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Abstract. The nominal approach allows us to extend first-order syntax
and represent smoothly systems with variable bindings using, instead
of variables, nominal atoms and dealing with renaming through per-
mutations of atoms. Nominal unification is, therefore, the extension of
first-order unification modulo α-equivalence by taking into account this
nominal setting. In this work, we present a specification of a nominal C-
unification algorithm (nominal unification with commutative operators)
in PVS and discuss aspects about the proofs of soundness and complete-
ness. Additionally, the algorithm has been implemented in Python. In re-
lation to the only known specification of nominal C-unification, there are
two novel features in this work: first, the formalization of a functional al-
gorithm that can be directly executed (not just a set of non-deterministic
inference rules); second, simpler proofs of termination, soundness and
completeness, due to the reduction in the number of parameters of the
lexicographic measure, from four parameters to only two.

Keywords: Nominal Terms, Nominal C-Unification, Verification of Func-
tional Specifications

1 Introduction

The nominal approach allows us to extend first-order syntax and represent
smoothly systems with bindings, which are frequent in computer science and
mathematics. However, in order to represent bindings correctly, α-equivalence
must be taken into account. For instance, despite their syntactical difference,
the formulas ∃x : x < 0 and ∃z : z < 0 should be considered equivalent. The
nominal theory allows us to deal with these bindings in a natural way, using
atoms, atom permutations and freshness constraints, instead of using indices as
in explicit substitutions à la de Bruijn (e.g. [19], [14]).
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On the other hand, unification is an important problem in first-order theo-
ries, with applications to logic programming systems, type inference algorithms,
theorem provers and so on (e.g. [12]). Since unification is essential for equational
reasoning, the development of unification techniques for nominal logic has been
an attractive area of research since the invention of the nominal approach.

The problem of nominal unification has been solved by Urban et al. ([22]),
with further research being developed on algorithm improvements to solve this
problem (e.g. [10], [17]). The area now also focuses on elaborating extensions of
nominal unification (e.g [20], [16], [9]), among them nominal unification modulo
equational theories (e.g. [2], [1], [5], [3]). Here, we consider nominal unification
modulo commutative function symbols (nominal C-unification, for short).

Related Work. Nominal unification was first solved by Urban et al. in [22], by
proposing a set of transformation rules and showing, using Isabelle/HOL, their
correctness and completeness [21]. An alternative specification of nominal unifi-
cation, as a function that maps (solvable) problems to solutions, was formalised
in PVS and proved sound and complete [6]. This work brought two new perspec-
tives to the problem. The first is the specification of a functional algorithm for
nominal unification, not a set of inference rules, which made the specification
closer to the implementation. The second is the separate treatment of freshness
constraints and equational constraints. Both ideas are used in this paper.

Nominal C-unification extends nominal unification to handle commutative
function symbols. Using the Coq proof assistant, a set of non-deterministic trans-
formation rules to solve nominal C-unification problems, in the style of Urban
et al. [21], was shown correct and complete [2].

Contribution. In this paper, we present the first (to our knowledge) functional
nominal C-unification algorithm and formalize its correctness and completeness
using the proof assistant PVS. We emphasize the most interesting aspects of its
formalization.

Although there is one other specification ([2]) for nominal C-Unification, the
approaches taken are different. In [2], a set of rules that gradually transforms the
nominal C-unification problem into simpler ones is presented. Here, by contrast,
we develop a recursive algorithm, specified and formalized in PVS and imple-
mented in Python, not a set of inference rules. The advantage of this approach
is that the algorithm can be executed, while the set of inference rules, specified
through inductive definitions cannot, because it is non-deterministic.

As mentioned previously, [6] gave us a nominal unification algorithm and a
new insight about the problem: the possibility to handle freshness constraints
and equational constraints separately. We adapt a significant portion of the for-
malization of [6], adding and formalizing the necessary lemmas to obtain a sound
and complete algorithm for nominal C-unification and keep the separate treat-
ment of freshness constraints and equational constraints. This insight, along with
a trick of separating fixed point equations (see Definition 9) from the unification
problem, allowed us to reduce the lexicographic measure found in [2], from 4 pa-
rameters to only 2 parameters which made the proofs of termination, soundness
and completeness simpler.
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Finally, the formalization of soundness and completeness was done in PVS
and is available at http://www.github.com/gabriel951/c-unification. PVS
was chosen partly in order to reuse the definitions and lemmas previously used
in [6] and partly because its specification language provides great support for
the definition (and formalization) of functional recursive algorithms.

Possible Applications. As remarked before, nominal unification is used in logic
programming. Therefore, the nominal C-unification algorithm could be used on
a logic programming language that uses the nominal setting, such as α-Prolog
[12]. Another application is related to matching (see [8], [7]). Matching two terms
t and s can be seen as unification where one of the terms (suppose t, without
loss of generality) is not affected by substitutions [2]. This can be accomplished
by adding as an additional parameter to the algorithm a set of variables that
are forbidden to be instantiated. Then, matching boils down to unifying, using
as this additional parameter the set of variables in t [2]. The C-matching algo-
rithm proposed could then, for instance, be used to extend the nominal rewriting
relation introduced in [14] modulo commutativity. Also, nominal C-unification
and matching are relevant to implement nominal narrowing introduced in [4]
allowing commutative symbols.

Organization. The paper is organized as follows. First, in Section 2, we provide
the necessary background. The nominal setting is explained and the problem
of nominal C-unification is defined. In Section 3, we present and explain the
pseudocode for the algorithm specified in PVS and implemented in Python.
In Section 4, we discuss the main aspects of the formalization: the principal
lemmas, the hardest cases, how introducing commutativity made the problem
more complex and so on. Finally, in Section 6, we conclude the paper and offer
possible paths of future work. This paper is an extended version of a paper
originally submitted to LOPSTR 2019.

2 Background

In this section, we provide the necessary background in nominal theory.

2.1 Nominal Terms, Permutations and Substitutions

In nominal theory, we consider disjoint countable sets of atoms A = {a, b, c, ...}
and of variables X = {X,Y, Z, ...}. A permutation π is a bijection of the form
π : A → A such that the domain of π (i.e., the set of atoms that are modified by
π) is finite. Permutations are usually represented as a list of swappings, where
the swapping (a b) exchanges the atoms a and b and fixes the other atoms.
Therefore, a permutation is represented as π = (a1 b1) :: ... :: (an bn) :: nil. π−1,
the inverse of this permutation, is computed by simply reversing the list.

Definition 1 (Nominal Terms). Let Σ be a signature with function symbols
and commutative function symbols. The set T (Σ,A,X ) of nominal terms is
generated according to the grammar:

s, t ::= 〈〉 | a | π ·X | [a]t | 〈s, t〉 | f t | fC〈s, t〉 (1)
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where 〈〉 is the unit, a is an atom term, π · X is a suspended variable (the
permutation π is suspended on the variable X), [a]t is an abstraction (a term
with the atom a abstracted), 〈s, t〉 is a pair, f t is a function application and
fC〈s, t〉 is a commutative function application over a pair.

Remark 1. Pairs can be used to encode tuples with an arbitrary number of
arguments. For instance, the tuple (t1, t2, t3) could be constructed as 〈t1, 〈t2, t3〉〉.

Remark 2. Following the proposal of [2], we impose that commutative functions
receive a pair as their argument. No generality is lost with this restriction and
the analysis is simplified.

Remark 3. We use syntactic sugar and represent suspended variables of the form
nil ·X simply as X.

The specification of a term in PVS is given below. We define a subtype pair,
in order to guarantee that the argument of a commutative function is a pair.
However, when working with subtypes in PVS, every term must have a subtype.
Therefore, a subtype plain was also defined and every term that is not a pair
has subtype plain.

term [ atom : TYPE+, perm : TYPE+, v a r i a b l e : TYPE+, symbol : TYPE+,
comm symbol : TYPE+ ] : DATATYPE WITH SUBTYPES pla in , pa i r

BEGIN
at ( a : atom ) : atom? : p l a i n
∗ (p : perm , V: v a r i a b l e ) : susp ? : p l a i n
un i t : un i t ? : p l a i n
pa i r ( term1 : term , term2 : term ) : pa i r ? : pa i r
abs ( abs t r : atom , body : term ) : abs ? : p l a i n
app (sym : symbol , arg : term ) : app? : p l a i n
c app ( c sym : comm symbol , c a rg : pa i r ) : c app ? : p l a i n

END term

Definition 2 (Permutation Action). The permutation action on atoms is
defined recursively: nil · c = c, (a b) :: π · a = π · b, (a b) :: π · b = π · a and
(a b) :: π · c = π · c. The action of permutations on terms is defined recursively:

π · 〈〉 = 〈〉 π · (π′ ·X) = (π :: π′) ·X

π · [a]t = [π · a]π · t π · 〈s, t〉 = 〈π · s, π · t〉

π · f t = f π · t π · fC〈s, t〉 = fC〈π · s, π · t〉

Remark 4. The same symbol · occurs in a suspended variable π · X and in a
permutation π acting on a term t. This notation is used to convey the idea that
the permutation in a suspended variable is “suspended” in the variable and is
“waiting” for the variable to be instantiated and will then act on the value that
X is instantiated to. This is one possible notation, and there are authors that
distinguish between the symbol in the suspended variable and the symbol of a
permutation acting on a term.
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Remark 5. We follow Gabbay’s permutative convention, which says that atoms
differ in their names. Therefore, if we consider atoms a and b, it is redundant to
say a 6= b.

Example 1. To illustrate the action of a permutation on a term, consider π =
(a b) :: (c d) :: nil and t = f(a, c). Then, the result of the permutation action is
π · t = f(b, d).

Definition 3 (Nuclear Substitution). A nuclear substitution is a pair [X →
t], where X is a variable and t is a term. Nuclear substitutions act over terms:

〈〉[X → t] = 〈〉 a[X → t] = a

([a]s)[X → t] = [a](s[X → t]) π · Y [X → t] =

{
π · Y if X 6= Y
π · t otherwise

〈s1, s2〉[X → t] = 〈s1[X → t], s2[X → t]〉 (f s)[X → t] = f (s[X → t])

(fC〈s1, s2〉)[X → t] = fC〈s1[X → t], s2[X → t]〉

Definition 4 (Substitution Action on Terms). A substitution σ is a list of
nuclear substitutions, which are applied consecutively to a term:

s id = s, where id is the empty list s(σ :: [X → t]) = (s[X → t])σ (2)

Remark 6. The notion of substitution defined here differs from the more tradi-
tional view of a substitution as a simultaneous application of nuclear substitu-
tions, although both are correct [6]. The notion here presented is closer to the
concept of triangular substitutions [15].

Example 2. Let σ = [X → a] :: [Y → f(X, b)] and t = [a]Y . Then, tσ =
[a]f(a, b).

2.2 Freshness and α-equality

Two valuable notions in nominal theory are freshness and α-equality, which are
represented, respectively, by the predicates # and ≈α.

– a#t means, intuitively, that if a occurs in t then it does so under an abstrac-
tor [a].

– s ≈α t means, intuitively, that s and t are α-equivalent, i.e, they are equal
modulo the renaming of bound atoms.

These concepts are formally defined in Definitions 5 and 6.

Definition 5 (Freshness). A freshness context ∇ is a set of constraints of the
form a#X. An atom a is said to be fresh on t under a context ∇, denoted by
∇ ` a#t, if it is possible to build a proof using the rules:
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(#〈〉)
∇ ` a#〈〉

(#atom)∇ ` a#b
(π−1 · a#X) ∈ ∇

(#X)∇ ` a#π ·X
(#[a]a)

∇ ` a#[a]t
∇ ` a#t

(#[a]b)
∇ ` a#[b]t

∇ ` a#s ∇ ` a#t
(#pair)

∇ ` a#〈s, t〉
∇ ` a#t

(#app)∇ ` a#f t

∇ ` a#s ∇ ` a#t
(#c-app)

∇ ` a#fC 〈s, t〉

Remark 7. The rule (#X) says that in order to guarantee that a#π ·X under
the context ∇, we must guarantee that (π−1 · a#X) is in ∇. Notice that this
rule correctly takes into account the effect of the atom permutation π that
is part of the suspended variable π · X when deciding which atom must be
fresh in the variable X. Consider, for instance, that we want to prove that
a# (a b) · X. Since the permutation π swaps a and b, we must actually make
sure that π−1 · a = (a b) · a = b is fresh in X, as indicated in the rule (#X).

Example 3. Notice that a#X ` a#〈[a]〈X, a〉, [b]h〈X, b〉〉, by application of rules
(#pair), (#[a]a), (#[a]b), (#app), (#X) and (#atom).

Definition 6 (α-equality with commutative operators). Two terms t and
s are said to be α-equivalent under the freshness context ∆ (∆ ` t ≈α s) if it is
possible to build a proof using the rules:

∆ ` s0 ≈α ti, ∆ ` s1 ≈α ti+1(mod2) (≈α C)
i = 0, 1∆ ` fC〈s0, s1〉 ≈α fC〈t0, t1〉

(≈α atom)
∆ ` a ≈α a

∆ ` s ≈α t (≈α app)
∆ ` f s ≈α f t

∆ ` s ≈α t (≈α [a]a)
∆ ` [a]s ≈α [a]t

∆ ` s ≈α (a b) · t, ∆ ` a#t
(≈α [a]b)

∆ ` [a]s ≈α [b]t

ds(π, π′)#X ⊆ ∆
(≈α var)

∆ ` π ·X ≈α π′ ·X
∆ ` s0 ≈α t0, ∆ ` s1 ≈α t1

(≈α pair)
∆ ` 〈s0, s1〉 ≈α 〈t0, t1〉

(≈α 〈〉)
∆ ` 〈〉 ≈α 〈〉

Notation: We define the difference set between two permutations π and π′ as
ds(π, π′) = {a ∈ A|π ·a 6= π′ ·a}. By extension, ds(π, π′)#X is the set containing
every constraint of the form a#X for a ∈ ds(π, π′).

Example 4. Notice that [a]a ≈α [b]b:

(≈α atom)
a ≈α (a b) · b (#atom)

a#b
(≈α [a]b)

[a]a ≈α [b]b

2.3 Nominal C-Unification

Definition 7 (Unification Problem). A unification problem is a pair 〈∇, P 〉
where ∇ is a freshness context and P is a finite set of equations and freshness
constraints of the form s ≈? t and a#?t, respectively.
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Remark 8. Consider ∇ and ∇′ freshness contexts and σ and σ′ substitutions.
We need the following notation to define a solution to a unification problem:

– ∇′ ` ∇σ denotes that ∇′ ` a#Xσ holds for each (a#X) ∈ ∇.
– ∇ ` σ ≈ σ′ denotes that ∇ ` Xσ ≈α Xσ′ for all X in dom(σ) ∪ dom(σ′).

Definition 8 (Solution for a Triple or Problem). Let δ be a substitution.
A solution for a triple P = 〈∆, δ, P 〉 is a pair 〈∇, σ〉 that fulfills the following
four conditions:

1. ∇ ` ∆σ
2. ∇ ` a#tσ, if a#?t ∈ P

3. ∇ ` sσ ≈α tσ, if s ≈? t ∈ P
4. There exists λ such that ∇ ` δλ ≈ σ

Then, a solution for a unification problem 〈∆,P 〉 is a solution for the asso-
ciated triple 〈∆, id, P 〉.

Definition 9 (Fixed Point Equation). An equation of the form π·X ≈α π′·X
is called a fixed point equation.

Remark 9. In syntactic nominal unification, a fixed point equation of the form
π ·X ≈α π′ ·X would be solved by requiring that ds(π, π′)#∆, where ∆ is the
context that composes the solution to the problem (see the rule for α-equivalence
of suspended variables in Definition 6). This approach, while still correct in
nominal C-unification, is not complete. Take, for instance the equation (a b) ·
X ≈α X. A solution not captured by this traditional approach is 〈∅, [X → a+b] ::
id〉, where + is a commutative function symbol (here we are using infix notation).
Moreover, there is an infinite number of solutions to fixed point equations. For
instance, considering the equation above, among the infinite number of solutions
we have: 〈∅, [X → a + b] :: id〉, 〈∅, [X → (a + b) + (a + b)] :: id〉 and so on.
Consequently, fixed point equations are not solved in nominal C-Unification,
instead, they are carried on as part of the solution to the unification problem
[2].

Remark 10. One of the original features of this work is the separate treatment
of fixed point equations from the set of equational and freshness constraints.
There is a trivial extension of Definition 8 in order to consider this detachment.
Let FP be a set of fixed point equations. 〈∇, σ〉 is a solution to the quadruple
P = 〈∆, δ, P, FP 〉 if all conditions of Definition 8 are satisfied and additionally:

– ∇ ` π ·Xσ ≈α π′ ·Xσ, if π ·X ≈? π
′ ·X ∈ FP

Remark 11. The problem of nominal C-unification, as the problem of first-order
C-unification is NP-complete (see [7] and [2]).

3 Specification

We developed a functional nominal C-unification algorithm for unifying the
terms t and s. The algorithm is recursive and needs to keep track of the current
context, the substitutions made so far, the remaining terms to unify and the cur-
rent fixed point equations. Therefore, the algorithm receives as input a quadruple
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(∆,σ, PrbLst, FPEqLst), where ∆ is the context we are working with, σ is a
list of the substitutions already done, PrbLst is a list of unification problems
which we must still unify (each equational constraint t ≈? s is represented as
a pair (t, s) in Algorithm 1) and FPEqLst is a list of fixed point equations we
have already computed.

The first call to the algorithm, in order to unify the terms t and s is simply:
UNIFY(∅, id, [(t, s)], ∅). The algorithm eventually terminates, returning a list (pos-
sibly empty) of solutions, where each solution is of the form (∆,σ, FPEqLst).

Although extensive, the algorithm is simple. It starts by analysing the list
of terms it needs to unify. If PrbLst is an empty list, then it has finished and
can return the answer computed so far, which is the list: [(∆,σ, FPEqLst)]. If
PrbLst is not empty, then there are terms to unify, and the algorithm starts by
trying to unify the terms t and s that are in the head of the list and only after
that it goes to the tail of the list. The algorithm is recursive, calling itself on
progressively simpler versions of the problem until it finishes.

3.1 Auxiliary Functions

Following the approach of [6], freshness constraints are treated separately from
the main function. This has the advantage of making the main function UNIFY

smaller, handling only equational constraints. To deal with the freshness con-
straints, the following auxiliary functions, which come from [6], were used:

– fresh subs?(σ,∆) returns the minimal context (∆′ in Algorithm 1) in
which a#?Xσ holds, for every a#X in the context ∆.

– fresh?(a, t) computes and returns the minimal context (∆′ in Algorithm 1)
in which a is fresh for t.

Both functions also return a boolean (bool1 in Algorithm 1), indicating if it was
possible to find the mentioned context.

3.2 Main Algorithm

The pseudocode of the algorithm is presented in Algorithm 1.

Remark 12. When trying to unify fC〈t1, t2〉 with fC〈s1, s2〉 there are two pos-
sible paths to take: try to unify t1 with s1 and t2 with s2, or try to unify t1
with s2 and t2 with s1. This means that there are two branches that we must
consider, and since each branch can generate a solution, we may have more than
one solution. This is the reason why the algorithm here presented gives a list of
solutions as output. In nominal unification, by contrast, only one most general
unifier is given as solution.
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Algorithm 1 - First Part - Functional Nominal C-Unification
1: procedure unify(∆,σ, PrbLst, FPEqLst)
2: if nil?(PrbLst) then
3: return list((∆,σ, FPEqLst))
4: else
5: cons((t, s), PrbLst′) = PrbLst
6: if (s matches π ·X) and (X not in t) then

7: σ′ = {X → π−1 · t}
8: σ′′ = σ′ ◦ σ
9: (∆′, bool1) = fresh subs?(σ′, ∆)
10: ∆′′ = ∆ ∪∆′
11: PrbLst′′ = append((PrbLst′)σ′, (FPEqLst)σ′)
12: if bool1 then return unify(∆′′, σ′′, PrbLst′′, nil)
13: else return nil
14: end if
15: else
16: if t matches a then
17: if s matches a then
18: return unify(∆,σ, PrbLst′, FPEqLst)
19: else
20: return nil
21: end if
22: else if t matches π ·X then
23: if (X not in s) then
24: . Similar to case above where s is a suspension
25: else if (s matches π′ ·X) then
26: FPEqLst′ = FPEqLst ∪ { π ·X ≈α π′ ·X}
27: return unify(∆,σ, PrbLst′, FPEqLst′)
28: else return nil
29: end if
30: else if t matches 〈〉 then
31: if s matches 〈〉 then
32: return unify(∆,σ, PrbLst′, FPEqLst)
33: else return nil
34: end if
35: else if t matches 〈t1, t2〉 then
36: if s matches 〈s1, s2〉 then
37: PrbLst′′ = cons((s1, t1), cons((s2, t2), PrbLst

′))
38: return unify(∆,σ, PrbLst′′, FPEqLst)
39: else return nil
40: end if

3.3 Examples

A simple example of the algorithm is given in Example 5. In this example, it is
possible to see how commutativity introduces branches and how the algorithm
calls itself with progressively simpler versions of the problem until it finishes.
Example 6 is a slightly more complex example, which uses Example 5.

Example 5. Suppose f is a commutative function symbol. This example shows
how the algorithm proceeds in order to unify f〈(a b) ·X, c〉 with f〈X, c〉.
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Algorithm 1 - Second Part - Functional Nominal C-Unification
41: else if t matches [a]t1 then
42: if s matches [a]s1 then
43: PrbLst′′ = cons((t1, s1), PrbLst

′)
44: return unify(∆,σ, PrbLst′′, FPEqLst)
45: else if s matches [b]s1 then
46: (∆′, bool1) = fresh?(a, s1)
47: ∆′′ = ∆ ∪∆′
48: PrbLst′′ = cons((t1, (a b) s1), PrbLst

′)
49: if bool1 then
50: return unify(∆′′, σ, PrbLst′′, FPEqLst)
51: else return nil
52: end if
53: else return nil
54: end if
55: else if t matches f t1 then . f is not commutative
56: if s matches f s1 then
57: PrbLst′′ = cons((t1, s1), PrbLst

′)
58: return unify(∆,σ, PrbLst′′, FPEqLst)
59: else return nil
60: end if
61: else . t is of the form fC(t1, t2)

62: if s matches fC(s1, s2) then
63: PrbLst1 = cons((s1, t1), cons((s2, t2), PrbLst

′))
64: sol1 = unify(∆,σ, PrbLst1, FPEqLst)
65: PrbLst2 = cons((s1, t2), cons((s2, t1), PrbLst

′))
66: sol2 = unify(∆,σ, PrbLst2, FPEqLst)
67: return append(sol1, sol2)
68: else return nil
69: end if
70: end if
71: end if
72: end if
73: end procedure

unify(∅, id, [f〈(a b) ·X, c〉 ≈α f〈X, c〉], ∅)

unify(∅, id, [(a b) ·X ≈α X, c ≈α c], ∅)

unify(∅, id, [c ≈α c], (a b) ·X ≈α X)

unify(∅, id, nil, (a b) ·X ≈α X)

(∅, id, (a b) ·X ≈α X)

unify(∅, id, [(a b) ·X ≈α c, X ≈α c], ∅)

unify(∅, {X → c}, [c ≈α c], ∅)

unify(∅, {X → c}, nil, ∅)

(∅, {X → c}, ∅)

Example 6. Suppose f and g are commutative function symbols, and h is a non-
commutative function symbol. This example shows how the algorithm would
unify g〈h d, f〈(a b) ·X, c〉〉 with g〈f〈X, c〉, h d). Because g is commutative, the
algorithm explores two branches:

– On the first branch, the algorithm tries to unify h d with f〈X, c〉 and f〈(a b)·
X, c) with h d. However, since it is impossible to unify h d with f〈X, c〉
(different function symbols), the algorithm returns an empty list, indicating
that no solution is possible for this branch.
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– On the second branch, the algorithm tries to unify h d with h d and f〈(a b) ·
X, c〉 with f〈X, c〉. First, h d unifies with h d without any alterations on the
context ∆, the substitution σ or the list of fixed point equations FPEqLst.
Finally, the unification of f〈(a b) ·X, c〉 with f〈X, c〉 was shown in Example
5, and gives two solutions, which are also the solutions to this example:
(∅, id, (a b) ·X ≈α X) and (∅, {X → c}, ∅).

4 Formalization

4.1 Termination

Termination of the algorithm was proved by proving the type-correctness condi-
tions (TCCs) generated by PVS [18]. In order to do that, a lexicographic measure
was defined:

lex2(|V ars(PrbLst) ∪ V ars(FPEqLst)|, size(PrbLst)) (3)

The first component in the lexicographic measure is the cardinality of the set
of variables which occur in PrbLst (the list of remaining unification problems)
or in FPEqLst (the list of fixed point equations). To compute the variables in
a list, we consider the variables in all terms of the list. Finally, the variables in
a term are computed recursively, as can be seen in Definition 10.

Definition 10 (Set of Variables). The set of variables in a term is recursively
defined as:

V ars(a) = ∅ V ars(〈〉) = ∅
V ars(π ·X) = {X} V ars([a]t) = V ars(t)

V ars(〈t0, t1〉) = V ars(t0) ∪ V ars(t1) V ars(f t) = V ars(t)
V ars(fC〈t0, t1〉) = V ars(t0) ∪ V ars(t1)

The specification of the V ars function in PVS is shown below.

Vars ( t ) : RECURSIVE f i n i t e s e t [ v a r i a b l e ] =
CASES t OF

at ( a ) : emptyset ,
∗(pm, v ) : s i n g l e t o n ( v ) ,
un i t : emptyset ,
pa i r ( t1 , t2 ) : union ( Vars ( t1 ) , Vars ( t2 ) ) ,
abs ( a , bd ) : Vars (bd ) ,
app ( s l , ag ) : Vars ( ag ) ,
c app ( s l , ag ) : Vars ( ag )

ENDCASES
MEASURE t BY <<

The second component in the lexicographic measure is the sum of the size of
every unification problem. To calculate the size of the unification problem (t, s),
we only calculate the size of the first term t. This was an arbitrary choice, as the
measure would still work if we had taken the size of s or even the size of t plus
the size of s (in each recursive call, both the size of t and the size of s decrease).
Finally, the size of t is computed recursively according to Definition 11.
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Definition 11 (Size of Terms). The size of terms is recursively computed as:

size(a) = 1 size(〈〉) = 1
size(π ·X) = 1 size([a]t) = 1 + size(t)

size(〈t0, t1〉) = 1 + size(t0) + size(t1) size(f t) = 1 + size(t)
size(fC〈t0, t1〉) = 1 + size(t0) + size(t1)

The specification of the size function in PVS is shown below.

s i z e ( t ) : RECURSIVE nat =
CASES t OF

at ( a ) : 1 ,
∗(pm, v ) : 1 ,
un i t : 1 ,
pa i r ( t1 , t2 ) : 1 + s i z e ( t1 ) + s i z e ( t2 ) ,
abs ( a , bd ) : 1 + s i z e (bd ) ,
app ( s l , ag ) : 1 + s i z e ( ag ) ,
c app ( s l , ag ) : 1 + s i z e ( ag )

ENDCASES
MEASURE t BY <<

The lexicographic measure decreases in each recursive call. The component
that decreases depends on the type of the terms t and s that are in the head of
the list of problems to unify. If one of them is a variable X, and we are not dealing
with a fixed point equation, then the algorithm will instantiate this variable X,
and the first component, |V ars(PrbLst) ∪ V ars(FPEqLst)|, will decrease. In
any other case, the second component, size(PrbLst), will decrease.

Remark 13. It was possible to reduce the lexicographic measure used in [2], from
4 parameters to only 2 parameters. The measure adopted in [2] was:

|P| = 〈|V ar(P≈)|, |P≈|, |Pnfp|, |P#|〉 (4)

where P≈ is the set of equation constraints in P , Pnfp is the set of non fixed
point equations in P and P# is the set of freshness constraints in P . Two ideas
were used in order to accomplish this reduction. The first was to separate the
treatment of freshness constraints from equational constraints, and treat the
freshness constraints with the help of the auxiliary functions of 3.1. This idea
comes from [6]. The second one is to separate the fixed point equations from
the equational constraints. This way, when a fixed point equation is found in
PrbLst, it is moved to FPEqLst, which makes size(PrbLst) diminish.

4.2 Soundness and Completeness

To state the main theorems that allow us to prove soundness and completeness,
we must first define the notion of a valid quadruple. A valid quadruple is an
invariant of the UNIFY function in Algorithm 1 with useful properties.
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Definition 12 (Valid Quadruple). Let ∆ be a freshness context, σ a substi-
tution, P a list of unification problems and FP a list of fixed point equations.
P = 〈∆,σ, P, FP 〉 is a valid quadruple if the following two conditions hold:

– V ars(im(σ)) ∩ dom(σ) = ∅ – dom(σ) ∩ (V ars(P ) ∪ V ars(FP )) = ∅
where im(σ) is the image of σ and dom(σ) is the domain of σ.

Remark 14. A valid quadruple has two desirable properties: the substitution is
idempotent (condition 1) and applying the substitution to P or FP produces
no effect.

Soundness Corollary 1 states that UNIFY is sound. It follows directly by appli-
cation of Theorem 1.

Theorem 1 (Main Theorem for Soundness of UNIFY Algorithm). Sup-
pose (∆sol, σsol, FPEqLstsol) ∈ UNIFY(∆,σ, PrbLst, FPEqLst), (∇, δ) is a
solution to 〈∆sol, σsol, ∅, FPEqLstsol〉 and 〈∆,σ, PrbLst, FPEqLst〉 is a valid
quadruple. Then (∇, δ) is a solution to 〈∆,σ, PrbLst, FPEqLst〉.

Proof. The proof is by induction on the lexicographic measure, according to the
form of the terms t and s that are in the head of PrbLst, the list of remain-
ing unification problems. The hardest cases are the ones of suspended variables
and abstractions (see Remark 17). Below we explain the case of commutative
functions.

In the case of commutative function symbols f〈t1, t2〉 and f〈s1, s2〉, there are
no changes in the context or the substitution from one recursive call to the next.
Therefore, it is trivial to check that we remain with a valid quadruple and it
is also trivial to check all but the third condition of Definition 8. For the third
condition we have either ∇ ` t1δ ≈α s1δ and ∇ ` t2δ ≈α s2δ or ∇ ` t1δ ≈α s2δ
and ∇ ` t2δ ≈α s1δ. In any case, we are able to deduce ∇ ` (f〈t1, t2〉)δ ≈α
(f〈s1, s2〉)δ by noting that (f〈t1, t2〉)δ = f〈t1δ, t2δ〉, (f〈s1, s2〉)δ = f〈s1δ, s2δ〉
and then using rule (≈α c−app) for alpha equivalence of commutative function
symbols.

Corollary 1 (Soundness of UNIFY Algorithm). Suppose (∇, δ) is a solution
to 〈∆sol, σsol, ∅, FPEqLstsol〉, and (∆sol, σsol, FPEqLstsol) ∈ UNIFY(∅, id, [(t, s)],
∅). Then (∇, δ) is a solution to 〈∅, id, [(t, s)], ∅〉.

Proof. Notice that 〈∅, id, [(t, s)], ∅〉 is a valid quadruple. Then, we apply Theorem
1 and prove the corollary.

Remark 15. An interpretation of Corollary 1 is that if (∇, δ) is a solution to one
of the outputs of the algorithm UNIFY, then (∇, δ) is a solution to the original
problem.
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Completeness Corollary 2 states that UNIFY is complete. It follows directly by
application of Theorem 2.

Theorem 2 (Main Theorem for Completeness of UNIFY). Suppose (∇, δ)
is a solution to 〈∆,σ, PrbLst, FPEqLst〉 and that 〈∆,σ, PrbLst, FPEqLst〉 is a
valid quadruple. Then, there exists a computed output (∆sol, σsol, FPEqLstsol) ∈
UNIFY(∆,σ, PrbLst, FPEqLst) such that the solution (∇, δ) is also a solution
to 〈∆sol, σsol, ∅, FPEqLstsol〉.

Proof. The proof is by induction on the lexicographic measure, according to the
form of the terms t and s that are in the head of PrbLst, the list of remaining
unification problems. The hardest cases are again the ones of suspended variables
and abstractions (see Remark 17). Below we explain the case of commutative
functions.

In the case of commutative function symbols f〈t1, t2〉 and f〈s1, s2〉, there
are no changes in the context or the substitution from one recursive call to the
next. Therefore, it is trivial to check that we remain with a valid quadruple
and it is also trivial to check all but the third condition of Definition 8. For
the third condition we have ∇ ` (f〈t1, t2〉)δ ≈α (f〈s1, s2〉)δ and must prove
that either (∇ ` t1δ ≈α s1δ and ∇ ` t2δ ≈α s2δ) or (∇ ` t1δ ≈α s2δ and
∇ ` t2δ ≈α s1δ) happens. This again is solved by noting that (f〈t1, t2〉)δ =
f〈t1δ, t2δ〉, (f〈s1, s2〉)δ = f〈s1δ, s2δ〉 and then using rule (≈α c− app) for alpha
equivalence of commutative function symbols.

Corollary 2 (Completeness of UNIFY). Suppose (∇, δ) is a solution to the
input quadruple 〈∅, id, [(t, s)], ∅〉. Then, there exists (∆sol, σsol, FPEqLstsol) ∈
UNIFY(∅, id, [(t, s)], ∅) such that (∇, δ) is a solution to 〈∆sol, σsol, ∅, FPEqLstsol〉.

Proof. Notice that 〈∅, id, [(t, s)], ∅〉 is a valid quadruple. Then, we apply Theorem
2 and prove the corollary.

Remark 16. An interpretation of Corollary 2 is that if (∇, δ) is a solution to the
initial problem, then (∇, δ) is also a solution to one of the outputs of UNIFY.

5 Interesting Points of Formalization and Implementation

We discuss interesting points of the formalization and implementation here.

Remark 17. To prove correctness and completeness of the algorithm, we work
with the terms t and s that are in the head of PrbLst. We divide the proof by
cases. The most interesting case is when t or s is a suspension π ·X and X does
not occur in the other term (see Algorithm 1).

In this case, the algorithm receives as arguments ∆, σ, PrbLst and FPEqLst
and the next recursive call is made with four different parameters: ∆′′, σ′′,
PrbLst′′ and nil (see Algorithm 1). Therefore, all of the four conditions of the
Definition 8 are not trivially satisfied. Moreover, since in the next recursive call
we will be working with a new substitution σ′′ we must prove that the quadruple
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we are working with remains valid (this is proved by noting that when a variable
X is added to the domain of the substitution, all occurrences of it in PrbLst
and in FPEqLst are instantiated, maintaining the validity of the quadruple).

The case of unifying t = [a]t1 with s = [b]s1 is also interesting, since both
the context and the list of problems to unify suffer modifications in the recursive
call. In all the remaining cases, there are no changes in the context nor in the
substitution, making them easier. In these remaining cases, only one condition
(the third) of the four in Definition 8 is not trivially satisfied.

Remark 18. Introducing commutative function symbols to the nominal unifica-
tion algorithm presented in [6] meant we had to:

– Unify terms rooted by commutative function symbols (for instance, f(t1, t2)
with f(s1, s2)). First, the algorithm tries to unify t1 with s1 and t2 with s2,
generating a list of solutions sol1 (see Algorithm 1). Then, the algorithm
tries unifying t1 with s2 and t2 with s1, generating a list of solutions sol2.
The final result is then simply the concatenation of both lists.

– Handle fixed point equations. This was also straightforward. We keep a sep-
arate list of fixed point equation (FPEqLst), and when the algorithm recog-
nizes a fixed point equation in PrbLst it takes this equation out of PrbLst
and puts it on FPEqLst.

– Define an appropriate data structure for the problem and the solutions.
This was not straightforward. As mentioned before, since commutativity
introduced branches, the recursive calls of the algorithm can be seen as a tree
(see Example 5). Therefore, initially, an approach using a tree data structure
was planned (which would have complicated the analysis). However, since the
algorithm simply solves one branch and then the other, we realized all that
was needed was to do two recursive calls (one for each branch) and append
the two lists of solutions generated. Therefore, we were able to avoid the tree
data structure, working instead with lists, which simplified the specification.

Remark 19. Since PVS does not support automatic extraction of Python code,
the translation of the PVS specification for the Python implementation was
done manually. Indeed, PVS provides extraction to Lisp and Clean (a dialect
of Haskell). The code follows strictly the lines of the specification (Algorithm
1) with small adjustments, such as the inclusion of two parameters in the algo-
rithm implementation, in order to support a verbose mode that prints the tree
of recursive calls. This, and the representation of atoms, variables and terms
in the implementation is discussed in Appendix A. An OCaml implementation
of a nominal C-unification algorithm was previously developed [2], but in con-
trast to the current Python implementation, the OCaml implementation does
not correspond in a direct way to the formalized non-deterministic inductive
specification [2].

Remark 20. Python was chosen to implement the algorithm due to our previ-
ous knowledge, its expressivity and its support for the functional programming
paradigm (Python is considered a multiparadigm programming language).
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Remark 21. The “translation” from the PVS specification to the Python imple-
mentation was done manually and, as occurs in all manual translations of this
kind, some errors may occur during this process. To diminish the probability of
errors, the Python code was tested, as shown in the examples in Appendix A.

6 Conclusion and Future Work

In this paper, we explained the problem of nominal C-unification and presented a
functional algorithm for doing this task. We observed how nominal C-unification
has applications on logic programming languages and how the algorithm here
presented could be straightforwardly converted to a matching algorithm, which
in turn would have applications in nominal rewriting.

Our approach differs from the only other work in nominal C-unification ([2])
in two main points. First, we do not present a set of non-deterministic trans-
formation rules, instead, we opt for a recursive specification, implemented in
Python. Second, we follow the approach in [6] and deal with freshness contexts
separately. This simplifies the main function and, along with the idea of using a
different parameter to represent fixed point equations, allowed us to reduce the
lexicographic measure used in [2] from four parameters to only two parameters,
thus simplifying the formalizations of termination, soundness and completeness.

Finally, a future study would be extending the formalization to handle the
more general case of Mal’cev permutative theories, which include n-ary functions
with permutative arguments [13]. Other possible path, as indicated in [11], is
expanding the algorithm to handle other equational theories such as unification
modulo associative and associative-commutative function symbols (A- and AC-
unification). We are currently working in extracting automatically the executable
code from PVS to Lisp and comparing the extracted Lisp implementation with
the Python implementation and with the OCaml implementation of [2] via more
elaborate examples.
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A Discussion on the Implementation

The implementation of Algorithm 1 may be found on file unify.py, while the
examples that will be shown next can be run by executing file tests.py. Both of
them are also available at http://www.github.com/gabriel951/c-unification.
Specific instructions can be found on these files. Python 3 should be used (specif-
ically, we used Python 3.5.2).

When implementing the algorithm, two optional parameters were added to
function unify, in order to allow the user to run it choosing either printing or
not the tree of recursive calls. The first parameter (verb) is a Boolean, which
controls the verbosity of the algorithm: when set to true, the algorithm does
print the tree of recursive calls and when set to false the algorithm does not.
The second parameter (indent lvl) is a string that regulates the indentation
level. When the algorithm forks into two branches, this parameter is updated
which in turn allows us to clearly distinguish when the algorithm enters a branch
(see Examples 7 and 8).

As mentioned before, a term in the nominal setting can be an atom, a sus-
pended variable, the unit, a pair, an abstraction, a function application or a
commutative function application. Every one of these options is represented as
a class by our algorithm implementation. An atom object a has one attribute,
its name, which in turn is represented by the algorithm as a string. A suspended
variable object contains two attributes: a permutation and a variable. The per-
mutation is represented as a list, where each element of the list (corresponding to
a swapping) is a pair consisting of two strings (to represent the two atoms being
swapped). The variable is represented by the algorithm as a string. The unit is
a class with no attributes. A pair object contains two attributes, to represent
the two terms of a pair. An abstraction object contains two attributes: the first
is an atom and the second a term. A function application and a commutative
function application both have two attributes: the first is the function symbol,
represented as a string and the second is their argument, which is another term.
In the case of commutative function applications, an assertion verifies that the
argument is indeed a pair, as commented in Remark 2.

Finally, the action of permutations and substitutions have no significant dif-
ferences from what has been specified in PVS. The representation of the four
parameters of the unify function in the Python implementation also follows
closely the PVS specification.

The next two examples present two illustrative executions of the algorithm
for Examples 5 and 6 given in the body of the paper.
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Example 7. Let f be a commutative function symbol. Here we show how the
Python algorithm would proceed to unify the terms in Example 5: f〈(a b) ·
X, c〉 and f〈X, c〉. Note that each one of the two branches explored generates a
solution.

Output 1. Algorithm running for the terms in Example 5. Trying to unify f〈(a b)·X, c〉
and f〈X, c〉.

Trying to unify terms: f(<[(a b) ]*X, c>) and f(<[]*X, c>)

<[], id, [(f(<[(a b) ]*X, c>) = f(<[]*X, c>)), ], []>

|

<[], id, [([(a b) ]*X = []*X), (c = c), ], []>

|

<[], id, [(c = c), ], [[(’a’, ’b’)]*X = X ]>

|

<[], id, [], [[(’a’, ’b’)]*X = X ]>

|

solution: <[], id, [[(’a’, ’b’)]*X = X ]>

<[], id, [([(a b) ]*X = c), (c = []*X), ], []>

|

<[], [X->c ], [(c = c), ], []>

|

<[], [X->c ], [], []>

|

solution: <[], [X->c ], []>

Finished.
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Example 8. Let f and g be commutative function symbols, and let h be a non-
commutative function symbol. We now show how the Python algorithm would
proceed to unify the terms in Example 6: g〈h d, f〈(a b)·X, c〉〉 and g〈f〈X, c〉, h d〉.
Note that one branch does not generate any solution.

Output 2. Algorithm running for the terms in Example 6. Trying to unify the terms
g〈h d, f〈(a b) ·X, c〉〉 and g〈f〈X, c〉, h d〉.

Trying to unify terms: g(<h(d), f(<[(a b) ]*X, c>)>) and g(<f(<[]*X, c>), h(d)>)

<[], id, [(g(<h(d), f(<[(a b) ]*X, c>)>) = g(<f(<[]*X, c>), h(d)>)), ], []>

|

<[], id, [(h(d) = f(<[]*X, c>)), (f(<[(a b) ]*X, c>) = h(d)), ], []>

|

No solution

<[], id, [(h(d) = h(d)), (f(<[(a b) ]*X, c>) = f(<[]*X, c>)), ], []>

|

<[], id, [(d = d), (f(<[(a b) ]*X, c>) = f(<[]*X, c>)), ], []>

|

<[], id, [(f(<[(a b) ]*X, c>) = f(<[]*X, c>)), ], []>

|

<[], id, [([(a b) ]*X = []*X), (c = c), ], []>

|

<[], id, [(c = c), ], [[(’a’, ’b’)]*X = X ]>

|

<[], id, [], [[(’a’, ’b’)]*X = X ]>

|

solution: <[], id, [[(’a’, ’b’)]*X = X ]>

<[], id, [([(a b) ]*X = c), (c = []*X), ], []>

|

<[], [X->c ], [(c = c), ], []>

|

<[], [X->c ], [], []>

|

solution: <[], [X->c ], []>

Finished.
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