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Abstract. Let Fn be the nth Fibonacci number. The order of appearance z(n) of a natural
number n is defined as the smallest natural number k such that n divides Fk. In 1975, J.
Sallé proved that z(n) ≤ 2n, for all positive integers n. In this paper, we shall provide sharper
upper bounds for z(n) which are substantially smaller than 2n for some values of n. Moreover,
we shall prove that

lim inf
n→∞

z(n)

n
= 0.

1. Introduction

Let (Fn)n≥0 be the Fibonacci sequence given by Fn+2 = Fn+1 +Fn, for n ≥ 0, where F0 = 0
and F1 = 1. These numbers are well-known for possessing amazing properties (consult [6]
together with its very extensive annotated bibliography for additional references and history).

The study of the divisibility properties of Fibonacci numbers has always been a popular
area of research. For example, it is still an open problem to decide if there are infinitely many
primes in that sequence. Let n be a positive integer, the order (or rank) of appearance of n
in the Fibonacci sequence, denoted by z(n), is defined as the smallest positive integer k, such
that n | Fk (some authors also call it order of apparition, or Fibonacci entry point). This
function can be implemented in Mathematica [22] as

z[n_]:=Catch[Do[i;If[Mod[Fibonacci[i],n]==0,Throw[i]],{i,2*n}]]

There are several results about z(n) in the literature. For instance, in 1878, E. Lucas
showed that z(n) < ∞ for all n ≥ 1. The proof of this fact is an immediate consequence
of the Théorème Fondamental of Section XXVI in [8, p. 300]. We remark that there is no
known closed formula for z(n) and so Diophantine equations related to z(n) are one of the best
tools for understanding its behavior. This function gained great attention in 1992, when Z.
H. Sun and Z. W. Sun [20] proved that to show that all solutions of the Diophantine equation
z(n) = z(n2) are composite numbers, would imply the Fermat’s Last Theorem. It is known
that there are no prime solutions when n < 3.23 · 1015 (PrimeGrid Project, May 2012).

Recently, the author wrote a series of papers related to z(n). We refer the reader to [9, 10,
11, 12, 14] for explicit formulas for the order of appearance of integers related to Fibonacci
and Lucas numbers, such as Fm ± 1, FnFn+1Fn+2, F

k
n and LnLn+1Ln+2. Also, solutions for

the Diophantine equation z(n) = n+ `, with ` ≥ 0, were studied in [13, 15, 16]. For instance,
for ` = 0, the solutions are of the form 5k or 12 · 5k (k ≥ 0), for ` = 1, the solutions are prime
numbers and for ` = 2, the only solution is n = 4.

Concerning upper bounds for z(n), one can apply Dirichlet’s Box Principle to get the bound
z(n) ≤ (n− 1)2 + 1 (see [21, Theorem, p. 52]). In the case of a prime number p, one has the
better bound z(p) ≤ p+ 1.
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In 1975, J. Sallé [18] proved that z(n) ≤ 2n, for all positive integers n. This is the sharpest
upper bound for z(n), since for example, z(6) = 12 and z(30) = 60. Actually, proceeding
along the same lines as the proof of Theorem 1.1 of [13], one obtains that

z(n) = 2n if and only if n = 6 · 5k, for k ≥ 0. (1.1)

However, apart from these cases this upper bound is very weak. For instance, z(3731) =
280 < 0.08 · 3731. We still remark that Sallé’s proof depends, strongly, on a result due to
Carmichael [2, Theorem XIII].

In this paper, we shall combine a refinement of the method in [18] together with the author’s
approach [13] (using formulae for the p-adic order of Fibonacci numbers) to get substantially
better upper bounds for z(n), when n 6= 6 · 5k is a composite number. This proof does not
depend on the Carmichael result. Moreover, the improvement depends on the number of
distinct prime factors of n, denoted by ω(n). Our main results are the following:

Theorem 1.1. We have

(i) z(2k) = 3 · 2k−2 (for k ≥ 3), z(3k) = 4 · 3k−1 (for k ≥ 1) and z(5k) = 5k (for k ≥ 0).
(ii) If p > 5 is a prime, then

z(pk) ≤
(
p−

(
5

p

))
pk−1, for k ≥ 1,

where, as usual, (aq ) denotes the Legendre symbol of a with respect to a prime q > 2.

For the cases when ω(n) ≥ 2, we proved that

Theorem 1.2. Let n be an odd integer with ω(n) ≥ 2, then

z(n) ≤ 2 ·
(

2

3

)ω(n)−δn
n,

where

δn =

{
0, if 5 - n;
1, if 5 | n.

Theorem 1.3. Let n be an even integer with ω(n) ≥ 2, we have that

(i) If ν2(n) ≥ 4, then

z(n) ≤ 3

4
·
(

2

3

)ω(n)−δn−1
n.

(ii) If ν2(n) = 1, then

z(n) ≤


3n/2, if ω(n) = 2 and 5 | n;

2n, if ω(n) = 2 and 5 - n;

3 · (2/3)ω(n)−δn−1n, if ω(n) > 2.

(iii) If ν2(n) ∈ {2, 3}, then

z(n) ≤


3n/2, if ω(n) = 2 and 5 | n;

n, if ω(n) = 2 and 5 - n;

(2/3)ω(n)−δn−2n, if ω(n) > 2,

where ν2(n) is the 2-adic valuation.
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We organize the paper as follows. In Section 2, we will recall some useful properties of
Fibonacci numbers such as a result concerning the p-adic order of Fn. Section 3 will be
devoted to the proof of theorems. In the last section, we shall discuss the behavior of z(n)/n
when n increases.

2. Auxiliary results

Before proceeding further, we state some facts on Fibonacci numbers for the convenience of
the reader.

Lemma 2.1. We have

(a) n | m if and only if Fn | Fm.
(b) Fp−( 5

p
) ≡ 0 (mod p), for all primes p.

Proofs of these assertions can be found in [6]. We refer the reader to [1, 5, 17] for more
details and additional bibliography.

The second lemma is a consequence of the previous one.

Lemma 2.2. (Cf. Lemma 2.2 (c) of [10]) If n | Fm, then z(n) | m.

Note that Lemma 2.1 (b) and Lemma 2.2 implies that z(p) divides p− (5/p), for all primes
p. In particular, z(p) ≤ p+ 1 for all primes p.

The p-adic order (or valuation) of r, νp(r), is the exponent of the highest power of a
prime p which divides r. Throughout the paper, we shall use the known facts that νp(ab

ε) =
νp(a) + ενp(b), for ε ∈ {−1, 1}, and that a | b if and only if νp(a) ≤ νp(b), for all primes p.

We remark that the p-adic order of Fibonacci numbers was completely characterized, see
[4, 7]. For instance, from the main results of Lengyel [7], we extract the following result.

Lemma 2.3. For n ≥ 1, we have

ν2(Fn) =


0, if n ≡ 1, 2 (mod 3);
1, if n ≡ 3 (mod 6);
3, if n ≡ 6 (mod 12);

ν2(n) + 2, if n ≡ 0 (mod 12),

ν5(Fn) = ν5(n), and if p is prime 6= 2 or 5, then

νp(Fn) =

{
νp(n) + νp(Fz(p)), if n ≡ 0 (mod z(p));

0, if n 6≡ 0 (mod z(p)).

A proof for this result can be found in [7].
As usual, from now on we use the well-known notation [a, b] = {a, a+ 1, . . . , b}, for integers

a < b.
Now we are ready to deal with the proofs of our results.

3. The proofs

3.0.1. Proof of Theorem 1.1. (i) By Theorem 1.1 of [12], we have that z(F kn ) = nF k−1n /2, for
k ≥ 3 and n ≡ 3 (mod 6), and also z(F k+1

n ) = nF kn , for k ≥ 0 and n 6≡ 3 (mod 6). Since
2 = F3, 3 = F4 and 5 = F5, one can easily use the previous formulas to get the desired result.

(ii) By Lemma 2.2, it suffices to prove that pk | F(p−(5/p))pk−1 . This follows from the fact that

νp(F(p−(5/p))pk−1) = νp((p− (5/p))pk−1) + νp(Fz(p))

= k − 1 + νp(Fz(p)) ≥ k = νp(p
k).
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where we used Lemma 2.3 together with νp(Fz(p)) ≥ 1. �

3.0.2. Proof of Theorem 1.2. Write n = 5apa11 · · · p
ak
k , where pi /∈ {2, 5} is prime (pi 6= pj , if

i 6= j) and ai ≥ 1, for all i ∈ [1, k]. Setting zi = pi − (5/pi), we have that z(pi) | zi, for
i ∈ [1, k]. We claim that n | Fm, where

m := 2 · 5a
(
z1p

a1−1
1

2

)
· · ·

(
zkp

ak−1
1

2

)
.

Note that m is well defined, because zi is even for all i ∈ [1, k]. Since 5a, pa11 , . . . , p
ak
k are

pairwise coprime and 5a | Fm (keep in mind that ν5(Fm) = ν5(m) = a), it suffices to prove
that pi | Fm, or equivalently, νpi(Fm) ≥ ai, for all i ∈ [1, k]. First, observe that z(pi) | m,
because m can be written as

5a

(
z1p

a1−1
1

2

)
· · · (zipai−1i ) · · ·

(
zkp

ak−1
1

2

)
.

Therefore, Lemma 2.3 gives

νpi(Fm) = νpi(m) + νpi(Fz(pi)) = ai − 1 +
k∑
j=1

νpi(zj) + νpi(Fz(pi)) ≥ ai.

Thus n | Fm and so z(n) ≤ m (by Lemma 2.2). However,

m

n
= 2 ·

(
z1
2p1

)
. . .

(
zk
2pk

)
≤ 2 ·

(
p1 + 1

2p1

)
. . .

(
pk + 1

2pk

)
≤ 2 ·

(
2

3

)k
,

where we used that z(pi) ≤ pi + 1 and that (pi + 1)/2pi ≤ 2/3 (since pi ≥ 3). The previous
inequality together with that fact that ω(n) = k + δn yields

z(n) ≤ m ≤ 2 ·
(

2

3

)ω(n)−δn
n.

�

3.0.3. Proof of Theorem 1.3. (i) If n = 2a5bpa11 · · · p
ak
k , we choose

m := 3 · 2a−2 · 5b
(
z1p

a1−1
1

2

)
· · ·

(
zkp

ak−1
1

2

)
.

Proceeding as in the proof of Theorem 1.2, one has that 5bpa11 · · · p
ak
k | Fm. In order to prove

that n | Fm, it is therefore enough to show that 2a divides Fm. Indeed, since a ≥ 4, then
12 | m and Lemma 2.3 yields

ν2(Fm) = ν2(m) + 2 = a+

k∑
j=1

(ν2(zj)− 1) ≥ a = ν2(2
a),

where we used that ν2(zi) ≥ 1, for all i ∈ [1, k]. As in the previous section, we get

m

n
≤ 3

4
·
(

2

3

)k
.

The result follows because z(n) ≤ m and ω(n) = k + 1 + δn.
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(ii) and (iii) These items can be proved similarly, by suitable choices of m in each case. The
only case requiring further analysis occurs when ν2(n) ∈ {2, 3} and ω(n) > 2. For that, we
have n = 2a5bpa11 · · · p

ak
k (a ∈ {2, 3}) while m can be chosen as

3 · 2a−1 · 5b
(
z1p

a1−1
1

2

)
· · ·

(
zkp

ak−1
1

2

)
.

Since a− 1 ≥ 1, then 6 | n and Lemma 2.3 gives

ν2(Fm) ≥ 3 ≥ a = ν2(n).

The upper bound for m/n is (3/2) · (2/3)k = (2/3)k−1 and the result follows since ω(n) =
k + 1 + δn.

The proof of Theorem 1.3 is then complete. �

4. On the behavior of z(n)/n

In this section, we shall discuss the quotient z(n)/n, for n ≥ 1. A few approximated values
of this sequence are

1, 1.5, 1.333, 1.5, 1, 2, 1.142, 0.75, 1.333, 1.5, 0.909, 1, 0.538, 1.714, 1.333, . . . .

Clearly this sequence is not convergent (since z(2k)/2k = 3/4 and z(3k)/3k = 4/3, for all
k ≥ 3). However, using the equivalence in (1.1) together with the fact that z(n)/n ≤ 2, for all
n, we deduce that

lim sup
n→∞

z(n)

n
= 2.

But what is the value of lim inf z(n)/n? Our final result provides an answer to this question.

Proposition 4.1. We have that

lim inf
n→∞

z(n)

n
= 0.

Before the proof, we recall that pn# denotes the nth primorial number which is defined as
the product of the first n prime numbers. For instance, the values of pn# for n ∈ [1, 10] are

2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, . . .

which is the OEIS [19] sequence A002110. To the best of our knowledge, the name primorial
was coined in 1987 by Dubner [3].

Proof. Since z(n)/n ≥ 0, then it suffices to prove that limn→∞ z(pn#)/pn# = 0. For that,
note that Theorem 1.3 (ii) implies that z(pn#) ≤ 3 · (2/3)n−2pn#, for all n > 2 and therefore

0 ≤ z(pn#)

pn#
≤ 3 ·

(
2

3

)n−2
holds for all n > 2. Since limn→∞(2/3)n−2 = 0, the Squeeze Theorem gives

lim
n→∞

z(pn#)

pn#
= 0

and the proof is complete. �

For example, z(n) < n/2013 if

n = p24 = 23768741896345550770650537601358310.
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This shows that our bounds are effectively much better than 2n, mainly when ω(n) is large.
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[22] Wolfram Research, Inc., Mathematica, Version 7.0, Champaign, IL (2008).
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