
Noname manuscript No.
(will be inserted by the editor)

Formalizing the Dependency Pairs Criterion for
Innermost Termination

Ariane Alves Almeida · Mauricio
Ayala-Rincón

Received: date / Accepted: date

Abstract The dependency pair criterion is a well-known mechanism to analyze
termination of term rewriting systems, which are an adequate framework for rea-
soning about functional specifications, and thus about their termination. Func-
tional specifications with an operational semantics based on eager evaluation are
related, in the rewriting framework, to the innermost reduction relation. This
paper presents a formalization in PVS of the dependency pair criterion for the
innermost reduction relation: a term rewriting system is innermost noetherian if
and only if it is terminating by the dependency pair criterion.

Keywords Automating Termination · Termination of Rewriting Systems ·
Dependency Pairs · Innermost Reduction

1 Introduction

Although closely related to the Halting Problem [Tur36], and thus undecidable,
termination is a relevant property for computational objects. This property is
crucial to state correctness of programs, since it can state that every input produces
an adequate output only if there is indeed an output provided for such input. Even
in concurrent and reactive systems, important properties as progress and liveness
are related with termination.

It is well-known that Term Rewriting Systems (TRSs) are an adequate formal
framework to reason about functional programs. In this context, dependency pairs
(DPs), introduced by Arts and Giesl in [AG98], provide a robust criterion to
analyze termination. Instead of checking decreasingness of rewriting rules, this
criterion aims to check just decreasingness of the relevant fragments of rewriting
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rules built from defined symbols. Indeed, a dependency pair consists of the left-
hand side (lhs) of a rewriting rule and a subterm of the right-hand side (rhs)
of the rule headed by a defined symbol. Thus, a dependency pair expresses the
dependency of a function on (even recursive) calls of any function as done in
implementations of the ranking function criterion that aims to provide a measure
over data exchanging points of a program that decreases regarding some well-
founded order ([Tur49]). For functional programs, such measures are given over
the arguments of each possible (recursive) function call, and it is expected that
they decrease after each function call. This is indeed the semantics of termination
used in several proof assistants; in particular, in the Prototype Verification Systems
(PVS) such ranking functions should be provided by the specifier, as part of each
recursive definition, and the decreasingness requirements are implemented through
the so called termination Type Correctness Conditions (for short, termination
TCCs). Termination TCCs are proof obligations built by static analysis over the
recursive definitions, stating that the measure of the actual parameters of each
recursive call strictly decreases regarding the measure of the formal parameters.

Eager evaluation conducts the operational semantics of several functional lan-
guages, and in particular of the functional language PVS0 specified in PVS for the
verification of equivalence of different criteria to automate termination (available
as part of the NASA LaRC PVS library at https://github.com/nasa/pvslib).
The operational semantics and semantics of termination of this language is de-
scribed in [RMAR+18]. Eager evaluation of functional programs corresponds to
innermost (rewriting) derivations. Thus to provide formal support to adaptations
of the DP criterion over functional programming it is essential to verify the DP
criterion for innermost reductions [AG00].

Main contribution. This work presents a complete formalization of the DP
criterion for innermost reduction. The formalization extends the PVS library for
TRSs TRS that embraces the basic notions of rewriting as well as some elaborated
results (e.g., [GAR10], [ROGAR17]). This library includes specifications of terms,
positions, substitutions, abstract reduction relations, term rewriting systems which
are adequate for the development of formalizations that remain close to article and
textbook proofs, as the one presented in this paper. Although having notions such
as noetherianity, TRS did not provide some elements required to fulfill the objective
of formalizing the innermost DP criterion. In this sense, this work brings as a
minor contribution specifications and formalizations related with the innermost
reduction, non-root reduction and reduction over descendant relations, and as a
major one, the formalization of the equivalence between the innermost DP criterion
and the noetherianity of the innermost reduction relation.

Outline. Section 2 gives a brief overview on the basic notions of rewriting and the
Dependency Pairs criterion, along with definitions of specific rewriting strategies
required in the formalization ahead. Section 3 presents the elements of the the-
ory TRS and those new ones that were required for this formalization. Section 4
describes the proof that innermost noetherianity implies termination by the depen-
dency pair criterion, and Section 5 the converse. Section 6 discusses related work
and Section 7 concludes and discusses future work. The formalization is available
as part of the TRS library at http://trs.cic.unb.br and also at the NASA PVS
library https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/.

 https://github.com/nasa/pvslib
http://trs.cic.unb.br
 https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/
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2 Basic Notions

Standard rewriting notation for terms, subterms, positions and substitutions (e.g.,
[BN98]), will be used. Given any relation R, R+ and R∗ denote, respectively, its
transitive and reflexive-transitive closure. The application of R∗ will be referred
as derivation. For a relation R and element s, if there exists t such that s R t
holds, then s is said to be R-reducible, otherwise, it is said to be in R-normal
form, denoted by nfR(s).

A TRS E is a set of rewriting rules that are ordered pairs of terms in T (Σ,V ),
the set of terms freely generated from a countable set of variables V according to a
signature Σ. Whenever the set E is clear from the context, it will be omitted in the
notation. Each term t ∈ T (Σ,V ) is thus given as a variable or as a function symbol
g applied to a tuple of terms of length given by the arity of g according to the
signature Σ. In order to keep the notation close to the one in the specification, the
symbol f is not used as a function symbol, but as the special operator that returns
the root function symbol of application terms, which is automatically created when
the datatype for terms is specified. Positions of terms are given as sequences of
naturals, as usual: the set of positions of a term t, denoted as Pos(t) includes the
root position that is the empty sequence, denoted as λ, and if t is an application,
say g(t1, . . . , tn), all positions of the form {iπ | 1 ≤ i ≤ n, π ∈ Pos(ti)}. Given a
position π ∈ Pos(t), the subterm of t at position π is denoted as t|π. The subterm
relation is denoted by �: s � t, if there exists π ∈ Pos(t) such that s = t|π. If
such given position π is such that π 6= λ, s is called a proper subterm of t, which
is denoted as s � t. Notation s[π ← t] is used to denote the term resulting from
replacing the subterm at position π(∈ Pos(s)) of s by t.

A rewriting rule is denoted by l −→ r, and should satisfy the additional re-
strictions that l /∈ V and that each variable occurring in its right-hand side (for
short, rhs) r also occurs in its left-hand side (for short, lhs) l. Given a TRS E,
a term s is said to be reducible at position π ∈ Pos(s) if there exist some rule
l −→ r, substitution σ and term t such that lσ = s|π and t = s[π ← rσ]; then s is

said to reduce to t at position π and is denoted as s
π−→ t. If no specific position

is given, but there exists some position π ∈ Pos(s) and term t such that s
π−→ t,

s is said to be reducible, and whenever t is given, s is said to reduce to t, denoted
as s −→E t.

In some specific implementations, such as the one used in this work to deal with
chains of Dependency Pairs, it is interesting to avoid reductions at root position
of terms. For this, one uses the relation non-root reduction, which is denoted by
−→>λ, is induced by a TRS E and relates terms s and t whenever s

π−→ t for
some π ∈ Pos(s) such that π 6= λ.

A term s is said to be innermost reducible at position π ∈ Pos(s) if nf−→>λ(s|π)

and s
π−→E t for some term t; this is denoted as s

π−→in t. If no specific position is
given, but there exists some position π ∈ Pos(s) and term t such that s

π−→in t, s
is said to be innermost reducible, and whenever t is given, s is said to innermost
reduce to t; this is denoted as s −→in t. Whenever the innermost reduction takes
place at a position π 6= λ, one has a so called non-root innermost reduction, denoted
by −→in>λ .

Another important relation in this paper is the descendants of a given term
though a given relation. The reduction relation restricted to (descendants of) a
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term t is induced by pairs of terms u, v derived from t, that is t −→∗ u and
t −→∗ v, and such that u −→ v. The notation used is −→

t
. For pairs of terms

that are descendants of t and related one with the other by a reduction at specific
position π, the notation

π−→
t

is used. Analogous notation applies to innermost

and non-root reductions. Also, regarding specific terms, a term s is (innermost)
terminating if no infinite derivation starts with it, and the notation used is ↓ (s)
(↓in (s), for the case of innermost terminating). If the term is not terminating,
the notation ↑ (or ↑in) is used. Whenever a term is not terminating, but all its
proper subterms are, one says the term is minimal non terminating (mnt for
short, denoted by �), and for innermost termination one says minimal innermost
non terminating (mint for short, denoted by �in).

The termination analysis for rewriting systems aims to verify the non existence
of infinite reduction steps (derivations) for every term whereupon the reduction
relation is applied. In order to do this, the DP technique, proposed in [AG97],
analyzes the possible reductions in a term resulting from a previous reduction, i.e.,
those that can arise from defined symbols on the rhs’s of rules. Thus, it analyzes
the defined symbols of a TRS E, i.e., the set given by DE = {g | ∃(l −→ r ∈ E) :
f(l) = g}.

Definition 1 (Dependency Pairs) Let E be a TRS. The set of Dependency
Pairs for E is given as

DP (E) = {〈l, t〉 | l −→ r ∈ E ∧ r � t ∧ f(t) ∈ DE}

Standard definitions of DPs substitute defined symbols by new tuple symbols to
avoid (innermost) reductions at root positions, which is required for the analysis
of termination (e.g., [AG00], [TG03]). In this formalization instead of extending
the language with such tuple symbols, reductions at root position are avoided
through the restriction to non-root (innermost) derivations. This choice will be
made clearer in Section 3. The advantage of our approach is that in this manner,
it is not required dealing with new reduction relations over the extended signature.

Each dependency pair represents the possibility of a future reduction after
one (innermost) reduction step. However, distinct rewriting redexes can appear in
terms after (possibly) several (innermost) reduction steps, which can also give rise
to another possible reduction, producing a Dependency Chain.

Definition 2 (Dependency Chain) A dependency chain to a TRS E, E-chain,
is a finite or infinite sequence of dependency pairs 〈s1, t1〉〈s2, t2〉 . . . for which there
exists a substitution σ such that tiσ −→∗>λ si+1σ, for every i below the length of
the sequence, after renaming the variables of pairs with disjoint new variables.

Similarly, the notion of Innermost Dependency Chain is given:

Definition 3 (Innermost Dependency Chain) An innermost dependency chain
to a TRS E, E-in-chain, is a finite or infinite sequence of dependency pairs
〈s1, t1〉〈s2, t2〉 . . . for which there exists a substitution σ such that, for every i
below the length of the sequence, tiσ −→∗in>λ si+1σ and nf−→>λ(si), after re-
naming the variables of pairs with disjoint new variables.

Termination is then defined as the absence of infinite (innermost) dependency
chains (cf., Theorems 3.2 and 4 of [AG97]).
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3 Specification

This paper brings an extension of the PVS term rewriting library TRS. This theory
is a development that already contains the basic elements of abstract reduction
systems and TRS, such as reducibility, confluence and noetherianity regarding a
given relation, notions of subterms and replacement, etc. Furthermore, this theory
embraces several elaborated formalizations regarding such systems, such as con-
fluence of abstract reduction systems (see [GAR08]), the Critical Pair Theorem
(see [GAR10]) and orthogonality and its confluence (see [ROGAR17]).

Terms in the theory TRS are specified as a datatype with three parameters:
nonempty types for variables and function symbols, and the arity function of
these symbols. Terms are either variables or applications built as function symbols
with a sequence of terms of length equal to its arity. The predicate app? holds for
application terms and, as previously mentioned, the operator f extracts the root
function symbol of an application.

The theory rewrite rules.pvs specifies rewriting rules (as pairs of terms,
restricted as usual) and the notion of set of defined symbols for a set of rewriting
rules E (i.e., DE) given as below.

de f ined ?(E)(d : symbol) : bool =
∃(e ∈ E) : f (lhs(e)) = d

Basic elements and results were imported in this formalization, such as terms
and rules mentioned above and predicates to represent pertinence of positions of
a term (positonsOF in theory positions.pvs), functions to provide subterm of
specific position (subtermOF in theory subterm.pvs), the replacement operation
(replaceTerm in theory replacement.pvs) and so on. However, specification of
some general definitions regarding TRS’s required to specify DPs and formalization
of several properties were missed and filled as part of this work. Some of these new
basic notions and results were included either in already existent theories such
as the notion of non-root reduction (−→>λ), specified in theory reduction.pvs,
or in new complementary basic theories such as innermost reduction.pvs and
restricted reduction.pvs, where the relations −→in and −→

t
are found.

Furthermore, the new basic definitions are, mostly, specializations of previ-
ously ones, such as the notions presented by pseudocode below, which specify the
predicates for relations

π−→ and −→ (in theory reduction.pvs). Notice that such
relations are specified as predicates over pairs of terms in a curryfied way, a disci-
pline followed through the whole TRS library that allows one to rely, for instance, on
parameterizable definitions and properties provided for arbitrary abstract reduc-
tions systems, such as closures of relations (in theory relations closure.pvs),
reducibitity and normalization (in theory ars terminology.pvs), noetherianity
(in theory noetherian.pvs), etc.

r e d u c t i o n f i x ?(E)(s, t :term, π ∈ Pos(s)) : bool =
∃(e ∈ E, σ) :

(s|π = lhs(e)σ ∧ t = s[π ←rhs(e)σ]

r educt i on(E)(s, t :term) : bool =
∃(e ∈ E, σ, π ∈ Pos(s) :
s|π =lhs(e)σ ∧ t = s[π ←rhs(e)σ]
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The first four pseudocodes in the box below specify, respectively, the new
required relations −→>λ, nf−→>λ ,

π−→in, −→in and −→in>λ and are found in
theory innermost reduction.pvs. The notion of −→

s
is given by the fifth predi-

cate in the box (i.e., rest?) and is specified for any binary relation R in theory
restricted reduction.pvs. At last, arg rest? is a specialization of restricted re-
lations for term rewriting, allowing to fix the argument where innermost reductions
can take place between given descendants of a term s (i.e., relation

π−→
t

), which is

specified in theory innermost reduction.pvs.

non roo t r educ t i on ?(E)(s, t) : bool =
∃(π ∈ Pos(s)| π 6= λ) :

r e d u c t i o n f i x ?(E)(s, t, π)

i s i nn no rma l f o rm ?(E)(s) : bool =
∀(π ∈ Pos(s)| π 6= λ) :

i s norma l fo rm ?(reduct i on ?(E))(s| π))

i n n e r m o s t r e d u c t i o n f i x ?(E)(s, t, (π ∈ Pos(s))) : bool =
i s i nn norma l f o rm ?(E)(s| π)) ∧ r e d u c t i o n f i x ?(E)(s, t, π)

innermost r educt i on ?(E)(s, t) : bool =
∃(π ∈ Pos(s)) :

i n n e r m o s t r e d u c t i o n f i x ?(E)(s, t, π)

non roo t inne rmos t r educ t i on ?(E)(s, t) : bool =
∃(π ∈ Pos(s)| π 6= λ) :

i s i nn no rma l f o rm ?(E)(s|π)) ∧ r e d u c t i o n f i x ?(E)(s, t, π)

r e s t ?(R, s)(u, v) : bool =
(sR∗ u) ∧ (sR∗ v) ∧ (uRv)

a r g r e s t ?(E)(s)(k)(u, v) : bool =
r e s t ?(−→in>λ , s)(u, v) ∧
∃(π ∈ Pos(s)| π 6= λ) :

f i r s t (π) = k ∧
i n n e r m o s t r e d u c t i o n f i x ?(E)(u, v, π)

Previously mentioned discipline of curryfication and modularity of TRS that
allows generic application of rewriting predicates and their properties over gen-
eral rewriting relations is followed. For instance, in the specification of arg rest?

above, the predicate rest? receives as parameter the relation −→in>λ , that is
non root innermost reduction?(E).

In theory dependency pairs.pvs the notion of DP and its termination criterion
are specified. As previously mentioned, instead of extending the language with
tuple symbols, DPs are specified with the same language of the given signature,
and thus DPs chained through non-root (innermost) reduction.

dep pa i r ?(E)(s, t) : bool =
app?(t) ∧ de f ined ?(E)( f (t)) ∧
∃(e ∈ E) : lhs(e) = s ∧ (∃(π ∈ Pos(rhs(e))) : rhs(e)|π = t)

This specification of DPs follows the standard theoretical approach in a straight-
forward manner. However, it depends on two existential quantifiers that, through-
out the proofs, would bring several difficulties about which rule and position had
created the DP being analyzed. This is because PVS proofs are based on a sequent
calculus, and thus, whenever these existential quantifiers appear in the antecedent
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of a proof, their Skolemization leads to some arbitrary rule and position making it
difficult the constructive generation of derivations of terms associated with chained
DPs. It is easy to see that different rhs positions, and even different rules can pro-
duce identical DPs; take for instance the TRS below, where 〈h(x, y), g(x, y)〉 can
be built in three different manners.

{h(x, y) −→ h(g(x, y), g(g(x, y), y), h(x, y) −→ g(x, y), g(x, y) −→ y}

To discriminate the manner in which DPs are extracted from the rewriting
rules and to circumvent the difficulties of existential quantifiers, an alternative
notion of DP is specified as below.

d e p p a i r a l t ?(E)(e, π) : bool =
e ∈ E ∧ π ∈ Pos(rhs(e)) ∧
app?(rhs(e)|π) ∧ de f ined ?(E)( f (rhs(e)|π)

Having the rule and position that generate the DPs allows, for instance, fur-
ther specification of recursive functions to “sew up” the contexts of any infinite
chain of DPs in order to build the associated infinite derivations (more details
are given in Section 4). Here is important to stress that for termination analysis
and automation, whenever dep pair alt?(E)(e, π) and dep pair alt?(E)(e′, π′)
are such that lhs(e) = lhs(e′) and rhs(e)|π = rhs(e′)|π′ , it is sufficient to consider
only one of these DPs. Other easily implementable refinements are discussed in
the Section 6 on related work.

In the remaining of the discussion, these two definitions will be distinguished if
necessary, and in particular, for the sake of simplicity, the first and second elements
of a DP will be identified with the lhs of the rule and the subterm at position π
of the rhs of the rule.

Notice that both specifications for DPs are currifyed, allowing then to define
the types dep pair(E) and dep pair alt(E).

In order to check that an infinite sequence of DPs form an infinite (innermost)
dependency chain, it is required, as given in Definitions 2 and 3, that every two
consecutive DPs in this sequence be related though (innermost) non-root reduc-
tions, after renaming their variables, regarding some substitution. This gives rise
to an imprecision since the type of substitutions does not allow infinite domains.
This issue is circumvented by specifying sequences DPs in association with se-
quences of substitutions. So by allowing a different substitution for each DP in the
sequence, it is possible to specify the notion of (innermost) chained DPs as below.

chained dp ?(E)(dp1, dp2 :dep pa i r (E))(σ1, σ2) : bool =
dp1′2σ1 −→∗>λ dp2

′1σ2

inn cha ined dp ?(E)(dp1, dp2 :dep pa i r (E))(σ1, σ2) : bool =
i s i nn norma l f o rm ?(E)(dp1′1σ1) ∧ i s i nn no rma l f o rm ?(E)(dp2′1σ2) ∧
dp1′2σ1 −→∗in>λ dp2

′1σ2

Above, the elements of a DP, say dp, are projected by the operator ′ , as dp′1
and dp′2, used to project elements of tuples in PVS. Using these specifications of
(innermost) chained DPs, (innermost) infinite dependency chains are then given
as pairs of sequences of DPs and substitutions that satisfy the predicates below.



8 Ariane Alves Almeida, Mauricio Ayala-Rincón

i n f i n i t e d e p c h a i n ?(E)(dps : sequence[dep pa i r (E)],
sigmas : sequence[Sub]) : bool =

∀(i, j : nat|i 6= j) :
chained dp ?(E)(dps(i), dps(i+ 1))(sigmas(i), sigmas(i+ 1))

i n n i n f i n i t e d e p c h a i n ?(E)(dps : sequence[dep pa i r (E)],
sigmas : sequence[Sub]) : bool =

∀(i, j : nat|i 6= j) :
inn cha ined dp ?(E)(dps(i), dps(i+ 1))(sigmas(i), sigmas(i+ 1))

Finally, the DP (innermost) termination criterion is specified as below as the
absence of such infinite chains. The two first predicates specify the criterion for the
standard notion of DPs, and the third and fourth for the alternative one. Notice
that alternative DPs are translated into standard DPs in the third and fourth
predicates.

dp terminat ion ?(E) : bool =
∀(dps : sequence[dep pa i r (E)], sigmas : sequence[Sub]) :
¬ i n f i n i t e d e p c h a i n ?(E)(dps, sigmas)

inn dp te rminat i on ?(E) : bool =
∀(dps : sequence[dep pa i r (E)], sigmas : sequence[Sub]) :
¬ i n n i n f i n i t e d e p c h a i n ?(E)(dps, sigmas)

d p t e r m i n a t i o n a l t ?(E) : bool =
∀(dps alt : sequence[ d e p p a i r a l t (E)], sigmas : sequence[Sub ] ) :

LET dps = LAMBDA( i : nat ) : ( lhs(dps alt(i)′1),
rhs(dps alt(i)′1)|dps alt(i)′2 ) IN

¬ i n f i n i t e d e p c h a i n ?(E)(dps, sigmas)

i n n d p t e r m i n a t i o n a l t ?(E) : bool =
∀(dps alt : sequence[ d e p p a i r a l t (E)], sigmas : sequence[Sub ] ) :

LET dps = LAMBDA( i : nat) : (lhs(dps alt(i)′1),
rhs(dps alt(i)′1)|dps alt(i)′2 ) IN

¬ i n n i n f i n i t e d e p c h a i n ?(E)(dps, sigmas)

As shown above, several elements were specified to deal with various reduction
relations, for which several properties were formalized but not discussed in this
paper since the focus here is on formalization of innermost termination by DPs.
Furthermore, the alternative version of DPs is used aiming to simplify proofs, and
to ensure that the corresponding innermost DP criteria are the same, the equiva-
lence inn dp termination?(E)⇔ inn dp termination alt?(E) was formalized as
lemma dp termination and alt eq in theory dependency pairs.pvs. This proof
is quite simple, building by contraposition infinite sequences of standard chained
DPs from alternative ones and vice versa.

4 Necessity for the Innermost Dependency Pairs Criterion

This result is formalized in lemma inn noetherian implies inn dp termination,
specified as below.

i n n n o e t h e r i a n i m p l i e s i n n d p t e r m i n a t i o n : LEMMA
∀(E) :

noether ian ?( innermost r educt i on ?(E)) =⇒ i nn dp te rminat i on ?(E)
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The formalization follows by contraposition, by building an infinite sequence
of terms associated with an infinite innermost derivation from an infinite chain of
dependency pairs. In order to build these terms, it is necessary to accumulate the
contexts where the reductions would take place regarding the rhs of the rule that
generates each DP in the chain. The intuition of this formalization follows directly
from the theory, and is summarized in the sketch given in Figure 1.

l1σ1

λ−→in

r1σ1

r1σ1|π1

−→∗in>λ

l2σ2

λ−→in

r2σ2

r2σ2|π2

−→∗in>λ

l3σ3

λ−→in

r3σ3

r3σ3|π3

−→∗in>λ · · ·

⇓

r1σ1

−→+
in

r1σ1[π1 ← r2σ2]

−→+
in

r1σ1[π1 ← r2σ2[π2 ← r3σ3]]

−→+
in · · ·

Fig. 1 Proof sketch: building infinite innermost derivations from infinite innermost DP-chains.

Since there is a root reduction associated with each DP in the sequence, from
its lhs to the rhs of the related rule, and a non-root innermost derivation to reach
the lhs of the next DP from the rhs of the current DP, it is relatively simple to
manipulate the rules and positions using the alternative dependency chain spec-
ification to build recursively a sequence of terms related by −→+

in through the
replacement operation.

To perform this construction, the recursive function term pos dps alt is used,
taking sequences of DPs and substitutions and producing indexed pairs of term
and position accumulating contexts in such a way that the terms are related by
−→+

in whenever the given sequence is chained. As illustrated in the Figure 1, if the
sequence is chained, the first pair of term and position is computed as (r1σ1, π1);
the second as (r1[π1 ← r2σ2], π1 ◦ π2); and so on. The function term pos dps alt

uses as previous context, Ca, and replaces the rhs of the current DP by the rhs of
the next DP in the sequence. Positions to perform the replacement are given by
accumulation of the positions in the alternative definition of DPs.

t e rm pos dps a l t (E)(dps : sequence[ d e p p a i r a l t (E)],
sigmas : sequence[Sub], i :nat ) :
RECURSIVE {(C, π) | π ∈ Pos(C)}=

IF i = 0 THEN
(rhs(dps(0)′1)sigmas(i), dps(0)′2)

ELSE LET (C, π) = te rm pos dps a l t (E)(dps, sigmas, i− 1) IN
(C[π ←rhs(dps(i)′1)sigmas(i)], π ◦ dps(i)′2)

ENDIF
MEASURE i

Then, an infinite sequence of terms can be built from an infinite chain given
by sequences of DPs and substitutions dps and sigmas as:
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LAMBDA( i : nat ) : t e rm pos dps a l t (E)(dps, sigmas, i)′1

Notice that the function term pos dps alt would provide an infinite sequence
of terms for any pair of infinite sequences of DPs and substitutions, disregarding if
they form an infinite innermost chain or not. To prove that the generated infinite
sequence indeed describes an infinite derivation for the relation −→in, this function
should be applied to a pair dps and sigmas that constitutes an infinite chain.

This is proved by showing the non-noetherianity of −→+
in that relates con-

secutive terms generated by the function term pos dps alt. The proof follows by
induction, whereas for the induction basis it must be proved that the first term
generated is related with the second by −→+

in. term pos dps alt builds these
terms just using the first and second DPs and substitutions, say ((l1, r1), π1),
((l2, r2), π2), and σ1 and σ2 as in Figure 1, in the chained input. The first term is
r1σ1 and the second r1σ1[π1 ← r2σ2], which is equal to r1σ1[π1 ← l2σ2[λ← r2σ2]].
Since contiguous pairs in the sequence are innermost chained and −→∗in>λ is com-
patible with contexts (by monotony of closures, since −→in is compatible with
contexts and −→in>λ⊆−→in), one has that r1σ1 −→∗in>λ r1σ1[π1 ← l2σ2]. And,
also by the innermost chained property, l2σ2 is a normal instance of the lhs of
a rule, i.e., a single innermost reduction step can be applied only at root posi-
tion giving r2σ2. Since a single innermost reduction step corresponds directly to
a replacement operation, and in this case at root position, one would have one in-
nermost reduction step r1σ1[π1 ← l2σ2]

π1−→in r1σ1[π1 ← r2σ2]. Thus, one would
have r1σ1 −→+

in r1σ1[π1 ← r2σ2]. The inductive step considers analogously con-
tiguous DPs and substitutions in the chained input, the only extra details are
regarding the current term and position computed in the previous recursive step
by term pos dps alt. Notice that in the ith iteration the current term can be seen
as a context C with a hole at the accumulated position, say π, filled with term
ri|πiσi. Indeed, in the induction basis the context is given by r1σ1 with a hole at
position π1. The term and accumulated position generated by term pos dps alt

are given as C[π ← ri+1σi+1] and π ◦ πi+1. Notice that this term can be seen as
a context with a hole at the accumulated position filled with the term ri+1|πi+1 .
Finally, observe that C[ri|πiσi] −→+

in C[ri+1σi+1].
Notice that this formalization is very similar to its analytic version, disregard-

ing the specification. However, the construction of an actual function to gener-
ate each pair of accumulated context and position simplifies the inductive and
constructive proof of the existence of the infinite derivation. Furthermore, proof
elements that can seem too trivial must be precisely used, such as the mentioned
closure of context, monotony of closures, subset properties and properties regard-
ing composition of positions in replacements. The last specifically used for instance
for proving correctness of the predicate subtyping condition {(C, π) | π ∈ Pos(C)}
of the pairs built by the function term pos dps alt. These properties are formal-
ized in the theory TRS in a general manner allowing its application for arbitrary
rewriting relations.

5 Sufficiency for the Innermost Dependency Pairs Criterion

The formalization is by contraposition. The core of the proof follows the idea
in [AG00] to construct infinite chains from infinite innermost derivations. In an
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implementional level, to go from infinite derivations to infinite sequences of DPs
that would create an infinite chain is challenging. Indeed, constructing the DPs
requires, initially, choosing mint subterms from those terms leading to infinite
innermost derivations; afterwards, choosing non-root innermost normalized terms;
and, finally, choosing instances of rules that apply at root positions of these terms
from which DPs can be constructed. All these choices are based on existential proof
techniques. Figure 2 illustrates the main steps of the kernel of the construction of
chained DPs:

– Existence of mint subterms of innermost non terminating terms is represented
as the small triangles inside big ones. This part of the development is explained
in Subsection 5.1.

– Existence of non-root innermost normalized terms obtained by derivations
(through relation −→in>λ) from these mint subterms, represented as verti-
cally striped triangles, is detailed in Subsection 5.2.

– Existence of DPs from rules and substitutions that reduce non-root innermost
normalized terms at root position, which also are innermost non terminating,
into innermost non terminating terms. The DPs are represented by pairs of
small vertically striped and small plain triangles and the latter by reductions

(through relation
λ−→in) from vertically to diagonally striped triangles. This

result is explained in Subsection 5.3.

s
(↑in)

s0
( �in)

−→∗in>λ

s′0 = l0σ0
( �in, nfin>λ )

λ−→in

r0σ0
(↑in)

r0σ0|π0

( �in)

DP: 〈l0 → r0, π0〉
Substitution: σ0

−→∗in>λ

(r0σ0|π0 )′ = l1σ1
( �in, nfin>λ )

λ−→in

r1σ1
(↑in)

r1σ1|π1

( �in)

DP: 〈l1 → r1, π1〉
Substitution: σ1

−→∗in>λ

NOTE: The reduced terms are those

completely inside squared frames.

Fig. 2 Proof sketch: building infinite innermost DP-chains from infinite innermost derivations.
Notice that the two DPs created, along with their respective substitutions, form chained DPs.

The last step of the construction above, permits as the first one, application
of a lemma of existence of mint subterms (for innermost non terminating terms).
In the last step, this result will allow constructing the required DPs.

Subsection 5.4 then discusses how getting adequate pairs of consecutive chained
DPs and associated normal substitutions, and Subsection 5.5, finally, details the
construction of the required chain of DPs.
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5.1 Existence of mint Subterms

The mint property ( �in) over terms is specified in the box below by predicate
minimal non innermost terminating?. Also in this box one has the specification
of lemma inn non terminating has mint, whose formalization ensures the exis-
tence of mint subterms regarding innermost non terminating terms. The proof
follows by induction on the structure of the term. The induction basis is triv-
ial since variable terms are not reducible, so variables cannot give rise to infinite
derivations. For the inductive step, whenever the term t has an empty list of argu-
ments (that is, t is a constant), the only position it has is its root, thus, the mint
subterm is the term itself; otherwise, either all its proper subterms are innermost
terminating and then the term itself is mint or, by induction hypothesis, some of
its arguments is innermost non terminating, say its ith argument, and then it has
a mint subterm at some position π, thus, the mint subterm of t is chosen as t|iπ.

minimal innermost non terminat ing ?(E) ( t : term ) : bool =
↑in ( t ) ∧ ∀(π ∈ Pos(t)|π 6= λ ) : ↓in (t|π ) )

inn non te rminat ing has mint : LEMMA
∀(E) ( t : term | ↑in ( t ) ) : ∃(π ∈ Pos(t))) : �in (t|π ) )

5.2 Non-root Innermost Normalization of mint Terms

The second step in the formalization proves that every mint term can be non-
root innermost normalized (into an innermost non terminating term). This result
appears to be, as given in analytic proofs, a simple observation since, by definition,
every proper subterm of a mint term is innermost terminating, and consequently no
argument of this term may give rise to an infinite innermost derivation. However,
formalizing such result by contradiction requires several auxiliary functions and
lemmas related with structural properties of such derivations that also consider
positions and arguments in which each reduction step happens. These technicalities
of the formalization are necessary to obtain a key result that assuming the existence
of an infinite non-root innermost derivation from a mint term guarantees that from
some of its arguments should start an infinite innermost derivation, which gives
the contradiction.

5.2.1 mint Terms are Non-root Innermost Terminating

For the remainder of this subsection, as specified below, assume that s, seqt and
seqp are fixed term, sequences of terms and positions, respectively, associated with
an infinite non-root innermost derivation on non-root innermost descendants of s,
such that the nth term in the sequence seqt reduces into the (n + 1)th term at
position seqp(n). Also, l will denote a valid argument of s (and as it will be seen,
also a valid argument of any of its descendants).

s : term | app ?( s )

seqt : sequence [ term ] | ∀(n : nat ) : s −→in>λ seqt(n)

seqp : sequence [ p o s i t i o n ] | ∀(n :nat) : seqp(n) ∈ Pos(seqt(n)) ∧
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seqp(n) 6= λ ∧ seqt(n)
seqp(n)−→in seqt(n+ 1)

l : posnat | l ≤ l ength ( args (s ) )

The predicate inf red arg in inf nr im red below holds whenever for a se-
quence of positions there is an infinite number of positions in the sequence starting
with the same natural. For seqp and l as above, this predicate will be applied to
state the existence of an infinite set of indexes in the sequence of terms seqt in
which the reduction happens at the lth argument. The function args of pos seq

is just used to give the argument of each position in a sequence of positions.

a r g s o f p o s s e q (seq : sequence [ p o s i t i o n ] | ∀(i :nat) : seqp(i) 6= λ)
(n : nat) :posnat =

f i r s t (seqp(n))

i n f r e d a r g i n i n f n r i m r e d (seq : sequence [ p o s i t i o n ] |
∀(i :nat) : seqp(i) 6= λ)

(i :posnat ) : bool =
i s i n f i n i t e ( inve r s e image ( a r g s o f p o s s e q (seq ) , i ) )

Then, for any l-th argument such that inf red arg in inf nr im red(seqt)(l)
holds, the function nth index below provides the index of the sequence in which
the (n+ 1)th reduction at argument l happens.

nth index(E)(s)(seqt)(seqp)(l)(n : nat) : nat =
choose ({m : nat | a r g s o f p o s s e q (seqp)(m) = l ∧

card ({k : nat | a r g s o f p o s s e q (seqp)(k) = l∧
k < m}) = n})

Notice that well-definedness of these functions is a consequence of the type of
l that is a dependent type satisfying the predicate inf red arg in inf nr im red,
which means that reductions at the lth argument happen infinitely many times.
The main technical difficulty of formalizing well-definedness is related with guar-
anteeing non-emptiness of the argument of the built-in function choose. This con-
straint is fulfilled by the auxiliary lemma below.

e x i s t s n t h i n i n f n r i m r e d : LEMMA
∀(n :nat) : ∃(m :nat) :

a r g s o f p o s s e q (seqp)(m) = l ∧
card({k :nat | a r g s o f p o s s e q (seqp)(k) = l ∧ k < m}) = n

The formalization of this lemma follows by induction on n and, although sim-
ple, requires several auxiliary lemmas over sets. In the induction basis, since one
has infinite reductions at argument l, the set of indexes where such reductions take
place is infinite, and thus, nonempty (by application of the PVS prelude lemma
infinite nonempty). Thus, it is possible to use PVS function min (over nonempty
sets) to choose the smallest index of this set. By the definition of this min function,
it is ensured that the set of indexes smaller than this minimum in this set is empty,
and thus has cardinality zero (by applying PVS prelude lemma card empty?). For
the inductive step, one must provide the index where one has a reduction at argu-
ment l such that it has exactly n+ 1 indexes smaller than it where reductions at
argument l occur. By induction hypothesis, there exists an index m for which re-
duction take place at argument l, and for which the cardinality of indexes smaller
than m with reductions at argument l is n. Thus, the required index is built as
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the minimum index bigger than m for which the reduction happens at argument l.
Correctness of such indexes follows similarly to the induction basis. First, since the
predicate inf red arg in inf nr im red holds, it is possible to ensure that the set
of indexes greater than index m for which reductions happen at argument lth is in-
finite, which allows application of the function min. Then one builds an equivalent
set to the one of all indexes smaller than this minimum as the addition of index m
to the set of indexes smaller than m (where one has reductions at argument lth).
This construction allows one to use another prelude lemma regarding cardinality
of addition of elements in finite sets (card add) to state that the cardinality of
this new set is n+ 1.

Soundness of nth index follows from auxiliary properties such as its monotony
and completeness, meaning the latter that this function covers exactly (all) the
indexes in which reductions happen at the lth argument. The formalization of these
properties follows directly from the conditions fulfilled by the natural numbers
chosen as the indexes in nth index and prelude lemmas over cardinality of subsets
(card subset), since each index provided gives rise to a subset of the next one.
These properties allow an easy formalization of a useful auxiliary result stating
that for every index of seqt below nth index(0) and between nth index(i)+1
and nth index(i + 1) there happen no reductions in the lth argument (lemma
argument protected in non nth index). And then it is possible to ensure that
there are only finitely many non-root innermost reductions regarding a term with
mint property, which is stated in the lemma below.

m i n t i s n r i n n t e r m i n a t i n g : LEMMA �in (s) =⇒noether ian ?(−→
s

in>λ ))

This proof follows by contraposition, by assuming the non noetherianity of the
−→
s

in>λ relation and building then an infinite derivation for some argument of

s, as illustrated in Figure 3. Thus, initially one would have an infinite sequence
seqt of descendants of term s where each one is related to the next one by one
step of non-root reduction. From this sequence, since there is a finite number of
possible arguments where the reductions can take place and infinitely many re-
ductions taking place in non-root positions, i.e., argument positions, one uses the
pigeonhole principle to ensure that there exists some argument position l that
satisfies the predicate inf red arg in inf nr im red. This allows the use of func-
tion nth index to extract exactly the index of the sequence where such reduction
occurs. Then the required infinite derivation is built in two steps. First, since one
has, by definition, that s −→>λ seqt(0), this leads to a finite sequence of reduced
terms that will be used. Given that every argument of a term innermost reduces
at root position to the argument of a reduced term by non-root reductions (lemma
non root rtc reduction of argument in theory innermost reduction.pvs), the
subterms of each element of this derivation at the chosen argument position is used
to the first portion of the infinite sequence. Finally, the function nth index is used
to extract from sequence seqt those indexes where reductions occur in the selected
argument, keeping this argument intact whenever the reduction does not occur
in such indexes (result given in lemma argument protected in non nth index).
Then, for each term obtained by a reduction on the l-th argument on this (now
infinite) derivation, its subterm at argument l is used to build the second and final
portion of the infinite sequence.
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seqt(0)

−→in>λ

seqt(1) =
seqt(nth index(l)(0))

−→in>λ

seqt(2) =
seqt(nth index(l)(1))

−→in>λ

seqt(3)

−→in>λ
· · · −→in>λ

seqt(m− 1) =
seqt(nth index(l)(2))

−→in>λ

seq(m)

−→in>λ
· · ·

seqt(nth index(l)(0) + 1)|l =
seqt(nth index(l)(1))|l = seqt(2)

−→+
in

seqt(nth index(l)(1) + 1)|l =
seqt(3)

−→+
in

seqt(nth index(l)(2) + 1)|l =
seqt(m)

−→+
in · · ·

An infinite innermost reduction sequence from seqt(0)|l.

s

−→∗in>λ

seqt(0) s|l

−→∗in

seqt(0)|l

−→in

seqt(2)|l

−→in

seqt(3)|l

−→in

seqt(m)|l

−→in · · ·

The infinite innermost reduction sequence from subterm s|l.

Fig. 3 Proof intuition: building an infinite innermost derivation of an argument l as concate-
nation of a finite and an infinite non-root innermost derivation of terms.

5.2.2 Construction of Non-root Innermost Normal Forms for mint terms

Since a mint term s is noetherian regarding −→
s

in>λ , as previously shown, in

an infinite derivation starting from s there exists an index where the first inner-
most reduction in the root position occurs. This result is formalized in lemma
inf inn deriv of mint has min root reduction index.

i n f i n n d e r i v o f m i n t h a s m i n r o o t r e d u c t i o n i n d e x : LEMMA
∀(seq : sequence [ term ] ) :

( �in (seq(0)) ∧ ∀(i :nat ) : inne rmost r educt i on ?(E)(seq(i), seq(i+ 1))) =⇒
∃(j : nat) : seq(j)

λ−→in seq(j + 1) ∧
∀(k : nat) : seq(k)

λ−→in seq(k + 1) =⇒ k >= j

This lemma is formalized by providing as the first index required the minimum
index of the infinite derivation where the reduction takes place at root position.
The function minimum (min) of PVS, just as function choose, also requires a proof
of non-emptiness of the set used as parameter. With the noetherianity provided
by lemma mint is nr inn terminating, this non-emptiness constrain in obtained
through an auxiliary result over noetherian relations restricted to an initial ele-
ment that are subset of some non noetherian relation, which is given by lemma
non noetherian and noetherian rest subset in the restricted reduction.pvs

theory. This lemma provides then, an index of this infinite derivation whereas the
given relation, i.e., −→

s
in>λ does not hold.

Notice that, until this point, some infinite reduction sequence is being consid-
ered in the proof. However, the DPs are not extracted from the whole terms in this
derivation. Instead, a mint term is innermost reduced until reaching an innermost
normal form and then the rule applied to the root builds the DP. Thus, at this
point, the extraction of the DP would be possible. But since the instance of this
DPs is crucial for building an infinite chain, it is important to know that, not only
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the term that initiated the infinite derivation will be at some point reduced at root
position, but which was exactly the term reached before such reduction.

In order to be able to extract the DP and substitution required to proceed with
the proof, one obtains finally that every mint term non-root innermost derives into
a term that has its arguments in normal form.

m i n t r e d u c e s t o i n t n r n f t e r m : LEMMA
∀(s| �in (s)) : ∃(t| ↑in (t)) : s −→∗in>λ t ∧ nf−→>λ (t)

The proof follows as an application of previous lemma, choosing the term at
the index where the first reduction at root position takes place, since this term is
in innermost normal form. Indeed, this term will be a normal instance of the lhs
of some rule.

5.3 Existence of DPs

The term obtained in previous subsection is an innermost non terminating term
such that it is also non-root innermost normalized. Such kind of non-root nor-
malized terms should innermost reduce at root position, see

λ−→in-reductions in
Figure 2. These reductions from vertically to diagonally striped triangles give rise
to the desired DPs. An important observation is that such terms reduce at root
position with a rule and a normal substitution. The substitution should be normal
since the terms are non-root innermost normal forms.

The following key auxiliary lemma provides the important result that such
normal instances of rhs’s of rules applied as before and that have minimal inner-
most non terminating subterms give rise to dependency pairs. The innermost non
terminality of the terms will guarantee the existence of such subterms.

n o r m a l i n s t o f r u l e w i t h m i n t o n r h s g i v e s d p a l t : LEMMA
∀(e ∈ E, σ : (normal sub ?(E)), π ∈ Pos(rhs(e)σ)) :

�in (rhs(e)σ|π) −→d e p p a i r a l t ?(E)(e, π)

The proof only requires to show that rhs(e)|π is defined. For this, initially it
must be ensured that π is indeed a non variable position of rhs(e). But σ is normal,
thus, since the premise �in (rhs(e)σ|π) implies innermost reducibility of rhs(e)σ|π,
if π were a variable position or a position introduced by this substitution, there
would be a contradiction to its normality. This part of the result is formalized sep-
arately in lemma reducible position of normal inst is app pos of term that
states that reducible subterms of normal instances of terms appear only at non vari-
able positions of the original term. Then, by the main result of the last subsection,
i.e., lemma mint reduces to int nrnf term, one has that rhs(e)σ|π −→∗in>λ t for
some term t such that �in (t) and nf−→>λ(t). Then, the term t has a defined symbol
on its root. Thus, it only remains to prove that the root symbol of rhs(e)σ|π and t is
the same, which is an auxiliary result formalized by induction on the length of the
non-root (innermost) derivation in corollary non root ir preserves root symbol

for non-root innermost derivations.
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5.4 Construction of Chained DPs

So far the existence of the elements needed to the proof was formalized. Now,
one builds in fact the elements as in Figure 2. Initially, a mint term is non-root
innermost normalized through the function below. The existential result given in
subsection 5.2 allows the use of the PVS choose operator.

m i n t t o i n t n r n f (E)(s : term| �in (s)) : term =
choose({t :term|s −→∗in>λ t) ∧ nf−→>λ (t) ∧ ↑in (t)})

Since this new non-root innermost normalized term is also innermost non ter-
minating, there exist some rule and normal substitution allowing to innermost
reduce this term at its root. Furthermore, the term obtained from this reduc-
tion will be also innermost non terminating, i.e., it will have a mint subterm at
some position of the rhs of the used rule. This property is formalized in lemma
reduced nit nrnf has mint specified as below.

r e d u c e d n i t n r n f h a s m i n t : LEMMA
∀(s :term| �in (E)(s)) :
∃(σ :Sub, e : r e w r i t e r u l e | e ∈ E, π ∈ Pos(rhs(e))) :
lhs(e)σ = m i n t t o i n t n r n f (E)(s) ∧ �in (rhs(e))σ|π)

This lemma is formalized applying the existential results of Subsection 5.3 for
obtaining the normal substitution σ and the rule e and, of Subsection 5.1 to obtain
a position π such that �in (rhs(e))σ|π).

Lemma reduced nit nrnf has mint allows one to use choose to pick the rule
and position leading to the DP and the substitution that will allow to chain the
DP with the next DP originated from the mint term rhs(e)σ|π as specified in
function dp and sub from int nrnf below. Here is clear why this construction is
facilitated by the use of the alternative definition of DPs that includes both the
rule and the position.

dp and sub f rom int nrn f (E)(s :term| �in (s)) : [ d e p p a i r a l t (E) , Sub ] =
LET sub e p =choose({(σ :Sub, e ∈ E, π ∈ Pos(rhs(e))) |

lhs(e)σ = m i n t t o i n t n r n f (E)(s), �in (rhs(e))σ|π)})
IN ((sub e p′2, sub e p′3), sub e p′1)

Whenever this function has as input a term that is an instance of the rhs of a
DP that is in non-root innermost normal form, the resulting DP and substitution
will be chained with the DP and substitution used to build the input term. This
result is specified in lemma next inst dp is inn chained and mnt given below,
where the desired alternative DPs are transformed into standard DPs in order to
allow the analysis through predicate inn chained dp?:

n e x t i n s t d p i s i n n c h a i n e d a n d m n t : LEMMA
∀(E)( dp : d e p p a i r a l t (E),

σ :Sub | �in (rhs(dp′1)σ|dp′2)) ∧ nf−→>λ (lhs(dp′1)σ) ) :
LET std dp = (lhs(dp′1),rhs(dp′1)|dp′2) ,

next dp sub = dp and sub f rom int nrn f (E)(rhs(dp′1)σ|dp′2) ,
next std dp = (lhs(next dp sub′1′1),rhs(next dp sub′1′1)|next dp sub′1′2),
σ′ = next dp sub′2 IN

inn cha ined dp ?(E)(std dp, next std dp)(σ, σ′) ∧ �in ((next std dp′2)σ′)

The formalization of this lemma is quite simple in its core, however, since
transformations between the standard and alternative notions of DPs are used,
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the proof of some typing conditions are required in order to ensure type correct-
ness. Once circumvented the typing issues, one must only guarantee the inner-
most chained property for the input DP and substitution and the resulting DP
and substitution created and that the instantiated subterm of the rhs of the new
DP is a mint term. Notice that the latter property is a direct result of the type
of the PVS choose operator used in function dp and sub from int nrnf; indeed,
this property was included (and formalized) as part of this lemma just to avoid
the necessity to repeatedly ensure non-emptiness of the used set providing more
efficiency since this result is used several times throughout the rest of the for-
malization. To guarantee that the DPs are chained is also straightforward, since
dp and sub from int nrnf is defined over mint to int nrnf, which gives a term
with type as a non-root innermost normal form of the mint input, i.e., exactly
the definition given by predicate inn chainned dp?; using notation of the lemma:
rhs(dp′1)|dp′2σ −→∗in>λ lhs(next dp sub′1′1)σ′.

This result allows the specification of a function using predicate subtyping, a
very interesting feature available in PVS. Using this feature elaborated predicate
types can be assigned to the outputs of functions, and type checking will automat-
ically generate the type checking conditions (TCCs) to ensure well-definedness of
the function. Although used in other functions through the formalization, the most
interesting application of this feature happens in the next function that outputs a
pair for an input pair of DP and substitution, and where the type of the output
uses the predicates in chained dp? and �in. The generated TCCs are not proved
automatically; however, to ensure that the type predicates hold, typing provided
in the previous lemma are applied.

next dp and sub(E)( dp : d e p p a i r a l t (E),
σ : Sub | �in (rhs(dp′1)σ|dp′2) ∧ nf−→>λ (lhs(dp′1)σ) ) :

{ (next dp : d e p p a i r a l t (E),
next σ : Sub ) | inn cha ined dp ?(E)(dp, next dp)(σ, next σ) ∧

�in (rhs(next dp′1)next σ|next dp′2)) } =
dp and sub f rom int nrn f (E)(rhs(dp′1)σ)|dp′2)

Applying dp and sub from int nrnf (as in the body of the above function) to
a mint term built from a pair of DP and substitution, one provides as output a
pair of DP and substitution with the specified subtyping predicates, guaranteeing
that the input and output are chained.

5.5 Construction of the Infinite Innermost Dependency Chain

With the possibility of creating new DPs and substitutions from mint terms, it is
possible to build, inductively, an infinite DP chain from any innermost non ter-
minating term. However, PVS syntax makes this construction a little bit tricky,
since its functional language only allows directly construction of lambda-style or
recursive functions. A lambda-style function to create such infinite chain is not
possible, since the construction of every pair of DP and substitution depends on
the previous one in the chain. But a direct construction of a recursive function is
also problematic since the use of the choose operator in several steps of this con-
struction makes it difficult to guarantee its determinism and then its functionality.

A simple solution for this problem is to use the recursion theorem to provide
the existence of a function from naturals to pairs of a DP and a substitution
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such that each pair generates the next pair in the chain according to the function
next dp and sub implying then that contiguous images are chained.

The recursion theorem is specified as below. It states that for all predicates
X over a set T , initial element a in X and function f over elements of X, there
exists a function u from naturals to X such that the images of u are given by the
sequence a, f(a), . . . , fn(a), . . ..

r ecur s i on theorem : THEOREM
∀(X : s e t [T ], a ∈ X, f : [(X)− > (X)]) :
∃(u : [nat− > (X)]) : u(0) = a ∧ ∀(n :nat) : u(n+ 1) = f(u(n))

To use this theorem, the predicate is instantiated with pairs of DP and substi-
tution of the type of the parameters of the function next dp and sub, i.e.,

( dp : d e p p a i r a l t (E), σ : Sub | �in (rhs(dp′1)σ|dp′2) ∧ nf−→>λ (lhs(dp′1)σ) )

The fist element of the sequence a is instantiated as the pair of DP and substi-
tution, obtained from the initial term starting any infinite innermost derivation,
according to the techniques given is subsections 5.1, 5.2 and 5.3. As expected, the
function from pairs to pairs is chosen as next dp and sub. The recursion theorem
guarantees just the existence of a total function from naturals to the sequence in-
ductively built using function next dp and sub starting from the initial pair. But
the choice of this function assures by its predicate subtyping that each pair of
consecutive pairs are in fact chained.

As a consequence of all that, the sufficiency lemma below is obtained.

d p t e r m i n a t i o n i m p l i e s n o e t h e r i a n : LEMMA
∀(E) : i nn dp te rminat i on ?(E) =⇒noether ian ?(−→in)

6 Related Work

There are several methods of semi-decision to address the analysis of termination,
among them, the well-known Ranking functions implemented in PVS as termina-
tion TCCs, as mentioned in the introduction. A more recent criterion to verify
termination of functional programs is the so called size-change principle (SCP, for
short) [LJBA01]. This principle does not require decreasingness after each recur-
sive call, but strict decreasingness (using a measure regarding some well-founded
order) for each possible infinite “cycle” of recursive calls; thus, if such a measure
exists, infinite computations are not possible since they will imply infinite decreas-
ingness (over a well-founded order). The SCP and DPs criterion are compared in
[TG05] taking into account termination, innermost termination and evaluation of
functional specifications. One approach of the SCP is given by the technology of
calling contexts graphs (CCG, for short) [MV06], which implements the SCP by
representing all possible executions of a functional program as paths in a graph in
which nodes are labeled by the different occurrences of function calls in it. More
precisely, each node corresponds to a so called calling context that consists of the
formal parameters of a function in which a function call is specified, the actual pa-
rameters of the function call, and the conditions that lead to the execution of the
function call. Possible computations are then characterized as sequences of calling
contexts related with paths in that graph, and termination is analyzed regarding
the behavior of measurements on the possible circuits in the CCG. The CCGs
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technology has the advantage of allowing combinations of a finite family of mea-
sures at each node of a possible circuit, simplifying in this manner the formulation
of a single and complex measure that works (decreases) for all possible circuits.
These combinations are also implemented in the so called Matrix Weighted Graphs
developed by Avelar in [Ave14]. All these technologies to verify termination are
implemented and formalized to be equivalent in the PVS library PVS0 mentioned
in the introduction. The innermost DP termination criterion is formally related
with noetherianity of the relation of chained DPs, which is relevant to verify ter-
mination of TRSs providing well-founded orderings on DPs, and this technology is
related in PVS0 with CCGs for formalization of equivalence between termination
criteria for functional programs.

Formalizations of the theorem of soundness and completeness of DPs (for short
DP theorem) are available in several proof assistants. In [BK11], Blanqui and
Koprowski described a formalization of the DP theorem for the standard reduction
relation that is part of the CoLoR library developed in Coq for certifying proofs of
termination. The formalized result is the DP theorem for the standard reduction
relation, and not for the innermost termination. The proof in [BK11], as the current
formalization, uses the non-root reduction relation (internal reduction) and the
reduction at root position relation (head reduction), but instead of building infinite
chains from infinite derivations, it assumes a well-founded relation over the set of
chained DPs to conclude noetherianity of the standard reduction relation. Also,
the library Coccinelle [CCF+07] includes a formalization in Coq of DP theorem
that defines a relation between instances of lhs of DPs and proves the equivalence
between well-foundedness of this relation and well-foundedness of the reduction
relation of a given TRS. To chain DPs instances of the lists of arguments of lhs’s
and rhs’s of DPs, which are headed by the same function symbol, are related by
the reflexive-transitive closure of the rewriting relation (avoiding in this way the
use of tuple symbols). The formalization also considers a refinement of the notion
of DPs, which avoids DPs generated by a rule, where the rhs of the DP appears
also as a subterm of the lhs of the rule.

Such a formalization of DP theorem for the standard reduction relation, also is
present in the proof assistant Isabelle, as part of the library for rewriting IsaFoR
briefly described in [Thi10]. In this formalization the original signature of the
TRS is extended with new tuple symbols for substituting the defined symbols
(see comments after Definition 1 of DPs), which implies the analysis of additional
properties of the new term rewriting system induced over the extended signature
and also properties relating this new rewriting system with the original one. The
proof, as in the current formalization, builds an infinite chain from an infinite
derivation and vice-versa. The interesting features from this work are that it uses
the same refinement of DPs as the formalization in Coccinelle and that it was
done for a full definition of “Q-restricted” rewriting providing in this manner a
general result that has as corollaries both the DP theorem for the standard and the
innermost reduction relations, the former given explicitly. Essentially, for TRSs E

and Q, the Q-restricted relation, denoted as
Q−→E , is defined as the relation such

that s
Q−→E t iff s −→E t at some position π such that proper subterms of

s|π are normal regarding Q; so
∅−→E and

E−→E correspond respectively to the
standard and the innermost reduction relations [GTSK05]. This formalization is



Formalizing the Dependency Pairs Criterion for Innermost Termination 21

used to provide a sound environment to certify concrete termination proofs in an
automatic way by the tool CeTA [TS09].

7 Discussion and Future Work

A formalization in PVS of the soundness and completeness of the Dependency
Pairs criterion for innermost termination of TRSs was presented. The formalization
follows the lines of reasoning of proofs given in papers such as [AG00]. In particular,
it builds infinite innermost chains of DPs from infinite innermost derivations and
vice-versa.

The kernel of the formalization consists of 64 lemmas from which 40 are TCCs.
This is available in the specification and formalization files dependency pairs.pvs

and .prf that have size 21KB and 871KB, respectively. For achieving the formal-
ization, the TRS library of PVS, was extended with theories innermost reduction

and restricted reduction, which include 37 lemmas from which 17 are TCCs.
Both these theories add 10KB of specification and 451 KB of proofs. The proof
of necessity (in theory dependency pairs) required 11% of the whole size of the
formalization file, while sufficiency required 80%. The remaining 9% of the for-
malization file deals with basic properties of DPs, and a lemma relating innermost
DP termination with noetherianity of the innermost chain relation. From the to-
tal size used in the proof of sufficiency, the formalization was split approximately
into 11%, 59%, 6%, 20% and 4% for the tasks presented in Section 5: Existence of
mint Subterms (Subsection 5.1), Non-root Innermost Normalization of mint Terms
(5.2), Existence of DPs (5.3), Construction of chained DPs (5.4), Construction of
the Infinite Innermost Dependency Chain (5.5), respectively. As expected from
the discussion in Section 5, the formalizations of normalization of mint terms and
constructions of chained DPs were the most elaborated and the ones that required
more space.

In order to formalize the DP theorem for the standard rewriting relation, a sim-
ilar reasoning than the one used for innermost reduction can be followed, but the
involved properties cannot be reused to prove each other. In fact, notice for instance
that necessity for the standard reduction, i.e., noetherian?(reduction?(E)) im-
plies dp termination?(E), cannot be applied to infer inn dp termination?(E), if
one has noetherian?(innermost reduction?(E)). The required properties should
be developed explicitly for the standard reduction relation, as done so far for the
formalization of necessity theorem. An important difference happens in the for-
malization of sufficiency, when one is building an infinite chain from an infinite
derivation. Specifically, for the innermost case, mint terms are normalized regard-
ing the non-root innermost relation, giving rise to a term that has an innermost
reduction redex at its root (vertically striped small triangles in Fig. 2), while for
the standard case, the unique guarantee it that mnt terms reduce at non-root
positions into a term that can be reduced at its root position. This small differ-
ence implies a few adjusts in order to apply the rules on root position leading to
the DPs that will produce the chain. The existence of DPs from such (non nec-
essarily non-root normalized) terms follows from an argumentation based on the
fact that the mnt term starting the non-root derivation is non-root terminating;
thus, when a given rule is applied at root position of some of its non terminating
descendants, the substitution allowing the application of such rule may not have
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non-root non-terminating redexes. Other than that, the chained dp? property also
follows directly from the type of the chosen descendant term of a mnt term where
the first root reduction takes place.
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