ON THE SPACING BETWEEN TERMS OF i-GENERALIZED
FIBONACCI SEQUENCES

DIEGO MARQUES

ABSTRACT. For k > 2, the k-generalized Fibonacci sequence (F,Sk))n is defined
by the initial values 0,0, ...,0,1 (k terms) and such that each term afterwards
is the sum of the k preceding terms. In this paper, we will prove that the num-
ber of solutions of the Diophantine equation Fy(,f ) _ an) = ¢ > 0 (under weak
assumptions) is bounded by an effectively computable constant depending only
on c.

1. INTRODUCTION

The problem of studying the spacing between terms of some sequences has at-
tracted the attention of mathematicians for decades. For instance, the equation
related to the spacing between perfect powers, is so-called as Pillai’s equation:

(1.1) mb —nt=c,

for a previously fixed positive constant c. The Pillai’s conjecture [10] is that for any
given ¢ > 1, the number of positive integer solutions to the Diophantine equation
(1.1), with min{k, ¢} > 2, is finite. To the best of our knowledge, this conjecture
remains open (there are several related results, some of them are ineffective, see the
nice survey [11]).

We recall that the particular case ¢ = 1, was already considered by E. Catalan
who, in 1844, conjectured that the only consecutive perfect powers are 8 and 9.
Recently, this conjecture was confirmed by P. Mihailescu [9]. We refer the reader
to [1] for a better discussion on this subject.

Let (F,)n>0 be the Fibonacci sequence given by Fj1o = Fq1 + F,, for n > 0,
where Fy = 0 and F; = 1. These numbers are well-known for possessing amazing
properties (consult [6] together with its very extensive annotated bibliography for
additional references and history). It is a simple matter to deduce that if F,, # F,,,

then . -
1+/5 e
|Fm—Fn|>< J”f) .

2

There are several generalizations of Fibonacci numbers in the literature. For
instance, the Fibonomial coefficient is defined, for 1 < k < m, as

m Fm"'mekJrl
1.2 = -
(12) b =Tt
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Clearly, ('] )m is the Fibonacci sequence. In 2010, Luca, Marques and Stanici
[7] studied the spacing between Fibonomial coefficients. In particular, they proved

that the difference
m| [n
kg ar;

tends to infinity when (m,k,n,¢) are such that 1 < k < m/2, 1 < ¢ < n/2,
(m, k) # (n,£) and max{m,n} tends to infinity in an effective way.
Another known generalization is, for k > 2, the k-generalized Fibonacci sequence

Fk) = (Fék))nz,(k,m, which is the sequence whose terms satisfy the k-th order
recurrence relation

k k k
(1.3) F7§+)k :F7(L+)kf1+F7§+)k72+'”+Fr(Lk)’

with initial conditions 0,0,...,0,1 (k terms) and such that the first nonzero term
is Fl(k) = 1. Clearly for k£ = 2, we obtain the Fibonacci numbers F? = F,, and

for k = 3, the Tribonacci numbers F,(Lg) =1T,.

The aim of this paper is to prove a related result (in the spirit of Pillai) about
the spacing between terms of distinct k-generalized Fibonacci sequences. That is,
to study the Diophantine equation

(1.4) ER) _ RO — ¢

This equation could be considered as a “Fibonacci version” of Pillai’s equation
(where, we replace the powers ¢ and k by the respective order of a generalized
Fibonacci sequence, that is, by superscripts (¢) and (k)). More precisely, our main
results are the following

Theorem 1.1. Let ¢ be a positive integer number. Then, there exists an effectively
computable constant M = M (c) such that if (m,n, £, k) is a positive integer solution
of Eq. (1.4), with £ >k >2,n>{+2 and m >k + 2, then max{m,n,{,k} < M.
A suitable choice for M is

(1.5) M :=max{cy, 1.9 - 101624 1og?" ¢y, 8 - 10746},
where ¢1 :=5log(c+ 1) +2 e cp := 4log(c + 5)/log 2.
Note that Theorem 1.1 implies, in particular, that the difference
‘F,(,f) - F}l@)‘

tends to infinity when (m,n, ¢, k) are such that m > k42, n >{0+2, £ >k > 1
and max{m,n} tends to infinity in an effective way.

As another application of the method, we solve completely the case ¢ = 1
(“Catalan-Fibonacci” version), that is, we find all consecutive numbers among

Uk>2 F®.

Theorem 1.2. The only solution of Diophantine equation

(1.6) B = EP =1,

with>k>2,n>0+2andm>k+2 is (m,n, 0, k) =(10,8,4,2). That is,
FY - FP =56-55=1.
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We remark that the hypotheses n > ¢ + 2 and m > k 4 2 are necessary to avoid
the trivial solutions

(m,n, 0, k)= (k+2,k+2,k+1,k),

for all £ > 2.

Let us give a brief overview of our strategy for proving Theorem 1.1. First, we
use a Dresden formula [5, Formula (2)] to get an upper bound for a linear form
in three logarithms related to equation (1.4). After, we use a lower bound due to
Matveev to obtain an upper bound for m and n in terms of £. Very recently, Bravo
and Luca solved the equation FT(Lk) = 2™ and for that they used a nice argument
combining some estimates together with the Mean Value Theorem (this can be seen
in pages 72 and 73 of [2]). In our case, we must use two times this Bravo and Luca
approach together with a reduction argument due to Dujella and Petho to prove our
main theorem. In the final section, we present a program for checking the “small”
cases. The computations in the paper were performed using Mathematica®.

We remark some differences between our work and the one by Bravo and Luca. In
their paper, the equation F,Sk) = 2™ was studied. By applying a key method, they
get directly an upper bound for |2 —2"~2|. In our case, the equation Fy(,f) —F,(f) =c
needs a little more work, because it is necessary to apply two times their method to
get an upper bound for |2"~2 — 2™~2|. Moreover, they used a reduction argument
due to Dujella and Petho to solve all small cases. In our work, we use a fast
Mathematica routine to deal with the “very” small cases.

2. AUXILIARY RESULTS

In order to avoid unnecessary repetitions, throughout the paper the integers
m,n, k,{ are supposed to satisfy the conditions in the statement of Theorem 1.1.
First, we claim that if (m, n, ¢, k) is a solution of equation (1.4), then n < m. In fact,
to obtain a contradiction, suppose that m < n. Thus, by using that the sequences
(F,EZ))” and (F,(f))g are nondecreasing together with (1.4), we obtain £ < g
yielding

0<c=F® _F® <o

This absurdity gives n < m as desired.
Before proceeding further, we shall recall some facts and properties of these
sequences which will be used after.

We know that the characteristic polynomial of (F,(Lk))n is
Yp(z) =af -1 — -1

and it is irreducible over Q[z] with just one zero outside the unit circle. That single
zero is located between 2(1 —27F) and 2 (as can be seen in [12]). Also, in a recent
paper, G. Dresden [5, Theorem 1] gave a simplified “Binet-like” formula for F,(Lk):

k

i — 1
2.1 Fk) — i o't
o LI SRS CL S
for a = ay,...,a being the roots of 1, (x). Also, it was proved in [3, Lemma 1]

that
(2.2) a" 2 < FR <ol foralln > 1,
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where « is the dominant root of 1, (x). Also, the contribution of the roots inside
the unit circle in formula (2.1) is almost trivial. More precisely, it was proved in

[5] that

1

>

where we adopt throughout the notation g(z,y) = (x —1)/(2+ (y + 1)(z — 2)).

Now, we wish to find a lower bound for m in terms of n. In fact, by (1.4) and
(2.2),

(2:3) [F = gla,k)a™ 1| <

(2.4) s gl > FO = PR 415 0™m72 > (v/2)™72 and so 2n > m,

where in the last inequality, we used that o > 3/2 > /2.

As another tool to prove Theorem 1.1, we still use a lower bound for a linear
form logarithms ¢ la Baker and such a bound was given by the following result of
Matveev [8].

Lemma 2.1. Let v1,...,7: be real algebraic numbers and let by, ..., b, be nonzero
rational integer numbers. Let D be the degree of the number field Q(v1,...,7:) over
Q and let A; be a positive real number satisfying
A; > max{Dh(v;),|log~,|,0.16} forj=1,...,t.
Assume that
B > max{|b1],...,|b:|}

IFAy -yt #1, then
|vlfl . ~7§)‘ — 1] > exp(—1.4-30""3 . t45. D2(1 4+ log D)(1 + log B)A; - - - A;).

As usual, in the above statement, the logarithmic height of an s-degree algebraic
number 7 is defined as

1 u ,
h(v) = g(log |a| + ZlogmaX{l, YD),

Jj=1

where a is the leading coefficient of the minimal polynomial of « (over Z) and
(79))1< <5 are the conjugates of a (over Q).

After finding an upper bound on n which is general too large, the next step is to
reduce it. For that, our last ingredient is a variant of the famous Baker-Davenport
lemma, which is due to Dujella and Pethd [4, Lemma 5 (a)]. For a real number z,
we use || z ||= min{|z — n| : n € N} for the distance from z to the nearest integer.

Lemma 2.2. Suppose that M is a positive integer. Let p/q be a convergent of the
continued fraction expansion of the irrational number v such that ¢ > 6 M and let
A, B be some real numbers with A >0 and B > 1. Let e =|| uq || =M || vq ||, where
w18 a real number. If € > 0, then there is no solution to the inequality

O<my—n+pu<A-BF

in positive integers m,n and k with

log(Aq/e)

<M >
m < and k > log B

See Lemma 5, a.) in [4].
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3. THE PROOF OF THEOREM 1.1

Note that in order to prove the Theorem 1.1, it suffices to show that Eq. (1.4)
has no solution when m > M (with M defined as in (1.5)). Thus suppose, towards
a contradiction, that (m,n, £, k) is a solution of Eq. (1.4) with m > M.

The first step is to find an upper bound for m (and so for n) in terms of £.

For that, we use (2.3) to get

k m— 1 ¢ n— 1
[F = gla,kam =] < 5 and [F0 = (g, 06" | < 5,

where « and ¢ are the dominant roots of the recurrences (F,Ef ))m and (Fy))n,

respectively. Combining these inequalities together with |F7(L€) — Fr(n’c )| = ¢, we
obtain
(3.1) 9(6,0)¢" " = g(a, k)a™ | < e+ 1
and so
9(¢,0)¢"" c+1 detl) 1
3.2 = —1|< < ,
( ) g(Oé, k,)am—l g(Oé, k.)am—l am—1 a™m/2

where we used the facts that a(™=2/2 > 4(c+ 1) (since m > ¢;) and g(a, k) > 1/4
(since a > 3/2, for k > 2, and 2+ (k + 1)(ov — 2) < 2). Thus (3.2) becomes
1
A
where A := (n — 1)log ¢ + log(g(¢,£)/g(a, k)) — (m — 1) log av.
Now, we shall apply Lemma 2.1. To this end, take t := 3,

9(¢,0)
g(Oé, k>7 V3 =

"M = (rbv Y2 =

and
by:=n—1, by:=1, bg:=m —1.
For this choice, we have D = [Q(«, ¢) : Q] < kl < ¢2. Also h(y1) = (log¢)/l <

(log2)/¢ < 0.7/¢ and similarly h(ys) < 0.7/k. In [2, p. 73], an estimate for
h(g(a, k)) was given. More precisely, it was proved that

h(g(o, k)) < log(k + 1) +log4.

Analogously,

h(g(4,€)) < log(¢ + 1)+ log4.
Thus

h(12) < h(g(,0)) + h(g(a, k)) < 1og(€ + 1) + log(k + 1) + 2log4,

where we used the well-known facts that h(zy) < h(z) + h(y) and h(z) = h(z~1).
Also, in [2] was proved that |g(a;, k)| < 2, for all i =1,... k.

Since £ > k and m > n, we can take A; = Az := 0.7¢, Ay := 2(*log(4¢ + 4) and
B:=m-—1.

Before applying Lemma 2.1, it remains us to prove that e® # 1. Suppose,
towards a contradiction, the contrary, i.e., g(a, k)a™ ™1 = g(¢, £)¢p" ! € Q(¢). So,
we can conjugate this relation in Q(¢) to get

g(asmk)an;71 = g(¢i’£)¢n_1a for i = 1, s ,f,

s i
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where ay, are the ¢ conjugates of a over Q(¢). Since g(a, k)a™~! has at most k
conjugates (over Q), then each number in the list {g(a,, k)o ™' : 1 <4 < £} is

repeated at least £/k > 1 times. In particular, there exists ¢ € {2, ..., £}, such that
g(as,, k)am 1t = g(as,, k)a;’fl. Thus, g(¢, )¢t = g(¢¢, £) P} ! and then

AN ‘
() <o -fiem|er <

where we used that ¢ > 2(1 —27¢) > 7/4, |g(é:,0)| < 2 < 8|g(¢,£)| and |¢¢] < 1
for t > 1. However, the inequality (7/4)"~! < 8 holds only for n = 1,2,3,4, but
this gives an absurdity, since n > ¢ +1 > 3 + 1 = 4. Therefore e® # 1.

Now, the conditions to apply Lemma 2.1 are fulfilled and hence

le® — 1] > exp(—1.5- 10" £8(1 + 21log £) log(4£ + 4)(1 + log(m — 1)))
Since, 1+2logl < 3logl, 40+ 4 < (%6 (for £ > 3) and m — 1 < m!'"!, we have that

(3.4) le® — 1] > exp(—2.64 - 101208 log? £log m))
By combining (3.3) and (3.4), we get

< 1.33-10'3¢%10g? ¢,

logm

where we used that loga > 0.4. Since the function x/logz is increasing for x > e,
it is a simple matter to prove that

T

(3.5) < A implies that = < 2Alog A.

log

A proof for that can be found in [2, p. 74].
Thus, by using (3.5) for 2 := m and A := 1.33 - 10'%¢% log® ¢, we have that

m < 2(1.33 - 10'3¢% log® £) log(1.33 - 1012¢% log? ¢).
Now, the inequality 31 4 2loglog ¢ < 291log ¥, for ¢ > 3, yields
log(1.33 - 10"3¢8 1og® £) < 31 + 8log ¢ + 2loglog ¢ < 37log .
Therefore
(3.6) m < 9.9-10¢% log® ¢.

The next step is to find an upper bound for ¢ in terms of k. For that, consider
£ < 240, then the inequality (3.6) yields m < 1.8 - 1036, contradiction with the fact
that m > M. Thus, we may assume that ¢ > 240. Therefore

(3.7) n <9910 log® ¢ < 2¢/2,

where we used (3.6) and the fact that n < m. Now, we shall use a key argument
due to Bravo and Luca [2, p. 72-73]. However, for the sake of completeness and
because one needs a slight modification in its final part, we shall present their nice
idea.

Setting A = 2 — ¢, we deduce that 0 < A\ < 1/2¢71 (because 2(1 —27%) < ¢ < 2).
So

n—1 n—1 n—1 A n n—1
o l=(2- A l=2 <12) > 92m 11— (n — 1)N),
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since that the inequality (1 — z)™ > 1 — 2nx holds for allm > 1 and 0 < = < 1.
Moreover, (n — 1)\ < 2¢/2/2¢=1 = 2/2¢/2 and hence

2n n

n—1 n—1 n—1
27— <O <2 o

yielding

n

n— n— 2
(3.8) lp" ™t —2 1‘<W'
Now, we define for z > 2(1 — 27%) the function f(z) := g(z,f) which is differen-
tiable in the interval [¢, 2]. So, by the Mean Value Theorem, there exists £ € (¢, 2),

such that f(¢) — f(2) = f(§)(¢ — 2). Thus
(39) 7(6) — F)] < o7,

where we used the bounds |¢ — 2| < 1/27! and |f'(£)| < ¢. For simplicity, we
denote § = ¢" 1 —2""Land n = f(¢)— f(2) = f(¢)—1/2. After some calculations,
we arrive at

)

2”—2

— f(¢)¢n—1 _ 2n—177 _
Therefore

n— m— n— m— n— )
T B S P e R R

< 2ng n-l gntly
hS C+1+?+W‘|‘W7

where we used (3.8) and (3.9). Since n > £+ 2, one has that 1 < 2"2/2¢/2 and we
rewrite the above inequality as

2n—2 4¢ 2n—2 2n—2 8/ 2n—2
n—2 m—1
|2 — gl ko | <(c+1) 90/2 + <2e/g> 2t/2 +2- 20/2 + <24) 20/2 "

Since the inequalities 4¢ < 8¢ < 2¢/2 < 2¢ hold for all £ > 240 (actually, they hold
for ¢ > 13), then
(C + 5) . 2n72 27172

25/2 < 25/4 ’

(3.10) 12772 — g(a, k)a™ ] <

where we used that 2¢/4 > ¢ + 5. This follows because ¢ > ¢, (in fact, on the
contrary, we can use (3.6) to get M < m < 9.9-10"c§ log® c5).
Equivalently, we have

(3.11) 11— g(a, k)am 127 (=2)| < 25%

For applying Lemma 2.1, it remains us to prove that the left-hand side of (3.11)
is nonzero, or equivalently, 2"~2 # g(a, k)a™ 1. To obtain a contradiction, we
suppose the contrary, i.e., 2"~2 = g(a, k)a™ 1. By conjugating the previous rela-
tion in the splitting field of ¥ (), we obtain 2”2 = g(ay, k‘)a;”_l, fori=1,...,k.
However, when ¢ > 1, |a;| < 1 and |g(, k)| < 2. But this leads to the following
absurdity

2"7% = [g(ay, k)l|es|" 7 < 2,
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since n > 4. Therefore g(a, k)™ '27("=2) £ 1 and then we are in position to
apply Lemma 2.1. For that, take t := 3,

1= gla,k), 12 =a, 13:=2
and
by =1, bo:=m—1, b3 :=—(n—2).

By some calculations made in Section 2, we see that A; := klog(4k +4), Az =
Az := 0.7 are suitable choices. Moreover D = k and B = m — 1. Thus
(3.12)

11— g(a, k)a™ 127 (=2 > exp(=D’ - E*(1 + log k)(1 4 log(m — 1)) log(4k + 4)),

where we can take D’ = 0.75 - 10!'. Combining (3.11) and (3.12) together with a
straightforward calculation, we get

(3.13) 0 < 2.16 - 10*2k3 log? k log m.
On the other hand, m < 9.9 - 10'¢31og® ¢ (by (3.6)) and so
(3.14) logm < 1og(9.9 - 1014¢% log® ¢) < 41log ¥,

where we used that 35+ 3loglog ¢ < 33log¢. Turning back to inequality (3.13), we
obtain

‘
—— <89-10klog” k
log ¢

which implies, by (3.5), that

0 < 2(8.9-10k% log® k) log(8.9 - 1012k log® k).
Since log(8.9 - 10'3k3 log? k) < 47log k, we finally get the inequality
(3.15) (< 84-10"K*log” k.

Now, if & < 1640, then ¢ < 2-10?® (by (3.15)). Thus, by (3.6), one has that
m < 7.1-10%*5 which is not possible, because m > M.

Therefore, we may suppose that k > 1640. The inequality ¢ < 8.9 - 10153 log® k
together with (3.6) yield

m < 9.9-10(8.9- 10k log® k)®log®(8.9 - 10"°k3 log® k)
< 1.9-10"6k* 10g¥ k < 20/2,
where the last inequality holds only because k > 1640. Now, we use again the key
argument of Bravo and Luca to conclude that
m—2

_ e 2
(316) |2m — g(¢7£)¢) 1| < W?

because k > co (on the contrary, we substitute & < co respectively in (3.15) and
(3.6) to obtain an upper bound for m less than M). Combining (3.10), (3.16) and
(3.1), we get

2772 =277 <2772 — ga, K)o T+ g(a k)Tt = g(6, 00"
_~_‘2m—2 _ g(¢7 £)¢n'_1|

271—2 2m—2 3. 2m—2

< Sur +c+1+2k/4 < —oma
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since n < m, k< f,m >k+1and ¢+ 1 < 2¥2 (on the contrary, k < 2log(c +
1)/log2 < ¢3). Therefore

_ 3
(3.17) 2™ — 1| < SR/
Since n < m — 1, then
1 n—m n—m 3
§§1—2 =2 _1|<W'
Thus 2%/4 < 6 yielding k < 10, but this leads to an absurdity, since k > 1640. With
this contradiction, we complete the proof of Theorem 1.1. ([

4. THE PROOF OF THEOREM 1.2

First, we claim that n < m. To derive a contradiction, suppose that m > n.
Then Eq. (1.6) gives Fy) < F,(f) + 1. However FT(,{C) +1< FT(,fH), for m > k + 2.
In fact, since (F,ﬁ‘))g is nondecreasing, then it suffices to prove this inequality for
m = k + 3. This holds because

FIED — okt g5 9kl 9 = M 41

Thus, we obtain the following absurdity
EO <F® 11 < FHD < pO]

where we used that the sequences (F,(LZ))TL and ( ,(Le)) ¢ are nondecreasing. Therefore,

m > n as claimed and we can follow the proof of Theorem 1.1. Summarizing, the
previous theorem (for ¢ = 1) ensures that the possible solutions (m,n, k,£) of Eq.
(1.6) must satisfy

m < 8- 10246,

where we used that ¢; < 5.47, ¢co < 2.74 and then 1.9~1014GC§4 log27 ¢y < 6.4-10156.
Since this upper bound on max{m,n, ¢, k} is too large, we need to use Lemma
2.2.
We recall that 2 < k < 1640, then ¢ < 2-10%% and n < m < 7.1-10%%6. In order
to use the Lemma 2.2, we rewrite (3.11) as
1
57"
where © := (m — 1)loga — (n — 2)log2 + log g(a, k). Recall that we proved that
e® # 1 (the paragraph below (3.11)) and so © # 0.
IfO >0, then ® < e® —1< 1/25/4. In the case of © < 0, we use 1 — e~ 1l =
e® — 1] < 1/2¢% to get el® < 1/(1 —27¢/4). Thus
1| 27t /4415
|®| <e —1< m <2 s
where we used that 1/(1 — 27¢/4) < 2% for £ > 3. Summarizing, the further
arguments work for © > 0 and © < 0 in a very similar way.
Thus, to avoid unnecessary repetitions we shall consider only the case © > 0.
For that, we have

0< (m—1)loga— (n—2)log2+logg(a, k) < (vV2)~*

e© —1| <

and then
(4.1) 0< (m—1)y —(n—2) 4 < 1.45- (V2)75,
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with v, := loga®) /log2 and py = log g(a®), k)/log 2. Here, we added the super-
script to a for emphasizing its dependence on k.

We claim that ~; is irrational, for any integer k > 2. In fact, if v, = p/q, for
some positive integers p and ¢, we have that 27 = (a(*))? and as before we can
conjugate this relation by some automorphism of the Galois group of the splitting
field of 9y (z) over Q to get 27 < |(a2(-k))q| < 1, for i > 1, which is an absurdity,
since p > 1. Let gy be the denominator of the n-th convergent of the continued
fraction of v;,. Taking M := 1.9 - 10M46}24 log27k < Migao < 7.1 -10%%6 we use
Mathematica to get

min 4650,k > 6-103%8 > 6 Mi640-
2<£<1640

Also

1112
max . < 2-10 .
2<k<1640 9650,k

Define €, :==|| prgoso.r || =Mk || Yed650.% ||, for 2 < k < 1640, we get

min e > 5.2- 107199,
2<k<1640

Note that the conditions to apply Lemma 2.2 are fulfilled for A = 1.45 and
B = /2, and hence there is no solution to inequality (4.1) (and then no solution
to the Diophantine equation (1.4)) for m and ¢ satisfying

log(A
m< My, < 7.1 102% and ¢ > 08(Adss0k/k)
log B

Since m < My, (for 2 < k < 1640), then
log(Ageso.k/€x) _ log(1.45-2- 101112/5.2.107169)
log B - log v/2
Therefore 2 < k < 1640 and k < ¢ < 17014. Now, by applying (3.6), we obtain
n<m<6.5-10%.

To deal with these remaining cases, we prepared the following Mathematica
routine

nn = 17014;
f = 2°(Range[nn] + 1) - 3;
f[[1]] = Infinity;
cnt = 0;
seq = Table[
Join[2~ (Range[i - 2] + 1), {271 - 1}, {2°(1 + 1) - 3}], {i, 1, nn}];
seq[[1]1] = {1};
done = False;
While[! done, fMin = Min[f];
pMin = Flatten[Position[f, fMin]];
f[[pMin[[1]1]1]] = fMin + 1;
sMin = Flatten[Position[f, fMin + 1]];
If [Length[sMin] > 1, Print[{fMin + 1, sMin}]];
Dol[k = sMin[[1]];
s = Plus @@ seq[[k]];
seq[[k]] = RotateLeft[seq[[k]]];
seql[k, kI] = s;
f[[k]] = s, {i, Length[sMin]}];

< < 17014.18....
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cnt++;
done = (fMin > 6.5%10°(51))]; cnt

It returns us {56,{2,4}} which corresponds to the only solution (m,n,f, k) =
(10,8,4,2). The calculations in this paper took roughly 8 days on 2.5 GHz In-
tel Core i5 4GB Mac OSX. The proof is complete. (|
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