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Symbolic constraints

Usually: conjunctions of primitive (atomic) constraints in some
logic language.

Examples of primitive constraints:

� equations,

� disequations,

� atomic formulas expressing e.g., ordering, membership,
generalization, or dominance relations,

� etc.

Solutions: variable substitutions that satisfy the given formula.
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Symbolic constraints

Our focus: equational and generalization constraints.

Solving methods: unification, matching, anti-unification.

Appear in many areas of computational logic:

� automated reasoning

� term rewriting

� declarative programming

� pattern-based calculi

� unification theory

� . . .
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Dual problems: unification / anti-unification

s: most general instance
ϑ solves the unification problem t1 =? t2

s

t1 t2

ϑ ϑ

=t1ϑ = t2ϑ

t: least general generalization
X = t solves the anti-unification problem X : t1 , t2

t

σ1 σ2

tσ1 = = tσ2
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Dual problems: unification / anti-unification

most general instance

f(a, g(a), g(y))

f(x, g(x), g(y)) f(a, g(a), z)

{x 7→ a, z 7→ g(y)} {x 7→ a, z 7→ g(y)}

least general generalization

f(u, g(u), v)

{u 7→ x, v 7→ g(y)} {u 7→ a, v 7→ z}
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Precise vs imprecise

In these examples, the given information was precise.

Two symbols, terms, etc. are either equal or not.

How to deal with cases when the information is not perfect?
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Outline

From equalities to tolerances

Overview

Quantitative relations over terms

Similarity-based unification

Proximity-based unification using blocks, basic signatures

Proximity constraints using classes

Unification and matching in basic signatures

Generalization in basic signatures

Unification and matching in fully fuzzy signatures

Generalization in fully fuzzy signatures

Future research directions
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From equalities to tolerances

Reasoning with incomplete, imperfect information is very
common in human communication.

Its modeling is a highly nontrivial task.

There are various notions associated to such information
(e.g., uncertainty, imprecision, vagueness, fuzziness).

Different methodologies have been proposed to deal with them
(e.g., approaches based on default logic, probability, fuzzy sets,
etc.)
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From equalities to tolerances

For many problems in this area, exact equality is replaced by its
approximation.

Tolerance relations are a tool to express the approximation,
modeling the corresponding imprecise information.

They are reflexive and symmetric but not necessarily transitive
relations, expressing the idea of closeness or resemblance.
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From equalities to tolerances

Examples of tolerance relations include some well-known
mathematical notions, e.g.,

� a and b are vertices of the same edge in an undirected
graph,

� a and b are points in a metric space that are within a given
positive distance from each other,

� Two binary sequences a and b differ from each other in at
most e positions for some given error level e.

� For a topological space T and its fixed covering ω, the
relation “a and b are points in T that belong to the same
element of ω”.
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From equalities to tolerances

The term “tolerance relation” has been coined by Zeeman
(1962).

His research on tolerance spaces was motivated by their
applications in describing the brain and visual perspective.
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From equalities to tolerances

The original ideas date back to Poincaré in 1890s.

In physical world, he argued, accumulation of measurement
errors lead to the violation of transitivity of equality (in contrast
to the ideal mathematical world).

In his view, tolerance has the fundamental importance in
distinguishing mathematics applied to the physical world from
ideal mathematics.
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From equalities to tolerances

Tolerance space theory has been studied from different points
of view (e.g., topology or category theory).

Related notions: rough sets, near sets, approximation
spaces, . . .

Some modern applications include, e.g., information systems,
granular computing, image analysis.

Relatively recent references include, e.g.,

� J. F. Peters and P. Wasilewski. Tolerance spaces: origins,
theoretical aspects and applications. Inf. Sci., 195:211–225,
2012.

� A. B. Sossinsky. Tolerance spaces revisited I: almost solutions.
Mathematical Notes, 106:439–445, 2019.
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From equalities to tolerances

In the original version, tolerance relations were crisp
(two objects are either close to each other or not).

Later, their graded counterparts appeared which led, among
others, to tolerance relations in the fuzzy setting.

crisp tolerance

crisp equivalence

proximity (fuzzy tolerance)

similarity (fuzzy equivalence)
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Fuzzy tolerances and equivalences

A fuzzy relation on a set S: a mapping from S to [0, 1].

A fuzzy relation R on S is a proximity (fuzzy tolerance) relation
on S iff it is reflexive and symmetric:

Reflexivity: R(s, s) = 1 for all s ∈ S.

Symmetry: R(s1, s2) = R(s2, s1) for all s1, s2 ∈ S.

R(s1, s2): the degree of proximity between s1 and s2.

Not to confuse the proximity degree between two objects with
the proximity between them in terms of distance!

A proximity relation on S is a strict if R(s1, s2) = 1 implies
s1 = s2 for all s1, s2 ∈ S.
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Fuzzy tolerances and equivalences

A proximity relation on S is a similarity (fuzzy equivalence)
relation on S if it is transitive:

R(s1, s2) ≥ R(s1, s) ∧R(s, s2) for any s1, s2, s ∈ S,

where ∧ is a T-norm: an associative, commutative,
non-decreasing (monotonic) binary operation on [0, 1] with 1 as
the unit element.

16 / 109



Fuzzy tolerances and equivalences

T-norm (triangular norm) generalizes intersection in a lattice
and conjunction in logic.

Some well-known T-norms:

� Minimum T-norm (aka Gödel T-norm): s ∧ t = min(s, t).

� Product T-norm: s ∧ t = s ∗ t.
� Łukasiewicz T-norm: s ∧ t = max{0, s+ t− 1}.

In the rest, we use the min T-norm.
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Fuzzy tolerances and equivalences

Given 0 ≤ λ ≤ 1, the λ-cut of R on S is the crisp relation

Rλ := {(s1, s2) | R(s1, s2) ≥ λ}.

Notation: s1 'R,λ s2 means (s1, s2) ∈ Rλ.

The cut value λ provides a threshold: defines which objects are
treated proximal to each other ((R, λ)-proximal) and which are
not.
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Fuzzy tolerances and equivalences

λ-cut of a proximity relation is a crisp tolerance relation.

λ-cut of a similarity relation is a crisp equivalence relation.

crisp equivalence

crisp tolerance proximity (fuzzy tolerance)

similarity (fuzzy equivalence)
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Outline
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Quantitative relations over terms
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Terms and substitutions

V: a set of variables.

F : a set of function symbols of fixed arity.

F ∩ V = ∅.

Terms over F and V:

t := x | f(t1, . . . , tn), where f is n-ary.

Substitutions: mappings from variables to terms, where all but
finitely many variables are mapped to themselves.
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Quantitative relations over terms

We need to define the notions of proximity and similarity for
terms.

Idea: start from a corresponding relation on the given alphabet
and extend it to terms.
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Basic and fully fuzzy signatures

Two kinds of signature, depending how fuzzy relations are
defined on the set of function symbols:

� More special: basic fuzzy signatures.
Proximal/similar function symbols can have different
names, but not different arities.

� More general: fully fuzzy signatures.
Proximal/similar function symbols can have different
names and different arities.
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Block- and class-based approaches

Looking at proximity relations as undirected graphs, one can
talk about cliques and neighborhoods in them.

One distinguishes between block- and class-based approaches
towards solving symbolic constraints for proximity relations.

block-based vs class-based
block of a: class of a:

a clique to which a belongs the neighborhood of a

{x '?
R,λ b, x '?

R,λ c} {x '?
R,λ b, x '?

R,λ c}
not solvable solved by {x 7→ a}
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Overview

Generalization
Unification
Matching

Prox-class

Sim

Prox-block

[Ses02]

[JIRM15]
[JISP18,21]

[KP19a]

[AKP17]
[AKP20]

[PK21]

[CMRM18]

[DKMP20] [AKP20]

[KP18]

[KP19b]

[AKP20]

[KP22]

Entries with double borders consider fully fuzzy signatures.
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Overview

Generalization
Unification
Matching

Prox-class

Sim

Prox-block

[Ses02]

[JIRM15]
[JISP18,21]

[KP19a]

[AKP17]
[AKP20]

[PK21]

[CMRM18]

[DKMP20]
[AKP17]
[AKP20]

[KP18]

[KP19b]

[AKP17]
[AKP20]

[KP22]

� Similarity-based unification: investigated quite intensively in the context of
approximate reasoning, fuzzy logic programming, query languages; works by
Ying, Fontana, Fermato, Gerla, Sessa [Ses02], Medina, Ojeda-Aciego, Vojtas
and others. Aït-Kaci and Pasi [AKP17,20] extended Sessa’s work to fully fuzzy
signatures, preparing a ground to similarity-based unification under background
theories.
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Overview

Generalization
Unification
Matching

Prox-class

Sim

Prox-block

[Ses02]

[JIRM15]
[JISP18,21]

[KP19a]

[AKP17]
[AKP20]

[PK21]

[CMRM18]

[DKMP20]
[AKP17]
[AKP20]

[KP18]

[KP19b]

[AKP17]
[AKP20]

[KP22]

� Unification with multiple similarity relations: arises in the context of e.g.,
understanding visual similarities in learning image embeddings; addressed in
[DKMP20]; generalizes Sessa’s work from single to multiple similarity relations;
transitivity is lost; is related to class-based proximity unification.
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Overview

Generalization
Unification
Matching

Prox-class

Sim

Prox-block

[Ses02]

[JIRM15]
[JISP18,21]

[KP19a]

[AKP17]
[AKP20]

[PK21]

[CMRM18]

[DKMP20]
[AKP17]
[AKP20]

[KP18]

[KP19b]

[AKP17]
[AKP20]

[KP22]

� Similarity-based generalization: Aït-Kaci and Pasi [AKP17,20] investigated the
problem for fully fuzzy signatures; the results apply to basic fuzzy signatures as
well.
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Overview

Generalization
Unification
Matching

Prox-class

Sim

Prox-block

[Ses02]

[JIRM15]
[JISP18,21]

[KP19a]

[AKP17]
[AKP20]

[PK21]

[CMRM18]

[DKMP20]
[AKP17]
[AKP20]

[KP18]

[KP19b]

[AKP17]
[AKP20]

[KP22]

� Proximity-based unification: Proximity relations help to represent fuzzy
information in situations, where similarity is not adequate.

Proximity-based unification helps to manage imprecise information in the context
of approximate reasoning and (fuzzy) logic programming.

Block-based approach in basic signatures: Julián-Iranzo, Sáenz-Pérez, Rubio-
Manzano [JIRM15], [JISP18,21], etc. Class-based approach in basic signatures
to unification/matching, Kutsia and Pau [KP19a] and Pau’s PhD thesis [Pau22].
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Overview

Generalization
Unification
Matching

Prox-class

Sim

Prox-block

[Ses02]

[JIRM15]
[JISP18,21]

[KP19a]

[AKP17]
[AKP20]

[PK21]

[CMRM18]

[DKMP20]
[AKP17]
[AKP20]

[KP18]

[KP19b]

[AKP17]
[AKP20]

[KP22]

� Proximity-based unification: block-based approach in fully fuzzy signatures,
restricted case, used in fuzzy logic programming; work by Cornejo et al.
[CMRM18]

Class-based approach in fully fuzzy signatures by Pau and Kutsia [PK21],
generalizing class-based proximity unification/matching and fully fuzzy similarity
unification/matching. Details in Pau’s PhD thesis [Pau22].
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Overview

Generalization
Unification
Matching

Prox-class

Sim

Prox-block

[Ses02]

[JIRM15]
[JISP18,21]

[KP19a]

[AKP17]
[AKP20]

[PK21]

[CMRM18]

[DKMP20]
[AKP17]
[AKP20]

[KP18]

[KP19b]

[AKP17]
[AKP20]

[KP22]

� Proximity-based generalization: block-based approach in basic fuzzy signatures;
requires an algorithm for enumerating all maximal clique-partitions in an
undirected graph; Kutsia and Pau [KP18].

Class-based approach in fully fuzzy signatures is presented by a generic
framework by Kutsia and Pau [KP22]; an algorithm for basic fuzzy signatures is a
special case. See also Pau’s PhD thesis [Pau22].
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Overview

Technique Signature Relation Approach

Unification Basic fuzzy Similarity
Matching Basic fuzzy Similarity
Generalization Basic fuzzy Similarity
Unification Basic fuzzy Proximity Block-based
Matching Basic fuzzy Proximity Block-based
Generalization Basic fuzzy Proximity Block-based
Unification Basic fuzzy Proximity Class-based
Matching Basic fuzzy Proximity Class-based
Generalization Basic fuzzy Proximity Class-based
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Overview

Technique Signature Relation Approach

Unification Fully fuzzy Similarity
Matching Fully fuzzy Similarity
Generalization Fully fuzzy Similarity
Unification Fully fuzzy Proximity Block-based
Matching Fully fuzzy Proximity Block-based
Generalization Fully fuzzy Proximity Block-based
Unification Fully fuzzy Proximity Class-based
Matching Fully fuzzy Proximity Class-based
Generalization Fully fuzzy Proximity Class-based
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Outline

From equalities to tolerances

Overview

Quantitative relations over terms

Similarity-based unification

Proximity-based unification using blocks, basic signatures

Proximity constraints using classes

Unification and matching in basic signatures

Generalization in basic signatures

Unification and matching in fully fuzzy signatures

Generalization in fully fuzzy signatures

Future research directions
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Quantitative term relations: basic signatures

R: a given proximity relation on a basic fuzzy signature F .

In basic signatures, R(f, g) = 0 if arity(f) 6= arity(g).

Extending R to terms:

� R(x, x) = 1 for all x ∈ V.

� R(f(t1, . . . , tn), g(s1, . . . , sn)) = R(f, g) ∧
∧n
i=1R(ti, si).

� R(t, s) = 0 in all other cases.

Then R is a proximity relation on terms.

If R is a similarity relations on F , then its extension to terms is
also similarity.
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Quantitative term relations: fully fuzzy case

R: a given proximity relation on a fully fuzzy signature F .

To be able to extend proximity from alphabet symbols to terms,
we need to know which arguments of proximal symbols are
related to each other (argument relations).

We assume that this information is provided.

If R(f, g) = α and the argument relation between f and g is ρ,
we write f ∼ρR,α g.

Argument relations should satisfy certain extra properties in
order a similarity relation on the signature to be extendable to a
similarity relation over terms.
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Quantitative term relations: fully fuzzy case

Example of a proximity relation on a fully fuzzy signature.

R: p(•)

q(•, •)
0.7

g(•, •)

f(•, •, •)

h(•, •)

0.6

0.5

a

b

0.4

p ∼{(1,1),(1,2)}R,0.7 q

We have f ∼Id
R,1 f for all f .
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Quantitative term relations: fully fuzzy case

Extending R from the signature to terms:

� R(x, x) = 1 for all variables x.

� R(f(t1, . . . , tn), g(s1, . . . , sm)) = α ∧
∧

(i,j)∈ρR(ti, sj),
where f ∼ρR,α g.

� R(t, s) = 0 in all other cases.

Such an extension is a proximity relation on terms.

The extension of R on terms is similarity if R is similarity on the
signature and the argument relations satisfy certain properties
(Aït-Kaci and Pasi, 2020)

Proximity for basic signatures is a special case for proximity for
fully fuzzy signatures, with ρ required to be a (left and right)
total identity relation.
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Relations � and -R,λ

� for terms:
t is syntactically more general than s, written t � s,
if there exists a σ such that tσ = s.

� for substitutions:
ϑ is syntactically more general than ϕ, written ϑ � ϕ,
if there exists a σ such that xϑσ = xϕ for all x.

-R,λ for terms:
t is (R, λ)-more general than s, written t -R,λ s,
if there exists σ such that tσ 'R,λ s.

-R,λ for substitutions:
ϑ is (R, λ)-more general than ϕ, written ϑ -R,λ ϕ,
if there exists σ such that xϑσ 'R,λ xϕ for all x.
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Properties of � and -R,λ

� is a transitive relation.

-R,λ is not transitive, in general (but it is, if R is similarity).

If a 'R,λ b, b 'R,λ c, and a 6'R,λ c,
then a -R,λ b, b -R,λ c, and a 6-R,λ c.

� ⊆ -R,λ for any R and λ.
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Proximity-/similarity-based unification

Given: A proximity relation R, a cut value λ, and term
pairs (ti, si), 1 ≤ i ≤ n.

Find: σ such that tiσ 'R,λ siσ for all 1 ≤ i ≤ n.

(R, λ)-unification problem: P = {t1 '?
R,λ s1, . . . , tn '?

R,λ sn}.

We may skip (R, λ), when it does not cause confusion.

σ: (R, λ)-unifier of P .

Interesting unifiers are most general ones.

The signature can be basic or fully fuzzy.

Similarity-based unification: when R is similarity.
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Proximity-/similarity-based matching

Given: A proximity relation R, a cut value λ, and term
pairs (ti, si), 1 ≤ i ≤ n.

Find: σ such that tiσ 'R,λ si for all 1 ≤ i ≤ n.

(R, λ)-matching problem: P = {t1 -?
R,λ s1, . . . , tn -

?
R,λ sn}.

We may skip (R, λ), when it does not cause confusion.

σ: (R, λ)-matcher of P .

Can be treated as a special case of unification.

Better: use a simpler dedicated algorithm.

The signature can be basic or fully fuzzy.

Similarity-based matching: when R is similarity.
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Proximity-/similarity-based generalization

Given: A proximity relation R, a cut value λ, and two
terms t and s.

Find: A term r such that r -R,λ t and r -R,λ s.

t ,R,λ s: the notation for t and s to be generalized.

We may skip (R, λ), when it does not cause confusion.

r: (R, λ)-generalization of s and t.

Interesting generalizations are the least general ones.

The signature can be basic or fully fuzzy.

Similarity-based generalization: when R is similarity.
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From equalities to tolerances

Overview

Quantitative relations over terms

Similarity-based unification

Proximity-based unification using blocks, basic signatures

Proximity constraints using classes

Unification and matching in basic signatures
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Unification and matching in fully fuzzy signatures

Generalization in fully fuzzy signatures

Future research directions
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Overview

Generalization
Unification
Matching

Prox-class

Sim

Prox-block

[Ses02]

[JIRM15]
[JISP18,21]

[KP19a]

[AKP17]
[AKP20]

[PK21]

[CMRM18]

[DKMP20] [AKP20]

[KP18]

[KP19b]

[AKP20]

[KP22]

Entries with double borders consider fully fuzzy signatures.
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Unification: similarity-based, basic signature

The “weak unification” algorithm by Sessa.

Computes a mgu together with its unification degree.

Mgus have the highest unification degree.

If R(f, g) = 0.7 and R(a, b) = 0.5, then f(x) '?
R,λ g(a) has two

solutions:

� {x 7→ a} with degree 0.7,

� {x 7→ b} with degree 0.5.

Remember: our T-norm is min.

For strict similarity relations, unifiers with degree 1 coincide with
syntactic unifiers.
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Unification: similarity-based, basic signature

The “weak unification” algorithm by Sessa.

These rules are an adaptation of those for the syntactic unification:

DECOMPOSITION:
{f(s1, . . . , sn) '?

R,λ g(t1, . . . , tn)} ] P ; α; σ =⇒
{s1 '?

R,λ t1, . . . , sn '?
R,λ tn} ∪ P ; α ∧R(f, g); σ,

if R(f, g) ≥ λ.

CLASH:
{f(s1, . . . , sn) '?

R,λ g(t1, . . . , tm)} ] P ; α; σ =⇒ ⊥,
if R(f, g) < λ.

The other rules are the same as in syntactic unification.

The algorithm computes an mgu with the maximal unification degree.
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Sessa’s algorithm in action

Similarity relation R: a

b c

f g
0.3

0.4

0.3

0.6

Take λ = 0.2 and unify f(x, c) and g(b, x).

{f(x, c) '?
R,0.2 g(b, x)}; 1; Id =⇒

{x '?
R,0.2 b, c '?

R,0.2 x}; 0.6; Id =⇒
{c '?

R,0.2 b}; 0.6; {x 7→ b} =⇒
∅; 0.4; {x 7→ b}. {x 7→ b} is an mgu, with degree 0.4.

Other mgu would be {x 7→ c} (with the same degree 0.4).

{x 7→ a} is a solution (not mgu): its degree is smaller, 0.3.
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Prox-block
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Proximity blocks

Proximity blocks are cliques (complete subgraphs) in the graph
that corresponds to the proximity relation.

R: a

b c

d

f g
0.7 0.7

0.6 0.8

0.5

0.9

Three (R, 0.5)-blocks: {a, b, c}, {b, c, d} and {f, g}.

In block-based proximity unification, one symbol cannot belong
at the same time to two different blocks.

51 / 109



Proximity blocks

R: a

b c

d

f g
0.7 0.7

0.6 0.8

0.5

0.9

Three (R, 0.5)-blocks: {a, b, c}, {b, c, d} and {f, g}.

f(x, x) '?
R,λ g(b, c) has four solutions:

{x 7→ b}; 0.5, {x 7→ c}; 0.5, {x 7→ a}; 0.7, {x 7→ d}; 0.6.

The algorithm by Julian-Iranzo et al. computes {x 7→ b}; 0.5

(or {x 7→ c}; 0.5, depending on the choice of an equation).

f(x, x) '?
R,λ g(a, d) has no solutions.
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Proximity classes

Rλ: a

b c

d

f g

We think that the terms f(x, x) and g(a, d) should be unifiable.

Reason: a and d have common neighbors, b and c.

It would be natural to have {x 7→ b} and {x 7→ c} as unifiers of f(x, x)

and g(a, d).

Proximity class of a symbol: its neighborhood in the graph.

class(a,R, λ) = {a, b, c}. class(d,R, λ) = {d, b, c}.
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Proximity-based unification using classes

Some peculiarities.

Syntactic unification problems

{f(x, y)
.
=

?
f(y, b)} and {f(x, y)

.
=

?
f(b, b)}

have the same set of unifiers.

In proximity-based unification with classes this is not the case.

Take Rλ = {(a, b), (b, c), (c, d)} and the problems

P1 = {f(x, y) '?
R,λ f(y, b)}, P2 = {f(x, y) '?

R,λ f(b, b)}.

Let σ = {x 7→ d, y 7→ c} and ϑ = {x 7→ a, y 7→ c}.
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R,λ f(b, b)}.

Let σ = {x 7→ d, y 7→ c} and ϑ = {x 7→ a, y 7→ c}.

ϑ is not a unifier of P1: f(a, c) 6'R,λ f(c, b).

But ϑ is a unifier of P2: f(a, c) 'R,λ f(b, b).
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Proximity-based unification using classes

Some more peculiarities.

If σ is an (R, λ)-unifier of a unification problem P , then any syntactic
instance of σ is also an (R, λ)-unifier of P .

It is not the case with (R, λ)-instances, in general.

Let Rλ = {(a, b), (b, c)} and P = {x '?
R,λ f(y)}.

Take σ = {x 7→ f(y)} and ϕ = {x 7→ f(a), y 7→ c}.

σ -R,λ ϕ because

σ {y 7→ b} = {x 7→ f(b), y 7→ b} 'R,λ

{x 7→ f(a), y 7→ c} = ϕ.

σ is an (R, λ)-unifier of P : f(y) 'R,λ f(y).

ϕ is not: f(a) 6'R,λ f(c).
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Minimal complete set of approximate unifiers

A complete set of (R, λ)-unifiers of a unification problem P :
a set of substitutions Σ satisfying the properties:

Soundness:

Every σ ∈ Σ is an (R, λ)-unifier of P ;

Completeness:

For any (R, λ)-unifier ϑ of P , there exists σ ∈ Σ with σ � ϑ.

Σ is a minimal complete set of (R, λ)-unifiers of P if in addition,
the minimality condition holds:

No two elements in Σ are comparable with respect to �:
For all σ, ϑ ∈ Σ, if σ 6= ϑ, then σ 6� ϑ.
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Proximity-based unification using classes

Some more peculiarities.

Let Rλ = {(a, b), (b, c)}.

MCSU({x '?
R,λ b}) = {{x 7→ a}, {x 7→ b}, {x 7→ c}}.

Contains -R,λ-comparable substitutions:

{x 7→ a} -R,λ {x 7→ b},
{x 7→ b} -R,λ {x 7→ c}.

By they are not �-comparable.
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Proximity-based unification using classes

Some more peculiarities.

Let Rλ = {(a, b), (b, c), (c, d)}.

Take a variable-only unification problem:

P = {x '?
R,λ y, y '?

R,λ z, z '?
R,λ u}.

Somewhat unexpectedly, {{x 7→ u, y 7→ u, z 7→ u}} 6= MCSU(P ).

Completeness does not hold:

� {x 7→ u, y 7→ u, z 7→ u} � {x 7→ a, y 7→ b, z 7→ c, u 7→ d},

� but {x 7→ a, y 7→ b, z 7→ c, u 7→ d} is an (R, λ)-unifier of P .

The same would happen if MCSU were defined using -R,λ:

� {x 7→ u, y 7→ u, z 7→ u} 6-R,λ {x 7→ a, y 7→ b, z 7→ c, u 7→ d}.
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Proximity-based unification using classes

Our algorithm works in two steps:

In the first step (pre-unification), it tries to solve the unification
problem.

The result of this step is either failure (in this case the problem is
unsolvable), or a triple:

� substitution (pre-unifier) that gives an idea how variable
instantiations would look if the problem eventually is solvable,

� a constraint between variables (always solvable, but having
potentially infinitely many solutions), and

� a constraint between functions symbols and so called
neighborhood variables (that stand for sets of symbols).
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Proximity-based unification using classes

In the pre-unification step, failure happens for one of two possible
reasons:

� arity clash between terms to be unified:
f(s1, . . . , sn) '?

R,λ g(t1, . . . , tm), n 6= m, or

� the unification problem contains an occurrence cycle.

63 / 109



Proximity-based unification using classes

In the pre-unification step, failure happens for one of two possible
reasons:

� arity clash between terms to be unified:
f(s1, . . . , sn) '?
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In the pre-unification step, failure happens for one of two possible
reasons:

� arity clash between terms to be unified:
f(s1, . . . , sn) '?

R,λ g(t1, . . . , tm), n 6= m, or
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R,λ s1 x2 '?
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Proximity-based unification using classes

In pre-unification, variable elimination is be done in a special way to take into
account possible future proximities.

For instance, in {x '?
R,λ f(y), x '?

R,λ g(h(z))}, we do not replace x by f(y)

and try to solve f(y) '?
R,λ g(h(z)).

Instead, we “approximate” the structure of the instance of x, replacing x by
Xf (y1) and then try to solve Xf (y1) '?

R,λ g(h(z)).

Remember: in basic signatures proximal terms have exactly the same
structure (same set of positions).

Xf is a new variable that is supposed to be instantiated by a set of function
symbols (that are proximal to f ), and y1 is a new variable.

To make the relation between Xf and f clear, we add a new neighborhood
constraint Xf ≈?

R,λ f .

Also, the value of the new variable y1 should be close to that of the old y:
y1 '?

R,λ y is a new variable constraint.
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Proximity-based unification using classes

In the second step, we try to solve neighborhood constraints.

They may have zero, one, or more (finitely many) solutions.

Each solution maps neighborhood variables to sets of symbols.

Solutions of neighborhood constraints, combined with the
pre-unifier, give the solutions of the original problem.

It gives a compact representation of the minimal complete set
of approximate unifiers.
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Proximity-based unification using classes

The pre-unification step, the proximity relation plays no role.

For p(x, y, x) and q(f(a), g(d), y), pre-unification returns:

� the pre-unifier {x 7→ Xf (Xa), y 7→ Xg(Xd)}
applying to the initial problem, it gives

p(Xf (Xa), Xg(Xd), Xf (Xa)) '?
R,λ q(f(a), g(d), Xg(Xd)).

� the empty variable constraint,

� the neighborhood constraint:

{p ≈?
R,λ q,

Xf ≈?
R,λ f, Xa ≈?

R,λ a,

Xg ≈?
R,λ g, Xd ≈?

R,λ d,

Xf ≈?
R,λ Xg, Xa ≈?

R,λ Xd}.
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Proximity-based unification using classes

The proximity relation is needed in solving the neighborhood
constraints.

Assume Rλ: a b c d f g p q

Then the neighborhood constraint

{p ≈?
R,λ q,

Xf ≈?
R,λ f, Xa ≈?

R,λ a,

Xg ≈?
R,λ g, Xd ≈?

R,λ d,

Xf ≈?
R,λ Xg, Xa ≈?

R,λ Xd}.

is solved by the mapping:

{Xf 7→ {f, g}, Xa 7→ {b}, Xg 7→ {f, g}, Xd 7→ {c}}.
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Proximity-based unification using classes

Hence, the (R, λ)-unification problem

p(x, y, x) '?
R,λ q(f(a), g(d), y)

is solved by the pair of an extended substitution and a variable
constraint

{x 7→ {f, g}({b}), y 7→ {f, g}({c})} ‖ ∅

{f, g}({b}) an extended term, representing the set of terms

terms({f, g}({b})) = {f(b), g(b)}.

Since the extended substitution represents a set of solutions, we
cannot return a single unification degree.

Instead, it is possible to compute its upper and lower bounds.
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Proximity-based unification using classes

For (R, λ)-unification problem

p(x, x) '?
R,λ q(f(y), f(h(z)))

pre-unification gives

� the pre-unifier {x 7→ Xf (Xh(z1)), y 7→ Y(z2)},
applying to the initial problem, it gives

p(Xf (Xh(z1)), Xf (Xh(z1))) '?
R,λ q(f(Y(z2)), f(h(z))).

� the variable constraint {z1 '?
R,λ z2, z1 '?

R,λ z},

� the neighborhood constraint
{p ≈?

R,λ q, Xf ≈?
R,λ f, Xh ≈?

R,λ Y, Xh ≈?
R,λ h}.
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Proximity-based unification using classes

Assume Rλ:
f

g1

g2

h

p q

Then the neighborhood constraint

{p ≈?
R,λ q, Xf ≈?

R,λ f, Xh ≈?
R,λ Y, Xh ≈?

R,λ h}

has three solutions:

{Xf 7→ {f, g1, g2}, Xh 7→ {h}, Y 7→ {h, g1, g2}}
{Xf 7→ {f, g1, g2}, Xh 7→ {g1}, Y 7→ {g1, f, h}}
{Xf 7→ {f, g1, g2}, Xh 7→ {g2}, Y 7→ {g2, f, h}}
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Proximity-based unification using classes

Assume Rλ:
f

g1

g2

h

p q

Consequently, p(x, x) '?
R,λ q(f(y), f(h(z))) has three (compact)

solutions:

{x 7→ {f, g1, g2}({h}(z1)), y 7→ {h, g1, g2}(z2)}
‖ {z1 '?

R,λ z2, z1 '?
R,λ z}

{x 7→ {f, g1, g2}({g1}(z1)), y 7→ {g1, f, h}(z2)}
‖ {z1 '?

R,λ z2, z1 '?
R,λ z}

{x 7→ {f, g1, g2}({g2}(z1)), y 7→ {g2, f, h}(z2)}
‖ {z1 '?

R,λ z2, z1 '?
R,λ z}
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Proximity-based matching using classes

The set-based compact representation (extended terms) is a
convenient notation for formulating a matching algorithm.

R:

g1h1

g2

h2 a1 b

a2

0.7 0.70.6

0.50.6 0.8 0.5 0.8

λ = 0.6:

{f(x, x) -?
R,λ f(g1(a1), g2(a2))}; ∅ =⇒

{x -?
R,λ g1(a1), x -?

R,λ g2(a2)}; ∅ =⇒
{x -?

R,λ g2(a2)}; {x ≈ {g1, h1, h2}({a1, b})} =⇒
∅; {x ≈ {g1, h1, h2}({a1, b}), x ≈ {g2, h1, h2}({a2, b})} =⇒
∅; {x ≈ {h1, h2}({b})}.
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Proximity-based matching using classes

The set-based compact representation (extended terms) is a
convenient notation for formulating a matching algorithm.

R:

g1h1

g2

h2 a1 b

a2

0.7 0.70.6

0.50.6 0.8 0.5 0.8

λ = 0.8:

{f(x, x) -?
R,λ f(g1(a1), g2(a2))}; ∅ =⇒

{x -?
R,λ g1(a1), x -?

R,λ g2(a2)}; ∅ =⇒
{x -?

R,λ g2(a2)}; {x ≈ {g1}({a1})}; =⇒
∅; {x ≈ {g1}({a1}), x ≈ {g2, h2}({a2, b})} =⇒
⊥.
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Outline

From equalities to tolerances

Overview

Quantitative relations over terms

Similarity-based unification

Proximity-based unification using blocks, basic signatures

Proximity constraints using classes

Unification and matching in basic signatures

Generalization in basic signatures

Unification and matching in fully fuzzy signatures

Generalization in fully fuzzy signatures

Future research directions
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Overview

Generalization
Unification
Matching

Prox-class

Sim

Prox-block

[Ses02]

[JIRM15]
[JISP18,21]

[KP19a]

[AKP17]
[AKP20]

[PK21]

[CMRM18]

[DKMP20] [AKP20]

[KP18]

[KP19b]

[AKP20]

[KP22]

Entries with double borders consider fully fuzzy signatures.

75 / 109



The problem statement, reformulated

Slight reformulation of the problem statement based on the solution
representation form.

Given:

R, λ, and two terms t and s.

Find:
An extended term r such that each r ∈ terms(r) is an
(R, λ)-least general generalization of t and s.

To compute (R, λ)-lgg of t and s, take

{x : ext(t,R, λ) , ext(s,R, λ)};x

and apply the anti-unification rules.
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Example

R: f g0.7 a1 a a2 a′ a3

b1 b b2 b′ b3

0.5 0.5

0.5 0.5

0.6 0.6

0.6 0.6

t = f(a1, a2, a3) and s = g(b1, b2, b3). Assume λ = 0.5.

The (R, λ)-extended term versions of t and s are:

ext(t,R, 0.5) = {f, g}({a1, a}, {a, a2, a′}, {a′, a3})
ext(s,R, 0.5) = {f, g}({b1, b}, {b, b2, b′}, {b′, b3})

Two solutions:

1. {f, g}(x, x, y), with {x : {a} , {b}, y : {a′, a3} , {b′, b3}}.
2. {f, g}(x, y, y), with {x : {a1, a} , {b1, b}, y : {a′} , {b′}}.
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Example

R: f g0.7 a1 a a2 a′ a3

b1 b b2 b′ b3

0.5 0.5

0.5 0.5

0.6 0.6

0.6 0.6

t = f(a1, a2, a3) and s = g(b1, b2, b3). Assume λ = 0.6.

The (R, λ)-extended term versions of t and s are:

ext(t,R, 0.6) = {f, g}({a1}, {a2, a′}, {a′, a3})
ext(s,R, 0.6) = {f, g}({b1}, {b2, b′}, {b′, b3})

One solution:

{f, g}(x, y, y), with {x : {a1} , {b1}, y : {a′} , {b′}}.
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Example

R: f g0.7 a1 a a2 a′ a3

b1 b b2 b′ b3

0.5 0.5

0.5 0.5

0.6 0.6

0.6 0.6

t = f(a1, a2, a3) and s = g(b1, b2, b3). Assume λ = 0.7.

The (R, λ)-extended term versions of t and s are:

ext(t,R, 0.7) = {f, g}({a1}, {a2}, {a3})
ext(s,R, 0.7) = {f, g}({b1}, {b2}, {b3})

One solution:

{f, g}(x, y, z),
with {x : {a1} , {b1}, y : {a1} , {b2}, z : {a3} , {b3}}.
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Example

R: f g0.7 a1 a a2 a′ a3

b1 b b2 b′ b3

0.5 0.5

0.5 0.5

0.6 0.6

0.6 0.6

t = f(a1, a2, a3) and s = g(b1, b2, b3). Assume λ = 0.8.

The (R, λ)-extended term versions of t and s are:

ext(t,R, 0.8) = {f}({a1}, {a2}, {a3})
ext(s,R, 0.8) = {g}({b1}, {b2}, {b3})

One solution:

x, with {x : {f}({a1}, {a2}, {a3}) , {g}({b1}, {b2}, {b3})}.
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Overview

Quantitative relations over terms

Similarity-based unification

Proximity-based unification using blocks, basic signatures

Proximity constraints using classes

Unification and matching in basic signatures

Generalization in basic signatures

Unification and matching in fully fuzzy signatures

Generalization in fully fuzzy signatures

Future research directions
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Overview

Generalization
Unification
Matching

Prox-class

Sim

Prox-block

[Ses02]

[JIRM15]
[JISP18,21]

[KP19a]

[AKP17]
[AKP20]

[PK21]

[CMRM18]

[DKMP20] [AKP20]

[KP18]

[KP19b]

[AKP20]

[KP22]

Entries with double borders consider fully fuzzy signatures.
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Unification using classes, fully fuzzy

An example to remind fully fuzzy signatures:

p(•)

q(•, •)
0.7

g(•, •)

f(•, •, •)

h(•, •)

0.6

0.5

a

b

0.4

Unlike for basic signatures, in the fully fuzzy case proximal terms may
have different structures.

The trick that worked with variable elimination in unification in basic
signatures does not work here anymore.

Consequently, we can not represent solutions in a compact form.

Should revert to the explicit representation.
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Unification using classes, fully fuzzy

Decomposition should take into account the argument relation.

DECOMPOSITION:

{f(t1, . . . , tn) '?
R,λ g(s1, . . . , sm)} ] P ; σ; α =⇒

P ∪ {ti '?
R,λ sj | (i, j) ∈ ρ}; σ; α ∧ β,

where n,m ≥ 0, f ∼ρ
R,β g, and β ≥ λ.
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Unification using classes, fully fuzzy

For x '?
R,λ t, variable elimination replaces x with a term whose

head is close to the head of t and whose arguments are fresh
variables.

A lazy way of choosing a right term in the neighborhood of t.

This step is nondeterministic, since there might be more than
one such right terms.
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Unification using classes, fully fuzzy

VARIABLE ELIMINATION:

{x '?
R,λ g(s1, . . . , sn)} ] P ; σ; α =⇒

Pϑ ∪ {yi '?
R,λ sj | (i, j) ∈ ρ}; σϑ; α ∧ β,

where

� {x '?
R,λ g(s1, . . . , sn)} ] P contains no occurrence cycle for x,

� ϑ = {x 7→ f(y1, . . . , ym)} with fresh variables y1, . . . , ym,

� f ∼ρ
R,β g with β ≥ λ,

� n,m ≥ 0.
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Unification using classes, fully fuzzy

Other rules: TRIVIAL, ORIENT, CLASH, OCCURRENCE CHECK
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Unification using classes, fully fuzzy

The rules work on triples P ;σ;α, called unification
configurations, where

� P is a unification problem,

� σ is the substitution computed so far,

� α is the approximation degree, also computed so far.

The rules transform configurations into configurations.

We stop either with failure or once we reach a variables-only
configuration:

{x1 '?
R,λ y1, . . . , xn '?

R,λ yn}; σ; α, n ≥ 0
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Unification using classes, fully fuzzy

The algorithm works for argument relations ρ ⊆ N ×M that are
correspondence relations, i.e. they are:

� left-total
for all i ∈ N there exists j ∈M such that (i, j) ∈ ρ;

� right-total
for all j ∈M there exists i ∈ N such that (i, j) ∈ ρ.

This is to make sure that failing with occurrence cycles does not
lead to losing a solution.

Correspondence relations guarantee that proximal terms have
the same set of variables and no term is close to its proper
subterm.
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Unification using classes, fully fuzzy

The argument relation in this example is not correspondence:

p(•)

q(•, •)
0.7

g(•, •)

f(•, •, •)

h(•, •)

0.6

0.5

a

b

0.4

Here it is:

p(•)

q(•, •)
0.7

g(•, •)

f(•, •, •)

h(•, •)

0.6

0.5

a

b

0.4
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Unification using classes, fully fuzzy

p(•)

q(•, •)
0.7

g(•, •)

f(•, •, •)

h(•, •)

0.6

0.5

a

b

0.4
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Unification using classes, fully fuzzy

p(•)

q(•, •)
0.7

g(•, •)

f(•, •, •)

h(•, •)

0.6

0.5

a

b

0.4

Unification problem: P = {p(x) '?
R,0.4 q(g(u, y), h(z, u))}.

For P , the algorithm stops with the configuration

{v1 '?
R,0.4 u, v2 '?

R,0.4 y, v2 '?
R,0.4 z, v3 '?

R,0.4 u};
{x 7→ f(v1, v2, v3)}; 0.5
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Unification using classes, fully fuzzy

p(•)

q(•, •)
0.7

g(•, •)

f(•, •, •)

h(•, •)

0.6

0.5

a

b

0.4

Unification problem: P = {p(x) '?
R,0.4 q(g(u, a), h(z, u))}.

For P , the algorithm produces four final configurations:

{v1 '?
R,0.4 u, v3 '?

R,0.4 u}; {v1 '?
R,0.4 u, v3 '?

R,0.4 u};
{x 7→ f(v1, a, v3), z 7→ a}; 0.5 {x 7→ f(v1, b, v3), z 7→ a}; 0.4

{v1 '?
R,0.4 u, v3 '?

R,0.4 u}; {v1 '?
R,0.4 u, v3 '?

R,0.4 u};
{x 7→ f(v1, a, v3), z 7→ b}; 0.4 {x 7→ f(v1, b, v3), z 7→ b}; 0.5
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Unifiability

The decision problem of class-based approximate unifiability
with in fully fuzzy signatures is NP-hard.

It can be shown by a reduction from positive 1-in-3-SAT
problem.

In fact, the reduction shows that already a special case of
unifiability (well-moded) is NP-hard.

92 / 109



Unifiability

The decision problem of class-based approximate unifiability
with in fully fuzzy signatures is NP-hard.

It can be shown by a reduction from positive 1-in-3-SAT
problem.

In fact, the reduction shows that already a special case of
unifiability (well-moded) is NP-hard.

92 / 109



Unification algorithm: properties

Theorem (Soundness)

Let P ; ε; 1 =⇒∗ S;σ;α be a derivation performed by the uni-
fication algorithm where S;σ;α is a variables-only configura-
tion.

Let ϕ be a unifier of S with the approximation degree β.

Then σϕ is a unifier of P with the approximation degree α∧β.
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Unification algorithm: properties

Theorem (Completeness)

Let P be a (R, λ)-unification problem and ϑ be its unifier with
the approximation degree β.

Then there exists a derivation P ; ε; 1 =⇒∗ S;σ;α by the unifi-
cation algorithm, where

� S;σ;α is a variables-only configuration with α ≥ β and

� there is a unifier ϕ of S such that (σϕ)|var(P ) = ϑ|var(P ).
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Unification using classes, fully fuzzy

t1 t2'?
R,λ

If ϕ solves the variable-only constraint S with degree β then
ϑϕ solves the unification problem t1 '?

R,λ t2 with degree α ∧ β

s1 s2'R,α∧β

ϑ, S,α ϑ, S,α

=t1ϑϕ = t2ϑϕ
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Unification using classes, fully fuzzy

t1 t2'?
R,λ

If ϕ solves the variable-only constraint S with degree β then
ϑϕ solves the unification problem t1 '?

R,λ t2 with degree α ∧ β

s1 s2'R,α∧β

ϑ, S,α ϑ, S,α

=t1ϑϕ = t2ϑϕ
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Matching using classes, fully fuzzy

Unlike unification, we do not have to restrict argument relations for
matching.

It may cause matchers to contain fresh variables.

p(•)

q(•, •)
0.7

g(•)

f(•, •, •)

h(•)

0.6

0.5

b

c

0.4

Consider the matching problem p(x) -?
R,0.4 q(g(a), h(c)).

The matching algorithm returns two solutions:

{x 7→ f(a, v, c)}; 0.5 {x 7→ f(a, v, b)}; 0.4

where v is a fresh variable.
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Overview

Generalization
Unification
Matching

Prox-class

Sim
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Entries with double borders consider fully fuzzy signatures.
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Generalization using classes, fully fuzzy

Again, no compact terms in fully fuzzy signatures: proximal terms
may have different structures.

We compute t, α1, α2, and a representation from which σ1 and σ2 can
be read.

t1 t2,R,λ

t: a least general generalization
X = t solves the anti-unification problem X : t1 ,R,λ t2

with degrees α1 and α2

t

σ1,α1 σ2,α2

tσ1 'R,α1
'R,α2

tσ2
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Generalization using classes, fully fuzzy

R: p(•)

q(•, •)
0.7

g(•, •)

f(•, •, •)

h(•, •)

0.6

0.5

a

b

0.4

Given R and λ = 0.4, anti-unify g(a, b) and h(c, b).

One of the solutions: f(a, x, a), where x : b , c, with the
approximation degrees 0.6 for g(a, b) and 0.4 for h(c, b).
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Generalization using classes, fully fuzzy

� f ∼{(1,1),(2,1)}
R,0.8 h.

� h ∼{(1,1),(2,1)}
R,0.7 g.

� a ∼∅
R,0.6 b, b ∼∅

R,0.5 c

f(•, •)

h(•, •, •)

g(•)
0.7

0.8

(R, 0.5)-lggs of f(a, c) and g(b):
h(b, a,_) and h(b, b,_).

� lgg’s can be comparable wrt -R,λ

(but not wrt �),

� the irrelevant generalization
argument is expressed by the
anonymous variable _.

f(a, c)

h(b, a,_)

g(b)

0.5

0.6

f(a, c)

h(b, b,_)

g(b)

0.5

0.7
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Generalization using classes, fully fuzzy

� f ∼{(1,1),(2,1)}
R,0.8 h.

� h ∼{(1,1),(2,1)}
R,0.7 g.

� a ∼∅
R,0.6 b, b ∼∅

R,0.5 c

f(•, •)

h(•, •, •)

g(•)
0.7

0.8

(R, 0.6)-lgg of f(a, c) and g(b): x.

� It can not be h(y, b, _), because y
can not be instantiated by a term
that is (R, 0.6)-close to both a and c.

� The set {a, c} is (R, 0.6)-inconsistent

f(a, c)

x

g(b)

1

1
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Generalization using classes, fully fuzzy

Peculiarities of proximity-based fully fuzzy anti-unification using
classes:

� nonstandard variable merging (also in basic signatures)

� irrelevant position abstraction

� look-ahead consistency check of arguments

The rules of our algorithm deal with them.
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Generalization using classes, fully fuzzy

Rules:

� TRIVIAL: abstracts irrelevant positions by anonymous
variables.

� DECOMPOSITION: adds a new symbol to the
generalization, performs consistency check.

� SOLVE: keeps a variable in the generalization when there
is no other way.

� MERGE: merges the generalization variables if they
generalize proximal terms.
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Decomposition rule

{x : T1 , T2} ]A;S; r;α1;α2 =⇒
{yi : Qi1 , Qi2 | 1 ≤ i ≤ n} ∪A;S;

r{x 7→ h(y1, . . . , yn)};
min{α1,β1}; min{α2,β2}

where T1 ∪ T2 6= ∅; h is n-ary with n ≥ 0; y1, . . . , yn are fresh;
and for j = 1, 2, if Tj = {tj1, . . . , t

j
mj}, then

� h ∼ρ
j
k

R,γj
k

head(tjk) with γ
j
k ≥ λ for all 1 ≤ k ≤ mj and

βj = min{γj1, . . . ,γ
j
mj} (note that βj = 1 if mj = 0),

� for all 1 ≤ i ≤ n, Qij = ∪mj

k=1{t
j
k|q | (i, q) ∈ ρ

j
k} and is

(R, λ)-consistent.
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Generalization using classes, fully fuzzy

Example

h ∼{(1,1),(1,2)}R,0.8 f , h ∼{(1,1),(2,1)}R,0.7 g, a ∼∅R,0.6 b, b ∼∅R,0.5 c.

Computing an (R, 0.5)-lgg h(b, a,_) of f(a, c) and g(a).

{x : {f(a, c)} , {g(a)}}; ∅;x; 1; 1

{y1 : {a, c} , {a}, y2 : ∅ , {a}, y3 : ∅ , ∅}; ∅;h(y1, y2, y3); 0.8; 0.7

Dec

{y2 : ∅ , {a}, y3 : ∅ , ∅}; ∅;h(b, y2, y3); 0.5; 0.6

Dec

{y3 : ∅ , ∅}; ∅;h(b, a, y3); 0.5; 0.6

Dec

∅; ∅;h(b, a, _); 0.5; 0.6

Tri

106 / 109



Generalization using classes, fully fuzzy

Example

h ∼{(1,1),(1,2)}R,0.8 f , h ∼{(1,1),(2,1)}R,0.7 g, a ∼∅R,0.6 b, b ∼∅R,0.5 c.

Computing an (R, 0.5)-lgg h(b, a,_) of f(a, c) and g(a).

{x : {f(a, c)} , {g(a)}}; ∅;x; 1; 1

{y1 : {a, c} , {a}, y2 : ∅ , {a}, y3 : ∅ , ∅}; ∅;h(y1, y2, y3); 0.8; 0.7

Dec

{y2 : ∅ , {a}, y3 : ∅ , ∅}; ∅;h(b, y2, y3); 0.5; 0.6

Dec

{y3 : ∅ , ∅}; ∅;h(b, a, y3); 0.5; 0.6

Dec

∅; ∅;h(b, a, _); 0.5; 0.6

Tri

106 / 109



Generalization using classes, fully fuzzy

Example

h ∼{(1,1),(1,2)}R,0.8 f , h ∼{(1,1),(2,1)}R,0.7 g, a ∼∅R,0.6 b, b ∼∅R,0.5 c.

Computing an (R, 0.5)-lgg h(b, a,_) of f(a, c) and g(a).

{x : {f(a, c)} , {g(a)}}; ∅;x; 1; 1

{y1 : {a, c} , {a}, y2 : ∅ , {a}, y3 : ∅ , ∅}; ∅;h(y1, y2, y3); 0.8; 0.7

Dec

{y2 : ∅ , {a}, y3 : ∅ , ∅}; ∅;h(b, y2, y3); 0.5; 0.6

Dec

{y3 : ∅ , ∅}; ∅;h(b, a, y3); 0.5; 0.6

Dec

∅; ∅;h(b, a, _); 0.5; 0.6

Tri

106 / 109



Generalization using classes, fully fuzzy

Example

h ∼{(1,1),(1,2)}R,0.8 f , h ∼{(1,1),(2,1)}R,0.7 g, a ∼∅R,0.6 b, b ∼∅R,0.5 c.

Computing an (R, 0.5)-lgg h(b, a,_) of f(a, c) and g(a).

{x : {f(a, c)} , {g(a)}}; ∅;x; 1; 1

{y1 : {a, c} , {a}, y2 : ∅ , {a}, y3 : ∅ , ∅}; ∅;h(y1, y2, y3); 0.8; 0.7

Dec

{y2 : ∅ , {a}, y3 : ∅ , ∅}; ∅;h(b, y2, y3); 0.5; 0.6

Dec

{y3 : ∅ , ∅}; ∅;h(b, a, y3); 0.5; 0.6

Dec

∅; ∅;h(b, a, _); 0.5; 0.6

Tri

106 / 109



Generalization using classes, fully fuzzy

Example

h ∼{(1,1),(1,2)}R,0.8 f , h ∼{(1,1),(2,1)}R,0.7 g, a ∼∅R,0.6 b, b ∼∅R,0.5 c.

Computing an (R, 0.5)-lgg h(b, a,_) of f(a, c) and g(a).

{x : {f(a, c)} , {g(a)}}; ∅;x; 1; 1

{y1 : {a, c} , {a}, y2 : ∅ , {a}, y3 : ∅ , ∅}; ∅;h(y1, y2, y3); 0.8; 0.7

Dec

{y2 : ∅ , {a}, y3 : ∅ , ∅}; ∅;h(b, y2, y3); 0.5; 0.6

Dec

{y3 : ∅ , ∅}; ∅;h(b, a, y3); 0.5; 0.6

Dec

∅; ∅;h(b, a, _); 0.5; 0.6

Tri

106 / 109



Family of algorithms

Some features of proximity-based fully fuzzy anti-unification:

� nonstandard variable merging (also in basic signatures)

Not needed for linear generalizations

� irrelevant position abstraction

Not needed if argument relations are left- and right-total

� look-ahead consistency check of arguments

Not needed if argument relations are (partial) injective functions

Combinations lead to eight different algorithms, obtained from the
general set of rules in a modular way.

They differ from each other by the decomposition rule.

Each of them computes the respective minimal complete sets of
generalizations, together with their approximation degree upper
bounds.
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Directions for future research

Not in particular order:

� Generic treatment of T-norms.

� Approximate unification and anti-unification modulo background
theories (similar to crisp equational unification / anti-unification).

� Relating to a recently introduced framework of quantitative and
metric rewriting (Gavazzo & del Florio, POPL’23).

� In the proximity setting, computing a best solution (by some
criterion), instead of all solutions or some arbitrarily chosen ones
(−→ optimization?).

� Investigating the applicability of proximity-based anti-unification
for approximate clone detection, chatbot development, or
program repair.
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