zn) be a non-constant polynomial with algebraic coeffi-

cients. If f1, ..., fn ∈
⋃
s≥0 F

(s)
A , then

(4.2) SP (f1,...,fn) = A
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Proof In the case A = Q the result follows easily. If there is α ∈ Q\A,
then by (4.1) the numbers f1(α), ...., fn(α) are algebraically independent, there-
fore P (f1, ..., fn)(α) ∈ Q if and only if α ∈ A. In other words SP (f1,...,fn) = A. �
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