
ON THE SPACING BETWEEN TERMS OF k-GENERALIZED

FIBONACCI SEQUENCES

DIEGO MARQUES

Abstract. For k ≥ 2, the k-generalized Fibonacci sequence (F
(k)
n )n is defined

by the initial values 0, 0, . . . , 0, 1 (k terms) and such that each term afterwards
is the sum of the k preceding terms. In this paper, we will prove that the num-

ber of solutions of the Diophantine equation F
(k)
m −F

(`)
n = c > 0 (under weak

assumptions) is bounded by an effectively computable constant depending only
on c.

1. Introduction

The problem of studying the spacing between terms of some sequences has at-
tracted the attention of mathematicians for decades. For instance, the equation
related to the spacing between perfect powers, is so-called as Pillai’s equation:

(1.1) mk − n` = c,

for a previously fixed positive constant c. The Pillai’s conjecture [10] is that for any
given c ≥ 1, the number of positive integer solutions to the Diophantine equation
(1.1), with min{k, `} ≥ 2, is finite. To the best of our knowledge, this conjecture
remains open (there are several related results, some of them are ineffective, see the
nice survey [11]).

We recall that the particular case c = 1, was already considered by E. Catalan
who, in 1844, conjectured that the only consecutive perfect powers are 8 and 9.
Recently, this conjecture was confirmed by P. Mihăilescu [9]. We refer the reader
to [1] for a better discussion on this subject.

Let (Fn)n≥0 be the Fibonacci sequence given by Fn+2 = Fn+1 + Fn, for n ≥ 0,
where F0 = 0 and F1 = 1. These numbers are well-known for possessing amazing
properties (consult [6] together with its very extensive annotated bibliography for
additional references and history). It is a simple matter to deduce that if Fn 6= Fm,
then

|Fm − Fn| >

(
1 +
√

5

2

)max{m,n}−3

.

There are several generalizations of Fibonacci numbers in the literature. For
instance, the Fibonomial coefficient is defined, for 1 ≤ k ≤ m, as

(1.2)

[
m

k

]
F

=
Fm · · ·Fm−k+1

Fk · · ·F1
.
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Clearly, (
[
m
1

]
F

)m is the Fibonacci sequence. In 2010, Luca, Marques and Stănică

[7] studied the spacing between Fibonomial coefficients. In particular, they proved
that the difference ∣∣∣∣[mk

]
F

−
[
n

`

]
F

∣∣∣∣
tends to infinity when (m, k, n, `) are such that 1 ≤ k ≤ m/2, 1 ≤ ` ≤ n/2,
(m, k) 6= (n, `) and max{m,n} tends to infinity in an effective way.

Another known generalization is, for k ≥ 2, the k-generalized Fibonacci sequence

F (k) := (F
(k)
n )n≥−(k−2), which is the sequence whose terms satisfy the k-th order

recurrence relation

(1.3) F
(k)
n+k = F

(k)
n+k−1 + F

(k)
n+k−2 + · · ·+ F (k)

n ,

with initial conditions 0, 0, . . . , 0, 1 (k terms) and such that the first nonzero term

is F
(k)
1 = 1. Clearly for k = 2, we obtain the Fibonacci numbers F

(2)
n = Fn, and

for k = 3, the Tribonacci numbers F
(3)
n = Tn.

The aim of this paper is to prove a related result (in the spirit of Pillai) about
the spacing between terms of distinct k-generalized Fibonacci sequences. That is,
to study the Diophantine equation

(1.4) F (k)
m − F (`)

n = c.

This equation could be considered as a “Fibonacci version” of Pillai’s equation
(where, we replace the powers ` and k by the respective order of a generalized
Fibonacci sequence, that is, by superscripts (`) and (k)). More precisely, our main
results are the following

Theorem 1.1. Let c be a positive integer number. Then, there exists an effectively
computable constant M = M(c) such that if (m,n, `, k) is a positive integer solution
of Eq. (1.4), with ` > k ≥ 2, n > `+ 2 and m > k + 2, then max{m,n, `, k} < M .
A suitable choice for M is

(1.5) M := max{c1, 1.9 · 10146c24
2 log27 c2, 8 · 10246},

where c1 := 5 log(c+ 1) + 2 e c2 := 4 log(c+ 5)/ log 2.

Note that Theorem 1.1 implies, in particular, that the difference∣∣∣F (k)
m − F (`)

n

∣∣∣
tends to infinity when (m,n, `, k) are such that m > k + 2, n > ` + 2, ` > k > 1
and max{m,n} tends to infinity in an effective way.

As another application of the method, we solve completely the case c = 1
(“Catalan-Fibonacci” version), that is, we find all consecutive numbers among⋃

k≥2 F
(k).

Theorem 1.2. The only solution of Diophantine equation

(1.6) |F (k)
m − F (`)

n | = 1,

with ` > k ≥ 2, n > `+ 2 and m > k + 2 is (m,n, `, k) = (10, 8, 4, 2). That is,

F
(4)
8 − F (2)

10 = 56− 55 = 1.



THE EQUATION F (k)
m − F (`)

n = c 3

We remark that the hypotheses n > `+ 2 and m > k + 2 are necessary to avoid
the trivial solutions

(m,n, `, k) = (k + 2, k + 2, k + 1, k),

for all k ≥ 2.
Let us give a brief overview of our strategy for proving Theorem 1.1. First, we

use a Dresden formula [5, Formula (2)] to get an upper bound for a linear form
in three logarithms related to equation (1.4). After, we use a lower bound due to
Matveev to obtain an upper bound for m and n in terms of `. Very recently, Bravo

and Luca solved the equation F
(k)
n = 2m and for that they used a nice argument

combining some estimates together with the Mean Value Theorem (this can be seen
in pages 72 and 73 of [2]). In our case, we must use two times this Bravo and Luca
approach together with a reduction argument due to Dujella and Pethö to prove our
main theorem. In the final section, we present a program for checking the “small”
cases. The computations in the paper were performed using Mathematica R©.

We remark some differences between our work and the one by Bravo and Luca. In

their paper, the equation F
(k)
n = 2m was studied. By applying a key method, they

get directly an upper bound for |2m−2n−2|. In our case, the equation F
(k)
m −F (`)

n = c
needs a little more work, because it is necessary to apply two times their method to
get an upper bound for |2n−2 − 2m−2|. Moreover, they used a reduction argument
due to Dujella and Pethö to solve all small cases. In our work, we use a fast
Mathematica routine to deal with the “very” small cases.

2. Auxiliary results

In order to avoid unnecessary repetitions, throughout the paper the integers
m,n, k, ` are supposed to satisfy the conditions in the statement of Theorem 1.1.
First, we claim that if (m,n, `, k) is a solution of equation (1.4), then n < m. In fact,
to obtain a contradiction, suppose that m ≤ n. Thus, by using that the sequences

(F
(`)
n )n and (F

(`)
n )` are nondecreasing together with (1.4), we obtain F

(k)
m ≤ F

(`)
n

yielding

0 < c = F (k)
m − F (`)

n ≤ 0.

This absurdity gives n < m as desired.
Before proceeding further, we shall recall some facts and properties of these

sequences which will be used after.

We know that the characteristic polynomial of (F
(k)
n )n is

ψk(x) := xk − xk−1 − · · · − x− 1

and it is irreducible over Q[x] with just one zero outside the unit circle. That single
zero is located between 2(1− 2−k) and 2 (as can be seen in [12]). Also, in a recent

paper, G. Dresden [5, Theorem 1] gave a simplified “Binet-like” formula for F
(k)
n :

(2.1) F (k)
n =

k∑
i=1

αi − 1

2 + (k + 1)(αi − 2)
αn−1
i ,

for α = α1, . . . , αk being the roots of ψk(x). Also, it was proved in [3, Lemma 1]
that

(2.2) αn−2 ≤ F (k)
n ≤ αn−1, for all n ≥ 1,
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where α is the dominant root of ψk(x). Also, the contribution of the roots inside
the unit circle in formula (2.1) is almost trivial. More precisely, it was proved in
[5] that

(2.3) |F (k)
n − g(α, k)αn−1| < 1

2
,

where we adopt throughout the notation g(x, y) := (x− 1)/(2 + (y + 1)(x− 2)).
Now, we wish to find a lower bound for m in terms of n. In fact, by (1.4) and

(2.2),

(2.4) 2n−1 > φn−1 ≥ F (`)
n = F (k)

m + 1 > αm−2 > (
√

2)m−2 and so 2n > m,

where in the last inequality, we used that α > 3/2 >
√

2.
As another tool to prove Theorem 1.1, we still use a lower bound for a linear

form logarithms à la Baker and such a bound was given by the following result of
Matveev [8].

Lemma 2.1. Let γ1, . . . , γt be real algebraic numbers and let b1, . . . , bt be nonzero
rational integer numbers. Let D be the degree of the number field Q(γ1, . . . , γt) over
Q and let Aj be a positive real number satisfying

Aj ≥ max{Dh(γj), | log γj |, 0.16} for j = 1, . . . , t.

Assume that

B ≥ max{|b1|, . . . , |bt|}.
If γb11 · · · γ

bt
t 6= 1, then

|γb11 · · · γ
bt
t − 1| ≥ exp(−1.4 · 30t+3 · t4.5 ·D2(1 + logD)(1 + logB)A1 · · ·At).

As usual, in the above statement, the logarithmic height of an s-degree algebraic
number γ is defined as

h(γ) =
1

s
(log |a|+

s∑
j=1

log max{1, |γ(j)|}),

where a is the leading coefficient of the minimal polynomial of α (over Z) and
(γ(j))1≤j≤s are the conjugates of α (over Q).

After finding an upper bound on n which is general too large, the next step is to
reduce it. For that, our last ingredient is a variant of the famous Baker-Davenport
lemma, which is due to Dujella and Pethő [4, Lemma 5 (a)]. For a real number x,
we use ‖ x ‖= min{|x− n| : n ∈ N} for the distance from x to the nearest integer.

Lemma 2.2. Suppose that M is a positive integer. Let p/q be a convergent of the
continued fraction expansion of the irrational number γ such that q > 6M and let
A,B be some real numbers with A > 0 and B > 1. Let ε =‖ µq ‖ −M ‖ γq ‖, where
µ is a real number. If ε > 0, then there is no solution to the inequality

0 < mγ − n+ µ < A ·B−k

in positive integers m,n and k with

m ≤M and k ≥ log(Aq/ε)

logB
.

See Lemma 5, a.) in [4].
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3. The proof of Theorem 1.1

Note that in order to prove the Theorem 1.1, it suffices to show that Eq. (1.4)
has no solution when m > M (with M defined as in (1.5)). Thus suppose, towards
a contradiction, that (m,n, `, k) is a solution of Eq. (1.4) with m > M .

The first step is to find an upper bound for m (and so for n) in terms of `.
For that, we use (2.3) to get

|F (k)
m − g(α, k)αm−1| < 1

2
and |F (`)

n − g(φ, `)φn−1| < 1

2
,

where α and φ are the dominant roots of the recurrences (F
(k)
m )m and (F

(`)
n )n,

respectively. Combining these inequalities together with |F (`)
n − F

(k)
m | = c, we

obtain

(3.1) |g(φ, `)φn−1 − g(α, k)αm−1| < c+ 1

and so

(3.2)

∣∣∣∣ g(φ, `)φn−1

g(α, k)αm−1
− 1

∣∣∣∣ < c+ 1

g(α, k)αm−1
<

4(c+ 1)

αm−1
<

1

αm/2
,

where we used the facts that α(m−2)/2 > 4(c+ 1) (since m > c1) and g(α, k) > 1/4
(since α > 3/2, for k ≥ 2, and 2 + (k + 1)(α− 2) < 2). Thus (3.2) becomes

(3.3) |eΛ − 1| < 1

αm/2
,

where Λ := (n− 1) log φ+ log(g(φ, `)/g(α, k))− (m− 1) logα.
Now, we shall apply Lemma 2.1. To this end, take t := 3,

γ1 := φ, γ2 :=
g(φ, `)

g(α, k)
, γ3 := α

and

b1 := n− 1, b2 := 1, b3 := m− 1.

For this choice, we have D = [Q(α, φ) : Q] ≤ k` < `2. Also h(γ1) = (log φ)/` <
(log 2)/` < 0.7/` and similarly h(γ3) < 0.7/k. In [2, p. 73], an estimate for
h(g(α, k)) was given. More precisely, it was proved that

h(g(α, k)) < log(k + 1) + log 4.

Analogously,

h(g(φ, `)) < log(`+ 1) + log 4.

Thus

h(γ2) ≤ h(g(φ, `)) + h(g(α, k)) ≤ log(`+ 1) + log(k + 1) + 2 log 4,

where we used the well-known facts that h(xy) ≤ h(x) + h(y) and h(x) = h(x−1).
Also, in [2] was proved that |g(αi, k)| < 2, for all i = 1, . . . , k.

Since ` > k and m > n, we can take A1 = A3 := 0.7`, A2 := 2`2 log(4`+ 4) and
B := m− 1.

Before applying Lemma 2.1, it remains us to prove that eΛ 6= 1. Suppose,
towards a contradiction, the contrary, i.e., g(α, k)αm−1 = g(φ, `)φn−1 ∈ Q(φ). So,
we can conjugate this relation in Q(φ) to get

g(αsi , k)αm−1
si = g(φi, `)φ

n−1
i , for i = 1, . . . , `,
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where αsi are the ` conjugates of α over Q(φ). Since g(α, k)αm−1 has at most k
conjugates (over Q), then each number in the list {g(αsi , k)αm−1

si : 1 ≤ i ≤ `} is
repeated at least `/k > 1 times. In particular, there exists t ∈ {2, . . . , `}, such that
g(αs1 , k)αm−1

s1 = g(αst , k)αm−1
st . Thus, g(φ, `)φn−1 = g(φt, `)φ

n−1
t and then(

7

4

)n−1

< φn−1 =

∣∣∣∣g(φt, `)

g(φ, `)

∣∣∣∣ |φt|n−1 < 8,

where we used that φ > 2(1 − 2−`) ≥ 7/4, |g(φt, `)| < 2 < 8|g(φ, `)| and |φt| < 1
for t > 1. However, the inequality (7/4)n−1 < 8 holds only for n = 1, 2, 3, 4, but
this gives an absurdity, since n > `+ 1 ≥ 3 + 1 = 4. Therefore eΛ 6= 1.

Now, the conditions to apply Lemma 2.1 are fulfilled and hence

|eΛ − 1| > exp(−1.5 · 1011`8(1 + 2 log `) log(4`+ 4)(1 + log(m− 1)))

Since, 1 + 2 log ` ≤ 3 log `, 4`+ 4 < `2.6 (for ` ≥ 3) and m− 1 < m1.1, we have that

(3.4) |eΛ − 1| > exp(−2.64 · 1012`8 log2 ` logm))

By combining (3.3) and (3.4), we get

m

logm
< 1.33 · 1013`8 log2 `,

where we used that logα > 0.4. Since the function x/ log x is increasing for x > e,
it is a simple matter to prove that

(3.5)
x

log x
< A implies that x < 2A logA.

A proof for that can be found in [2, p. 74].
Thus, by using (3.5) for x := m and A := 1.33 · 1013`8 log2 `, we have that

m < 2(1.33 · 1013`8 log2 `) log(1.33 · 1013`8 log2 `).

Now, the inequality 31 + 2 log log ` < 29 log `, for ` ≥ 3, yields

log(1.33 · 1013`8 log2 `) < 31 + 8 log `+ 2 log log ` < 37 log `.

Therefore

(3.6) m < 9.9 · 1014`8 log3 `.

The next step is to find an upper bound for ` in terms of k. For that, consider
` ≤ 240, then the inequality (3.6) yields m < 1.8 · 1036, contradiction with the fact
that m > M . Thus, we may assume that ` > 240. Therefore

(3.7) n < 9.9 · 1014`8 log3 ` < 2`/2,

where we used (3.6) and the fact that n < m. Now, we shall use a key argument
due to Bravo and Luca [2, p. 72-73]. However, for the sake of completeness and
because one needs a slight modification in its final part, we shall present their nice
idea.

Setting λ = 2−φ, we deduce that 0 < λ < 1/2`−1 (because 2(1− 2−`) < φ < 2).
So

φn−1 = (2− λ)n−1 = 2n−1

(
1− λ

2

)n−1

> 2n−1(1− (n− 1)λ),
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since that the inequality (1 − x)n > 1 − 2nx holds for all n ≥ 1 and 0 < x < 1.
Moreover, (n− 1)λ < 2`/2/2`−1 = 2/2`/2 and hence

2n−1 − 2n

2`/2
< φn−1 < 2n−1 +

2n

2`/2
,

yielding

(3.8) |φn−1 − 2n−1| < 2n

2`/2
.

Now, we define for x > 2(1− 2−`) the function f(x) := g(x, `) which is differen-
tiable in the interval [φ, 2]. So, by the Mean Value Theorem, there exists ξ ∈ (φ, 2),
such that f(φ)− f(2) = f ′(ξ)(φ− 2). Thus

(3.9) |f(φ)− f(2)| < 2`

2`
,

where we used the bounds |φ − 2| < 1/2`−1 and |f ′(ξ)| < `. For simplicity, we
denote δ = φn−1−2n−1 and η = f(φ)−f(2) = f(φ)−1/2. After some calculations,
we arrive at

2n−2 = f(φ)φn−1 − 2n−1η − δ

2
− δη.

Therefore

|2n−2 − g(α, k)αm−1| ≤ |f(φ)φn−1 − g(α, k)αm−1|+ 2n−1|η|+
∣∣∣∣δ2
∣∣∣∣+ |δη|

≤ c+ 1 +
2n`

2`
+

2n−1

2`/2
+

2n+1`

23`/2
,

where we used (3.8) and (3.9). Since n > `+ 2, one has that 1 < 2n−2/2`/2 and we
rewrite the above inequality as

|2n−2 − g(α, k)αm−1| < (c+ 1)
2n−2

2`/2
+

(
4`

2`/2

)
2n−2

2`/2
+ 2 · 2n−2

2`/2
+

(
8`

2`

)
2n−2

2`/2
.

Since the inequalities 4` < 8` < 2`/2 < 2` hold for all ` > 240 (actually, they hold
for ` > 13), then

(3.10) |2n−2 − g(α, k)αm−1| < (c+ 5) · 2n−2

2`/2
<

2n−2

2`/4
,

where we used that 2`/4 > c + 5. This follows because ` > c2 (in fact, on the
contrary, we can use (3.6) to get M < m < 9.9 · 1014c82 log3 c2).

Equivalently, we have

(3.11) |1− g(α, k)αm−12−(n−2)| < 1

2`/4
.

For applying Lemma 2.1, it remains us to prove that the left-hand side of (3.11)
is nonzero, or equivalently, 2n−2 6= g(α, k)αm−1. To obtain a contradiction, we
suppose the contrary, i.e., 2n−2 = g(α, k)αm−1. By conjugating the previous rela-
tion in the splitting field of ψk(x), we obtain 2n−2 = g(αi, k)αm−1

i , for i = 1, . . . , k.
However, when i > 1, |αi| < 1 and |g(αi, k)| < 2. But this leads to the following
absurdity

2n−2 = |g(αi, k)||αi|m−1 < 2,
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since n > 4. Therefore g(α, k)αm−12−(n−2) 6= 1 and then we are in position to
apply Lemma 2.1. For that, take t := 3,

γ1 := g(α, k), γ2 := α, γ3 := 2

and

b1 := 1, b2 := m− 1, b3 := −(n− 2).

By some calculations made in Section 2, we see that A1 := k log(4k + 4), A2 =
A3 := 0.7 are suitable choices. Moreover D = k and B = m− 1. Thus
(3.12)

|1− g(α, k)αm−12−(n−2)| > exp(−D′ · k3(1 + log k)(1 + log(m− 1)) log(4k + 4)),

where we can take D′ = 0.75 · 1011. Combining (3.11) and (3.12) together with a
straightforward calculation, we get

(3.13) ` < 2.16 · 1012k3 log2 k logm.

On the other hand, m < 9.9 · 1014`8 log3 ` (by (3.6)) and so

(3.14) logm < log(9.9 · 1014`8 log3 `) < 41 log `,

where we used that 35 + 3 log log ` < 33 log `. Turning back to inequality (3.13), we
obtain

`

log `
< 8.9 · 1013k3 log2 k

which implies, by (3.5), that

` < 2(8.9 · 1013k3 log2 k) log(8.9 · 1013k3 log2 k).

Since log(8.9 · 1013k3 log2 k) < 47 log k, we finally get the inequality

(3.15) ` < 8.4 · 1015k3 log3 k.

Now, if k ≤ 1640, then ` < 2 · 1028 (by (3.15)). Thus, by (3.6), one has that
m < 7.1 · 10246 which is not possible, because m > M .

Therefore, we may suppose that k > 1640. The inequality ` < 8.9 · 1015k3 log3 k
together with (3.6) yield

m < 9.9 · 1014(8.9 · 1015k3 log3 k)8 log3(8.9 · 1015k3 log3 k)

< 1.9 · 10146k24 log27 k < 2k/2,

where the last inequality holds only because k > 1640. Now, we use again the key
argument of Bravo and Luca to conclude that

(3.16) |2m−2 − g(φ, `)φn−1| < 2m−2

2k/4
,

because k > c2 (on the contrary, we substitute k ≤ c2 respectively in (3.15) and
(3.6) to obtain an upper bound for m less than M). Combining (3.10), (3.16) and
(3.1), we get

|2n−2 − 2m−2| ≤ |2n−2 − g(α, k)αn−1|+ |g(α, k)αn−1 − g(φ, `)φn−1|
+|2m−2 − g(φ, `)φn−1|

<
2n−2

2`/4
+ c+ 1 +

2m−2

2k/4
<

3 · 2m−2

2k/4
,
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since n < m, k < `,m > k + 1 and c + 1 < 2k/2 (on the contrary, k ≤ 2 log(c +
1)/ log 2 < c2). Therefore

(3.17) |2n−m − 1| < 3

2k/4
.

Since n ≤ m− 1, then

1

2
≤ 1− 2n−m = |2n−m − 1| < 3

2k/4
.

Thus 2k/4 < 6 yielding k ≤ 10, but this leads to an absurdity, since k > 1640. With
this contradiction, we complete the proof of Theorem 1.1. �

4. The proof of Theorem 1.2

First, we claim that n < m. To derive a contradiction, suppose that m ≥ n.

Then Eq. (1.6) gives F
(`)
n ≤ F

(k)
m + 1. However F

(k)
m + 1 < F

(k+1)
m , for m > k + 2.

In fact, since (F
(`)
n )` is nondecreasing, then it suffices to prove this inequality for

m = k + 3. This holds because

F
(k+1)
k+3 = 2k+1 − 1 > 2k+1 − 2 = F

(k)
k+3 + 1.

Thus, we obtain the following absurdity

F (`)
n ≤ F (k)

m + 1 < F (k+1)
m ≤ F (`)

n ,

where we used that the sequences (F
(`)
n )n and (F

(`)
n )` are nondecreasing. Therefore,

m > n as claimed and we can follow the proof of Theorem 1.1. Summarizing, the
previous theorem (for c = 1) ensures that the possible solutions (m,n, k, `) of Eq.
(1.6) must satisfy

m < 8 · 10246,

where we used that c1 < 5.47, c2 < 2.74 and then 1.9 ·10146c24
2 log27 c2 < 6.4 ·10156.

Since this upper bound on max{m,n, `, k} is too large, we need to use Lemma
2.2.

We recall that 2 ≤ k ≤ 1640, then ` < 2 · 1028 and n < m < 7.1 · 10246. In order
to use the Lemma 2.2, we rewrite (3.11) as

|eΘ − 1| < 1

2`/4
,

where Θ := (m − 1) logα − (n − 2) log 2 + log g(α, k). Recall that we proved that
eΘ 6= 1 (the paragraph below (3.11)) and so Θ 6= 0.

If Θ > 0, then Θ < eΘ − 1 < 1/2`/4. In the case of Θ < 0, we use 1 − e−|Θ| =
|eΘ − 1| < 1/2`/4 to get e|Θ| < 1/(1− 2−`/4). Thus

|Θ| < e|Θ| − 1 <
2−`/4

1− 2−`/4
< 2−`/4+1.5,

where we used that 1/(1 − 2−`/4) < 21.5, for ` ≥ 3. Summarizing, the further
arguments work for Θ > 0 and Θ < 0 in a very similar way.

Thus, to avoid unnecessary repetitions we shall consider only the case Θ > 0.
For that, we have

0 < (m− 1) logα− (n− 2) log 2 + log g(α, k) < (
4
√

2)−`

and then

(4.1) 0 < (m− 1)γk − (n− 2) + µk < 1.45 · ( 4
√

2)−`,
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with γk := logα(k)/ log 2 and µk := log g(α(k), k)/ log 2. Here, we added the super-
script to α for emphasizing its dependence on k.

We claim that γk is irrational, for any integer k ≥ 2. In fact, if γk = p/q, for
some positive integers p and q, we have that 2p = (α(k))q and as before we can
conjugate this relation by some automorphism of the Galois group of the splitting

field of ψk(x) over Q to get 2p < |(α(k)
i )q| < 1, for i > 1, which is an absurdity,

since p ≥ 1. Let qn,k be the denominator of the n-th convergent of the continued

fraction of γk. Taking Mk := 1.9 · 10146k24 log27 k ≤ M1640 < 7.1 · 10246, we use
Mathematica to get

min
2≤k≤1640

q650,k > 6 · 10308 > 6M1640.

Also

max
2≤k≤1640

q650,k < 2 · 101112.

Define εk :=‖ µkq650,k ‖ −Mk ‖ γkq650,k ‖, for 2 ≤ k ≤ 1640, we get

min
2≤k≤1640

εk > 5.2 · 10−169.

Note that the conditions to apply Lemma 2.2 are fulfilled for A = 1.45 and
B = 4

√
2, and hence there is no solution to inequality (4.1) (and then no solution

to the Diophantine equation (1.4)) for m and ` satisfying

m < Mk < 7.1 · 10246 and ` ≥ log(Aq650,k/εk)

logB
.

Since m < Mk (for 2 ≤ k ≤ 1640), then

` <
log(Aq650,k/εk)

logB
≤ log(1.45 · 2 · 101112/5.2 · 10−169)

log 4
√

2
< 17014.18 . . . .

Therefore 2 ≤ k ≤ 1640 and k < ` ≤ 17014. Now, by applying (3.6), we obtain
n < m < 6.5 · 1051.

To deal with these remaining cases, we prepared the following Mathematica
routine

nn = 17014;

f = 2^(Range[nn] + 1) - 3;

f[[1]] = Infinity;

cnt = 0;

seq = Table[

Join[2^(Range[i - 2] + 1), {2^i - 1}, {2^(i + 1) - 3}], {i, 1, nn}];

seq[[1]] = {1};

done = False;

While[! done, fMin = Min[f];

pMin = Flatten[Position[f, fMin]];

f[[pMin[[1]]]] = fMin + 1;

sMin = Flatten[Position[f, fMin + 1]];

If[Length[sMin] > 1, Print[{fMin + 1, sMin}]];

Do[k = sMin[[1]];

s = Plus @@ seq[[k]];

seq[[k]] = RotateLeft[seq[[k]]];

seq[[k, k]] = s;

f[[k]] = s, {i, Length[sMin]}];



THE EQUATION F (k)
m − F (`)

n = c 11

cnt++;

done = (fMin > 6.5*10^(51))]; cnt

It returns us {56, {2, 4}} which corresponds to the only solution (m,n, `, k) =
(10, 8, 4, 2). The calculations in this paper took roughly 8 days on 2.5 GHz In-
tel Core i5 4GB Mac OSX. The proof is complete. �
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