90. A raiz n-ésima de n!

(a) Mostre que $\lim_{n\to\infty} (2n\pi)^{1/(2n)} = 1$ e, portanto, usando a aproximação de Stirling (Capítulo 8, Volume I, Exercício adicional 50, item (a)), que

 $\sqrt[n]{n!} \approx \frac{n}{e}$ para valores grandes de n.

- (b) Teste a aproximação no item (a) para n = 40, 50, 60, ..., até onde sua calculadora permitir.
- 91. (a) Presumindo que $\lim_{n\to\infty} (1/n^c) = 0$ se c for qualquer constante positiva, mostre que

$$\lim_{n\to\infty}\frac{\ln n}{n^c}=0$$

se c for qualquer constante positiva.

- (b) Prove que $\lim_{n\to\infty} (1/n^c) = 0$ se c for qualquer constante positiva. (*Sugestão*: Se $\epsilon = 0,001$ e c = 0,04, de quanto deve ser N para assegurar que $|1/n^c 0| < \epsilon$ se n > N?)
- 92. **O teorema da seqüência intercalada** Prove o teorema da seqüência intercalada para seqüências: se tanto $\{a_n\}$ quanto $\{b_n\}$ convergem para L, então a seqüência

$$a_1, b_1, a_2, b_2, \ldots, a_n, b_n \ldots$$

converge para L.

- 93. Prove que $\lim_{n\to\infty} \sqrt[n]{n} = 1$.
- 94. Prove que $\lim_{n\to\infty} x^{1/n} = 1$, (x > 0).
- 95. Prove o Teorema 2. 96. Prove o Teorema 3.

Nos exercícios 97–100, determine se a seqüência é crescente e se possui um limitante superior.

97.
$$a_n = \frac{3n+1}{n+1}$$

98.
$$a_n = \frac{(2n+3)!}{(n+1)!} \frac{\triangle_{n+1}}{\otimes_{n}}$$

99.
$$a_n = \frac{2^n 3^n}{n!}$$

100.
$$a_n = 2 - \frac{2}{n} - \frac{1}{2^n}$$

Quais das seqüências nos exercícios 101–106 convergem? Quais divergem? Justifique as suas respostas.

101.
$$a_n = 1 - \frac{1}{n}$$

102.
$$a_n = n - \frac{1}{n}$$

103.
$$a_n = \frac{2^n - 1}{2^n}$$

104.
$$a_n = \frac{2^n - 1}{3^n}$$

105.
$$a_n = ((-1)^n + 1) \left(\frac{n+1}{n}\right)$$

106. O primeiro termo de uma seqüência é $x_1 = \cos(1)$. Os termos seguintes são $x_2 = x_1$ ou $\cos(2)$, o que for maior; e $x_3 = x_2$ ou $\cos(3)$, o que for maior (mais à direita). Em geral,

$$x_{n+1} = \max\{x_n, \cos(n+1)\}$$

107. Seqüências decrescentes Uma seqüência de números $\{a_n\}$ na qual $a_n \ge a_{n+1}$ para todo n é chamada seqüência decrescente. Uma seqüência $\{a_n\}$ é limitada inferiormente se existe um número M tal que $M \le a_n$ para todo n. O número M é um limitante inferior para a seqüência. A partir do Teorema 6, prove que uma seqüência decrescente limitada inferiormente converge e que uma seqüência decrescente que não é limitada inferiormente diverge.

(Continuação do Exercício 107) Utilizando a conclusão do Exercício 107, determine quais das seqüências nos exercícios 108–112 convergem e quais divergem.

108.
$$a_n = \frac{n+1}{n}$$

109.
$$a_n = \frac{1 + \sqrt{2n}}{\sqrt{n}}$$

110.
$$a_n = \frac{1-4^n}{2^n}$$

111.
$$a_n = \frac{4^{n+1} + 3^n}{4^n}$$

112.
$$a_1 = 1$$
, $a_{n+1} = 2a_n - 3$

- 113. A seqüência $\{n/(n+1)\}$ tem menor limitante superior igual a 1 Mostre que se M é um número menor que 1, então os termos de $\{n/(n+1)\}$ podem acabar excedendo o valor de M. Portanto, se M < 1 existe um inteiro N tal que n/(n+1) > M para todo n > N. Como n/(n+1) < 1 para todo n, isso prova que 1 é o menor limitante superior para $\{n/(n+1)\}$.
- 114. Unicidade dos menores limitantes superiores Prove que se M_1 e M_2 são os menores limitantes superiores para a seqüência $\{a_n\}$, então $M_1=M_2$. Sendo assim, uma seqüência não pode ter dois limitantes superiores diferentes.
- 115. É verdade que uma seqüência $\{a_n\}$ de números positivos limitada superiormente deve convergir? Justifique sua resposta.
- 116. Prove que, se $\{a_n\}$ é uma seqüência convergente, então para cada número positivo ϵ corresponde um inteiro N tal que para todo m e n

$$m > N$$
 e $n > N$ $\Rightarrow |a_m - a_n| < \epsilon$.

- 117. **Unicidade de limites** Prove que limites de seqüências são únicos. Ou seja, mostre que, se L_1 e L_2 forem números tais que $a_n \rightarrow L_1$ e $a_n \rightarrow L_2$, então $L_1 = L_2$.
- 118. Limites e subseqüências Se os termos de uma seqüência aparecem em outra seqüência na ordem dada, chamamos a primeira seqüência de subseqüência da segunda. Prove que, se duas subseqüências de uma seqüência $\{a_n\}$ possuem limites diferentes $L_1 \neq L_2$, então $\{a_n\}$ divergirá.
- 119. Para uma seqüência $\{a_n\}$, os termos de índices pares são denotados como a_{2k} e os termos de índices ímpares, como a_{2k+1} . Prove que, se $a_{2k} \to L$ e $a_{2k+1} \to L$, então $a_n \to L$.
- 120. Prove que uma sequência $\{a_n\}$ converge para 0 se e somente se a sequência de valores absolutos $\{|a_n|\}$ converge para 0.