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1. Mathematical induction



Mathematical induction

Intuitively, mathematical induction means
‘n is a natural number iff n can be reached by a finite number of
applications of adding 1 to 0’.

Formally, we cannot state the definition in this way, because in
doing so we were defining ‘natural number’ using ‘finite number’.
But the latter is the same as the former.

How to scape from this circularity?



The structure of natural numbers

We have:

– 0 : a natural number;

– S(x) = x + 1 : an operation on natural numbers;

We want to define N, the set of natural numbers, in a such way
that:

– 0 ∈ N;

– n ∈ N iff n = S(S(· · · S(0)) · · · )︸ ︷︷ ︸
n times

.

That is, n is a natural number iff either it is zero or it is the
successor of the successor of · · · of the successor of 0.



The structure of natural numbers

We want ‘start in 0 and move on, with no move back’.

We assume:

– ∀x [S(x) 6= 0].

– ∀xy [s(x) = s(y)⇒ x = y ].

So, we can not have:

0

S
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We want ‘start in 0 and move on, with no move back’.
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The structure of natural numbers

We want ‘start in 0 and move on, with no move back’.

So, we assume:

– ∀x [S(x) 6= 0].

– ∀xy [s(x) = s(y)⇒ x = y ].

Hence, we must have:

0 S(0) S(S(0))
S S



The structure of natural numbers

And so on . . .

0 S(0) S(S(0)) S(S(S(0))) . . .
S S S S



The structure of natural numbers

We want ‘start in 0 and move on, with no move back’.

So, we assume:

– ∀x [S(x) 6= 0].

– ∀xy [s(x) = s(y)⇒ x = y ].

These imply our set N is infinite.

There is an injection from N onto a proper part of it (Dedekind,
1888).



The structure of natural numbers

Let X be a set.
We say that X is good iff 0 ∈ X and ∀x [x ∈ X ⇒ S(x) ∈ X ].

Intuitively, N is good.

Besides, intuitively, if X is good, then S(S(· · · S(0)) · · · )︸ ︷︷ ︸
n times

∈ X , for

every n.

We want N contains nothing else except the elements of the form
S(S(· · · S(0)) · · · )︸ ︷︷ ︸

n times

.



The structure of natural numbers

The idea is to define N as the least (wrt inclusion) good set.

Statement: There is a good set.

Statement: If {Xi : i ∈ I} is a family of good sets, then⋂
{Xi : i ∈ I} is a good set.



The birth of the induction axiom

Definition: N =
⋂
{X : X is a good set}.

By the definition of
⋂

, we have:
∀X [X is good ⇒

⋂
{X : X is good} ⊆ X ].

By the definition of N, we have:
∀X [X is good ⇒ N ⊆ X ].

By the definition of good, we have:
∀X [0 ∈ X ∧ ∀x [x ∈ X ⇒ S(x) ∈ X ]⇒ N ⊆ X ].



A meaning for the induction axiom

The induction axiom states:
∀X [0 ∈ X ∧ ∀x [x ∈ X ⇒ S(x) ∈ X ]⇒ N ⊆ X ].

That is:
∀X [0 ∈ X ∧ ∀x [x ∈ X ⇒ S(x) ∈ X ]⇒ ∀y [y ∈ N⇒ y ∈ X ].

So, to show that every element of N belongs to a set X (possesses
a property X ) suffices to show X is good:

– 0 ∈ X .

– ∀x [x ∈ X ⇒ S(x) ∈ X ]



2. Dedekind Peano axioms



Background

We are going to be “formal, mas informal” . . .

. . . assuming an operational amount of second order logic (Siefkes,
1970).



Structures

Definition: A structure is a triple 〈N, z , s〉, where:

1. N is a set.

2. z ∈ N.

3. s : N → N is a function.

(a) N1 = 〈N, 0,S〉 is the standard structure.

(b) N2 = 〈{a}, a, f 〉, where f (a) = a is a structure.

(c) N3 = 〈{b, c}, b, g〉, where g(b) = g(c) = c is a structure.



Examples of structures

N1 : 0 1 2 3 . . .
S S S S

N2 : a

f

N3 : b c
g

g



Dedekind Peano-Structures

Definition: Let N = 〈N, z , s〉 be a structure.
We say that N is a DP-structure if it satisfies the following axioms:

Zer. ∀x ∈ N[s(x) 6= z ].

Inj. ∀x , y ∈ N[s(x) = s(y)→ x = y ].

Ind. ∀X ⊆ N{z ∈ X ∧ ∀y ∈ N[y ∈ X ⇒ s(y) ∈ X ]⇒ ∀z ∈ N[z ∈
X ]}



Examples and counterexamples of DP-structures

N1 |= Zer, Inj, Ind.
N1 is a DP-structure.

N2 6|= Zer, N2 |= Inj, N2 |= Ind.
N2 is not a DP-structure.

N3 |= Zer, N3 6|= Inj, N3 |= Ind.
N3 is not a DP-structure.



More independences

Zer Inj Ind

X X X 〈N, 0,S〉
X X × 〈N ∪ {

√
2}, 0,S ∪ {(

√
2,
√

2)}〉
X × X 〈{a, b}, a, {(a, b), (b, b)}
X × × 〈{a, b, c}, a, {(a, b), (b, b), (c , b)}
× X X 〈{a}, a, {(a, a)}
× X × 〈{a, b, c}, a, {(a, b), (b, a), (c , c)}〉
× × X ??????????
× × × 〈{a, b, c}, a, {(a, b), (b, a), (c , a)}〉

We found no N such that N |= ¬Zer,¬Inj, Ind.



Induction-Structures

We are interested in the structured where Ind holds.

Definition: Let N = 〈N, z , s〉 be a structure.
We say that N is an Ind-structure if N |= Ind .

(a) N = 〈N, 0,S〉.

0 1 2 . . . n . . .



Induction-Structures
(b) For every n ∈ N, the structure Nn = 〈{0, 1, 2, . . . , n − 1}, 0, s〉,
where:

s(x) =

{
x + 1 if x < n − 1
0 otherwise.

0
1

2

3

4
5

6

7

. . .

n-1



Induction-Structures
(c) For all n, k ∈ N, 1 ≤ k ≤ n, the structure
Nn,k = 〈{0, 1, 2, . . . , n − 1}, 0, s〉, where:

s(x) =

{
x + 1 if x < n − 1
k otherwise.

0 1 2 . . . k-1 k
k+1

k+2

k+3

k+4
k+5

k+6

k+7

. . .

n-1



Intuitive independence

Intuitively, these are the only structures N |= Ind.

Observe that:
Zer Inj Ind

X X X N
X × X Nn,k

× X X Nn

× × X ×

L.Henkin presented an algebraic proof sketch of this fact in 1960.



Intuitive independence

M. R. Cerioli, H. Nobrega, G. Silveira and P. Viana presenetd an
alternative logical proof in 2015.

They also presented a set of axioms having examples for all lines of
the table on independence.

At least for me, it is interesting that ¬Zer ∧ ind is the same as
modular arithmetics.



3. Iteration



Iteraction

Intuitively, iteration means
‘an operation may be repeated on its result on a given argument
any finite number of times’.

Formally, we cannot state interation in this way, because in doing
so we are defining ‘iteration’ using ‘repeating any finite number of
times on the result of a given argument’.
But the later is the same as the former.

How to scape from this circularity?



Iteraction

Given a set A and a function f : A→ A, an idea is to define the
iteration of f “by induction”, according to the following clauses:

f 0(x) = x

f S(n)(x) = f (f n(x))

But observe that whereas f , f 0, and f S(n) (given f n) make sense,
f n do not.
We need to prove it exists!



Iteration Theorem, first version

Iteration Theorem (IT1v)

Let A be a set and a ∈ A.

Then, for every induction structure N = 〈N, z , s〉 there is a family
of functions F = {fn : A→ A | n ∈ N} satisfying the following
conditions:

1. fz(a) = a.

2. ∀n ∈ N[fS(n)(a) = f (fn(a))].



Attempt of proof for ITfv

Proof: First, we define F “point-wise”.

Let X = {n ∈ N : ∃ an adequate function fn associated to n}.

For z , we take fz ::= IdA. So z ∈ X .

Suppose n ∈ X , that is, the adequate function fn is associated to n.

For S(n), we take fS(n) ::= f ◦ fn.

Now, we take F = {fn : n ∈ N} and prove 1 and 2.



Where is the mistake?

We have a counter-example.

Take N3 = 〈{0, 1, 2}, 0, s〉, where s(0) = 1, s(1) = 2, and
s(2) = 0.

Recall that N3 |= Ind.

Let A be such that {a, b} ⊆ A, where a 6= b.

Take f (a) = b and f (b) = a (the rest of f does not matter for
which follows).



Where is the mistake?

We have:

f0(a) = a

fs(0)(a) = f (f0(a)) = f (a) = b

fs(s(0))(a) = f (fs(0)(a)) = f (b) = a

fs(s(s(0)))(a) = f (fs(s(0))(a)) = f (a) = b

But, fs(s(s(0)))(a) = f0(a) = a, a contradiction.



From iteration to homomorphism

Above, we started with an induction structure N1 = 〈N, z , s〉 and
tried to define an adequate family F = {fn : n ∈ N}.

Now, considering the structure

N2 = 〈F , fz ,S〉,

where
S(fn) = fs(n),

for every n ∈ N.

We can see the mistaken “proof” above as a tentative of defining
a function h : N → F , such that:

1. h(z) = fz .

2. ∀n ∈ N[h(s(n)) = fs(n) = S(fn) = S(h(n))].



The homomorphism theorem, second version

Homomorphism Theorem, second version (HoT2v)

Let N1 = 〈N1, z1, s1〉 be a induction structure and
N2 = 〈N2, z2, s2〉 be a structure whatsoever (s2 does not need to
behave like a successor function).

Then, there exists a unique function h : N1 → N2 satisfying the
following conditions:

1. h(z1) = z2.

2. ∀n ∈ N1[h(s1(n)) = s2(h(n))].

That is, there exists a unique homomorphism from N1 to N2.



Attempt of proof for HoT2v

Proof, second attempt: Let X = {n ∈ N : h(n) is defined}.

For z , we take h(z1) ::= z2. So z ∈ X .

Suppose n ∈ X , that is, h(n) is defined.

For s(n), we take h(s1(n)) ::= s2(h(n)). So, s(n) ∈ X .

Now, by induction, we prove h is defined and h is unique.



Where is the mistake?

Of course, this proof is also wrong.
The same counterexample works . . .

Whith a slight change (this is a fuzzy concep) in the statement we
will have a proper version.

But, first, let us see that the proper HoT gives us what we want.



From homomorphism to iteration

Given a set X , a function f : X → X , and x ∈ X .

Take the canonical structure N1 = 〈N, 0, S〉 and the structure
N2 = 〈X , x , f 〉.

By the HoT, there is a unique homomorphism hx : N→ X such
that hx(0) = x and hx(S(n)) = f (hx(n)), for all n ∈ N.



From homomorphism to iteration

Now, given a set A and a function f : A→ A, the iteration of f on
elements of A is the function F : N× A→ A, defined by

F (n, x) = hx(n),

for all n ∈ N and x ∈ A.

In fact, given an element a on which want to iterate the
applications of f , we have:

F (0, a) = ha(0) = a

F (S(0), a) = ha(S(0)) = f (ha(0)) = f (a).

F (S(S(0)), a) = ha(S(S(0))) = f (ha(S(0))) = f (f (a)).

And so on . . .



The homomorphism theorem

Homomorphism Theorem (HoT)
(Dedekind, 1888)

Let N1 = 〈N1, z1, s1〉 be a DP-strucure and N2 = 〈N2, z2, s2〉 be a
structure whatsoever.

Then, there exists a unique function h : N1 → N2 satisfying the
following conditions:

1. h(z1) = z2.

2. ∀n ∈ N1[h(s1(n)) = s2(h(n))].

That is, there exists a unique homomorphism from N1 to N2.



Proofs of HoT

Ind warrants the unicity.

To prove the existence, we need Zer and Inj.



Proofs of HoT

Proof by “bottom-up” (Kálmar, 1939):

Let X ⊆ N1.
We say X is a segment if z ∈ X and ∀n ∈ N1[s1(n) ∈ X → n ∈ X ].

That is, X contains zero and is closed to predecessor.

Let H : X → N2.
We say H is a partial homomorphism if X is a segment,
H(z1) = z2, and ∀n ∈ N1[H(s1(n) = s2(H(n))].

That is, H is a finite approximation of h.



Proofs of HoT

For every n ∈ N1 there exists a segment Xn and a partial
homomorphism Hn : Xn → N2, such that n ∈ Xn.

That is, we know how to construct finite approximations of h up to
any element of N1.
To prove this we need Zer.

If H1 : X1 → N2 and H2 : X2 → N2 are partial homomorphisms,
and n ∈ X1 ∩ X2, then H1(n) = H2(n).

That is, new finite approximations do not destroy what we already
have acchieved.
To prove this we need Inj.



Proofs of HoT

Now, define h : N1 → N2 by setting for every n ∈ N1 and m ∈ N2:

h(n) = m iff ∃ partial homomorphism H such that H(n) = m

We prove that h is well defined, satisfies 1 and 2, and is unique.
To prove these we need Ind. �



Proofs of HoT

Proof by “top-down” (P. Lorenzen, 1939):

Let X × Y ⊆ N1 × N2.
We say X × Y is regular if (z1, z2) ∈ X × Y and
∀(x , y) ∈ N1 × N2[(x , y) ∈ X × Y → (s1(x), s2(y)) ∈ X × Y ].

There are regular sets.

Let R be a family of regular sets, then
⋂
R is regular.

Let h =
⋂
{X × Y : X × Y is regular}.



Proofs of HoT

Given n ∈ N1, we prove that there exists only one m ∈ N2 such
that (n,m) ∈ h.
To prove this we need Zer, Inj, and Ind,

We prove that h satisfies 1 and 2, and that h is unique.
This follows by definition and Ind. �



4. The strength of the DP axioms



The converse of the homomorphism theorem

The strength of Zer ∧ Inj ∧ Ind is given by:

The Converse of the Homomorphism Theorem (CHoT)

Let N1 = 〈N1, z1, s1〉 be a structure whatsoever.

Then, the following conditions are equivalent:

(a) N1 = 〈N1, z1, s1〉 is a DP-strucure.

(b) For every structure N2 = 〈N2, z2, s2〉, there exists a unique
function h : N1 → N2 satisfying the following conditions:

1. h(z1) = z2.

2. ∀n ∈ N1[h(s1(n)) = s2(h(n))].



The converse of the homomorphism theorem

That is . . .

N1 = 〈N1, z1, s1〉 is a DP-strucure.
iff
it satisfies the Homomorphism Theorem.

This is a categorical (in the sense of category theory)
characterization of 〈N, 0, S〉 (Lawvere, 1965).



Proof of CHoT

Let us skip the proofs of Zer and Inj.

To prove Ind, let X ⊆ N1 be good.

Let Y = N1 \ X .
Suppose, for RA, that Y 6= ∅.

Let Z be such that N1 ∩ Z = ∅ and there is a bijection b : Y → Z .

Let N2 = 〈X ∪ Y ∪ Z , z1,T 〉, where T is defined by:

T (x) =


s1(x) if x ∈ N1

b(s1(y)) if x ∈ Z , b(y) = x , and s1(y) ∈ Y
s1(y) if x ∈ Z , b(y) = x , and s1(y) ∈ X .



A characterization of Ind-structures

The strength of Ind is given by:

Characterization of Ind-structures (CIS)

Let N2 = 〈N2, z2, s2〉 be a structure whatsoever.

Then, the following conditions are equivalent:

(a) N2 = 〈N2, z2, s2〉 is a Ind-strucure.

(b) For every DP-structure N1 = 〈N1, z1, s1〉, there exists a
surjective function h : N1 → N2 satisfying the following conditions:

1. h(z1) = z2.

2. ∀n ∈ N1[h(s1(n)) = s2(h(n))].

�



A characterization of Ind-structures

That is . . .

N2 = 〈N2, z2, s2〉 is a Ind-strucure.
iff
it is the homomorphic image of a DP-structures.



Proof of CIS

(=⇒) Let N1 = 〈N1, z1, s1〉 be a DP-structure.

By HoT, there exists a unique homomorphism h : N1 → N2.

We prove that Y = {y ∈ N2 : ∃x ∈ N1 such that h(x) = y} is
good.

Hence, by Ind, N2 = Y , that is, h is surjective.



Proof of CIS

(⇐=) Let N1 = 〈N1, z1, s1〉 be a DP-structure and h : N1 → N2 be
a surjective homomorphism.

Let Y ⊆ N2 be a good set.
We want to prove that N2 ⊆ Y .

To this, consider X = {x ∈ N1 : h(x) ∈ Y }.

We prove, by Ind and Y is good, that X = N1.

Hence, for every x ∈ N1, we have h(x) ∈ Y , that is Ran(h) ⊆ Y .

Now, since h is surjective, N2 ⊆ Y . �



A characterization of infinite sets

The strength of Zer ∧ Inj is given by:

A characterization of infinite sets

Let X be a set.

Then, the following conditions are equivalent (Dedekind, 1888):

(a) X is infinite.

(b) There is a proper subset Y ⊂ X and a function b : X → Y
such that b is a bijection.



A characterization of infinite sets

This is exactly what Zer and Inj are saying.

Given 〈N, z , s〉 |= Zer ∧ Inj,
take X = N, Y = Ran(s), and b = s.

Zer warrants Y is a proper subset of X and Inj warrants s is
bijective.



5. Recursion



Primitive Recursion

Intuitively, primitive recursion means
‘the value of a function f at an argument n is defined by using its
value at the previous argument n − 1.

So, iteration is a kind of recursion:

f (s(n)) = f (f (n)).

We define f (s(n)) using f (n).



Recursion in Ind-structures

Not all recursion is possible in Ind-structures.
But some are . . .

Recursion in Ind-strutures (RIS)

Let N = 〈N, z , s〉 be an Ind-structure and x ∈ N.

Then, there exists a unique function hx : N → N satisfying the
following conditions:

1. hx(z) = x .

2. ∀n ∈ N[hx(s(n)) = s(hx(n))].

That is, whereas almost no iteration of ‘external functions’ is
possible, iteration of s still is possible!



Proof of RIS

Proof (Kálmar, before 1939):

Let X = {x ∈ N | ∃fx : N → N satisfying 1 and 2}.

For z , take fz : N → N such that fz(x) = z , for every x ∈ N.

We prove that fz satisfies 1 and 2.
So, z ∈ X .



Proofs of RIS

Suppose n ∈ X .
So, ∃fn : N → N satisfying 1 and 2.

For S(n), take fS(n) = s ◦ fn.
We prove that fS(n) satisfies 1 and 2.
So, S(n) ∈ X .

Now, by induction, we can proof that, hx exists and is unique, for
every n ∈ N. �



Recursion in Ind-structures

From RIS we can prove that every Ind-structure has an operation
of addition.

Addition in Ind-Structures (AIS)

For every Ind-structure 〈N, z , s〉 there is a unique binary operation
+ : N × N → N, such that, for all x , y ∈ N:

x + z = x
x + s(y) = s(x + y).

Just take x + y = fx(y).



Recursion in Ind-structures

Besides, from RIS we can prove that every Ind-structure has an
operation of multiplication.

Multiplication in Ind-Structures (MIS)

For every Ind-structure 〈N, z , s〉 there is a unique binary operation
× : N × N → N, such that, for all x , y ∈ N:

x × z = z
x × s(y) = (x × y) + x .

Idea of proof: For z , we take gz(x) = z .
Given gx , for s(x), we take gs(x) = gx(y) + x .
By induction, we prove × is well defined and unique.



Recursion in Ind-structures

Now, the natural question is whether we can prove that every
Ind-structure has an operation of exponentiation.

Tentative of exponentiation in Ind-Structures

For every Ind-structure 〈N, z , s〉 there is a unique binary operation
f : N × N → N, such that, for all x , y ∈ N:

x f z = s(z)
x f s(y) = (x f y)× x .



Recursion in Ind-structures

But this is false.

Take 〈{0, 1}, 0, s〉, where 0 6= 1, s(0) = 1, and s(1) = 0.

We have:
+ 0 1

0 0 1
1 1 0

× 0 1

0 0 0
1 0 1

Besides, 0f 0 = 0f s(1) = s(0f 0)× 1 = 1× 1 = 1.

Moreover, 0f 0 = s(1)f 0 = s(1) = 0, a contradiction.



Recursion in Ind-structures

It seems that no Ind-structure of the form Nn, with n ≥ 2, have an
exponentiation.

But this is false.

Exponentiation in Ind-Structures Nn (EIS)

For every Ind-structure Nn, the following are equivalent:

(a) Nn has an operation of exponentiation.

(b) n = 1, 2, 6, 42 and 1806.



Proof of RIS

Sketch of Proof: (Dyer-Bennet, 1940)

If p is prime, and p2|n, then Nn has no exponentiation.

If p is prime, p|n, but p − 1 6 |n, then Nn has no exponentiation.

If n = p1 × p2 × · · · × pk , pi prime, pi 6= pj , and pi − 1|n, then Nn

has exponentiation.

Using these, we can prove that Nn has exponentiation iff
n = 1, 2, 6, 42 and 1806.



Proof of RIS

We have:
1

1× 2

1× 2× 3

1× 2× 3× 7

1× 2× 3× 7× 43

Observe that 2 = 1 + 1, 3 = (1× 2) + 1, 7 = (1× 2× 3) + 1, and
43 = (1× 2× 3× 7) + 1.

After that, (1× 2× 3× 7× 43) + 1 = 1.806 that is not a prime
number. �



6. Well ordering



Caution !!!

This part still needs a lot of work.

If you pass this point, you should be warned that, in my opinion,
the text that follows only provides a remote indication of the
relationship between induction and well order.



Well ordering

Intuitively, well ordering means
‘the order is linear and there is no strictly decrescent sequences’.

Formally, we cannot state the definition in this way, because in
doing so we were talking on sequences, that is, we were defining
‘well ordering’ using ‘natural number’, and, as a last resource, the
DP-axioms.
But we want compare the logical strength of ‘well ordering’ and
‘mathematical induction’.

How to scape from this circularity?



Well ordering

First, observe that (usual) induction talks on a unary operation, s.

Whereas well ordering talks on a binary relation, R.

We will left some very important discussion on transitive closure
and fixed points out and unify the language.



PMI(≤)

We denote by ≤ the usual ordering on the set of natural numbers.

The Principle of Mathematical Induction on ≤, PMI(≤), states
that:

(1) any subset X of the set of natural numbers

(2) that contains a natural number x

(3) whenever it contains every natural number y strictly less
than x

(4) must contain all natural numbers.



PMI(≤)

In logical symbols, PMI(≤) can be written as:

∀X︸︷︷︸
(1)

{∀x [∀y(y ≤ x ∧ y 6= x → y ∈ X )︸ ︷︷ ︸
(3)

→ x ∈ X︸ ︷︷ ︸
(2)

]→ ∀z(z ∈ X )︸ ︷︷ ︸
(4)

}.

(1) any subset X of the set of natural numbers
(2) that contains a natural number x
(3) whenever it contains every natural number y strictly less than x
(4) must contain all natural numbers.



WOP

The Principle of Well Ordering, WOP, states that

(1) any subset X of the set of natural numbers

(2) which is nonempty

(3) has a least element according to ≤.



WOP

In logical terms, PBO can be symbolized as:

∀X︸︷︷︸
(1)

{∃x(x ∈ X )︸ ︷︷ ︸
(2)

→ ∃y [y ∈ X ∧ ∀z(z ∈ X → y ≤ z)︸ ︷︷ ︸
(3)

]}.

(1) any subset X of the set of natural numbers
(2) which is nonempty
(3) has a least element according to ≤.



PMI(≤)×WOP

PMI(≤) and WOP are not logically equivalent . . .

but are arithmetically equivalent.

We present a proof of this equivalence that is 90% based on logic
and 10% in arithmetic.



PMI =⇒ WOP

Since ϕ→ ψ ≡ ¬ψ → ¬ϕ:

∀X{∀x [∀y(y ≤ x ∧ y 6= x → y ∈ X )→ x ∈ X ]→ ∀z(z ∈ X )}

gives us

∀X{¬∀z(z ∈ X )→ ¬∀x [∀y(y ≤ x ∧ y 6= x → y ∈ X )→ x ∈ X ]}.

Since ¬∀vϕ ≡ ∃v¬ϕ, this gives us:

∀X{∃z¬(z ∈ X )→ ∃x¬[∀y(y ≤ x ∧ y 6= x → y ∈ X )→ x ∈ X ]}.



PMI =⇒ WOP

Since ¬(ϕ→ ψ) ≡ ϕ ∧ ¬ψ, this gives us:

∀X{∃z¬(z ∈ X )→ ∃x [∀y(y ≤ x ∧ y 6= x → y ∈ X ) ∧ ¬(x ∈ X )]}.

Since ϕ ∧ ψ ≡ ψ ∧ ϕ, this gives us:

∀X{∃z¬(z ∈ X )→ ∃x [¬(x ∈ X ) ∧ ∀y(y ≤ x ∧ y 6= x → y ∈ X )]}.



PMI =⇒ WOP

Since ϕ→ ψ ≡ ¬ψ → ¬ϕ, this gives us:

∀X{∃z¬(z ∈ X )→ ∃x [¬(x ∈ X ) ∧ ∀y(¬(y ∈ X )→ ¬(y ≤
x ∧ y 6= x))]}.

Since ¬(ϕ ∧ ψ) ≡ (¬ϕ) ∨ (¬ψ), this gives us:

∀X{∃z¬(z ∈ X )→ ∃x [(¬x ∈ X ) ∧ ∀y((¬y ∈ X )→ (¬y ≤
x ∨ ¬y 6= x))]}.



PMI =⇒ WOP

Since y 6= x ≡ ¬y = x and ¬¬ϕ ≡ ϕ, this gives us:

∀X{∃z¬(z ∈ X )→ ∃x [(¬x ∈ X ) ∧ ∀y((¬y ∈ X )→ (¬y ≤
x ∨ y = x))]}.

Now, by arithmetic we have ¬y ≤ x ≡ x < y .

So, this gives us:

∀X{∃z¬(z ∈ X )→ ∃x [(¬x ∈ X ) ∧ ∀y((¬y ∈ X )→ (x < y ∨ y =
x))]}.

This last, because x ≤ y ≡ x < y ∨ y = x , gives us:

∀X{∃z¬(z ∈ X )→ ∃x [(¬x ∈ X ) ∧ ∀y((¬y ∈ X )→ (x ≤ y))]}.



PMI =⇒ WOP

Now, to prove PMI(≤)⇒ PBO, suppose PMI(≤), take a subset X
of the natural numbers and apply the equivalence above to X , the
complement of X , to obtain:

∃z¬(z ∈ X )→ ∃x [(¬x ∈ X ) ∧ ∀y((¬y ∈ X )→ (x ≤ y))].

But, since by logic and set theory, ¬v ∈ V ≡ v ∈ V , we have:

∃(z ∈ X )→ ∃x [x ∈ X ∧ ∀y(y ∈ X → x ≤ y)].

Since X is arbitrary, by a renaming of variables, we are done.



PMI =⇒ WOP

Analogously, to prove PBO⇒ PMI(≤).

So, there is no point in considering the equivalence between PMI
and WOP under the DP-axioms.



Well foundeness

If we are considering Ind-structures which are not DP-structures,
we can not impose linear ordering.

Neither Nn nor Nn,k possesses a linear ordering compatible with s.

We need a more liberal concept . . .

Let R be a binary relation on N.
We say that R is well-founded on N if

∀X ⊆ N{∀x ∈ N[x ∈ X → ∃y ∈ N(xRy ∧ y ∈ X )→ X = ∅)].



Well foundness

Second, Ind-structures and well founded sets are mathematical
objects of different types.

– Mathematical induction uses a unary operation s.

– Well founding uses a binary relation R.

We need a more liberal notion of Ind-structure . . .

Let R be a binary relation on N.
We say that R admits induction on N if

∀X ⊆ N{∀x ∈ N[∀y ∈ N(yRx → y ∈ X )→ x ∈ X ]→ ∀z(z ∈ X )}.



Well foundeness

To finish I will stop to present the details, and state the results I
intend to cover in a next opportunity . . .

If we consider ∃y ∈ N(xRy ∧ y ∈ X ) as a binary operation on
relations and sets, we do not need to consider the full negation in
the metalanguage, and we have:

1. R admits induction on N =⇒ R is well founded on N;

2. R is well founded on N 6=⇒ R admits induction on N;

3. If we have negation on the metalanguage, R admits induction
on N ⇐⇒ R is well founded on N.
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