

Temur Kutsia RISC, Johannes Kepler University Linz



- $\mathcal{O}:$  a set of syntactic objects.
  - Typically, expressions (e.g., terms, formulas, ...) in some formal language.
- $\mathcal{M}:$  a set of mappings from  $\mathcal{O}$  to  $\mathcal{O}.$ 
  - Typically, variable substitutions.

- $\mathcal{O}:$  a set of syntactic objects.
  - Typically, expressions (e.g., terms, formulas, ...) in some formal language.
- $\mathcal{M}$ : a set of mappings from  $\mathcal{O}$  to  $\mathcal{O}.$ 
  - Typically, variable substitutions.

 $\mu(O)$  is called an instance of the object O with respect to  $\mu \in \mathcal{M}.$ 

A base relation  $\mathcal{B}$  is a binary reflexive relation on  $\mathcal{O}$ .

An object  $G \in \mathcal{O}$  is a generalization of the object  $O \in \mathcal{O}$  with respect to  $\mathcal{B}$  and  $\mathcal{M}$  (briefly,  $\mathcal{B}_{\mathcal{M}}$ -generalization) if  $\mathcal{B}(\mu(G), O)$  holds for some mapping  $\mu \in \mathcal{M}$ .



A preference relation  $\mathcal{P}$ : a binary reflexive transitive relation on  $\mathcal{O}$ .

 $\mathcal{P}(O_1, O_2)$  indicates that the object  $O_1$  is preferred over  $O_2$ . It induces an equivalence relation  $\equiv_{\mathcal{P}}$ :

$$O_1 \equiv_{\mathcal{P}} O_2 \text{ iff } \mathcal{P}(O_1, O_2) \text{ and } \mathcal{P}(O_2, O_1).$$

The base relation  $\mathcal{B}$  and the preference relation  $\mathcal{P}$  are consistent on  $\mathcal{O}$  with respect to  $\mathcal{M}$  or, shortly,  $\mathcal{M}$ -consistent, if the following holds:

The base relation  $\mathcal{B}$  and the preference relation  $\mathcal{P}$  are consistent on  $\mathcal{O}$  with respect to  $\mathcal{M}$  or, shortly,  $\mathcal{M}$ -consistent, if the following holds:



The base relation  $\mathcal{B}$  and the preference relation  $\mathcal{P}$  are consistent on  $\mathcal{O}$  with respect to  $\mathcal{M}$  or, shortly,  $\mathcal{M}$ -consistent, if the following holds:



The base relation  $\mathcal{B}$  and the preference relation  $\mathcal{P}$  are consistent on  $\mathcal{O}$  with respect to  $\mathcal{M}$  or, shortly,  $\mathcal{M}$ -consistent, if the following holds:



The base relation  $\mathcal{B}$  and the preference relation  $\mathcal{P}$  are consistent on  $\mathcal{O}$  with respect to  $\mathcal{M}$  or, shortly,  $\mathcal{M}$ -consistent, if the following holds:

If G<sub>1</sub> is a B<sub>M</sub>-generalization of O and P(G<sub>1</sub>, G<sub>2</sub>) holds for some G<sub>2</sub>, then G<sub>2</sub> is also a B<sub>M</sub>-generalization of O.



We consider only consistent base and preference relations.

An object G is called a most  $\mathcal{P}$ -preferred common  $\mathcal{B}_{\mathcal{M}}$ -generalization of objects  $O_1, \ldots, O_n, n \ge 2$  if

- **G** is a  $\mathcal{B}_{\mathcal{M}}$ -generalization of each  $O_i$ , and
- for any G' that is also a  $\mathcal{B}_{\mathcal{M}}$ -generalization of each  $O_i$ , if  $\mathcal{P}(G', G)$ , then G'  $\equiv_{\mathcal{P}} G$ .
  - (If G' is  $\mathcal{P}$ -preferred over G, then they are  $\mathcal{P}$ -equivalent.)

 $(\mathcal{B}_{\mathcal{M}}, \mathcal{P})$ -generalization problem over  $\mathcal{O}$ :

 $\begin{array}{lll} \mbox{Given:} & \mbox{Objects } O_1, \ldots, O_n \in \mathcal{O}, \, n \geq 2. \\ \mbox{Find:} & \mbox{An object } G \in \mathcal{O} \mbox{ that is a most } \mathcal{P}\mbox{-preferred} \\ & \mbox{common } \mathcal{B}_{\mathcal{M}}\mbox{-generalization of } O_1, \ldots, O_n. \end{array}$ 

 $(\mathcal{B}_{\mathcal{M}}, \mathcal{P})$ -generalization problem over  $\mathcal{O}$ :

 $\begin{array}{lll} \mbox{Given:} & \mbox{Objects } \mathsf{O}_1,\ldots,\mathsf{O}_n\in\mathcal{O},\,n\geq 2. \\ \mbox{Find:} & \mbox{An object } \mathsf{G}\in\mathcal{O} \mbox{ that is a most } \mathcal{P}\mbox{-preferred} \\ & \mbox{common } \mathcal{B}_{\mathcal{M}}\mbox{-generalization of } \mathsf{O}_1,\ldots,\mathsf{O}_n. \end{array}$ 

This problem may have zero, one, or more solutions.

Two reasons of zero solutions:

- either the objects O<sub>1</sub>,..., O<sub>n</sub> have no common B<sub>M</sub>-generalization at all (i.e, O<sub>1</sub>,..., O<sub>n</sub> are not generalizable), or
- they are generalizable but have no most *P*-preferred common *B<sub>M</sub>*-generalization.

To characterize "informative" sets of possible solutions, we introduce two notions:  $\mathcal{P}$ -complete and  $\mathcal{P}$ -minimal complete sets of common  $\mathcal{B}_{\mathcal{M}}$ -generalizations of multiple objects.

A set of objects  $\mathcal{G} \subseteq \mathcal{O}$  is called a  $\mathcal{P}$ -complete set of common  $\mathcal{B}_{\mathcal{M}}$ -generalizations of the given objects  $O_1, \ldots, O_n, n \ge 2$ , if the following properties are satisfied:

- **Soundness:** every  $G \in \mathcal{G}$  is a common  $\mathcal{B}_{\mathcal{M}}$ -generalization of  $O_1, \ldots, O_n$ , and
- **Completeness:** for each common  $\mathcal{B}_{\mathcal{M}}$ -generalization G' of  $O_1, \ldots, O_n$  there exists  $G \in \mathcal{G}$  such that  $\mathcal{P}(G, G')$ .

A set of objects  $\mathcal{G} \subseteq \mathcal{O}$  is called a  $\mathcal{P}$ -complete set of common  $\mathcal{B}_{\mathcal{M}}$ -generalizations of the given objects  $O_1, \ldots, O_n, n \ge 2$ , if the following properties are satisfied:

- **Soundness:** every  $G \in \mathcal{G}$  is a common  $\mathcal{B}_{\mathcal{M}}$ -generalization of  $O_1, \ldots, O_n$ , and
- **Completeness:** for each common  $\mathcal{B}_{\mathcal{M}}$ -generalization G' of  $O_1, \ldots, O_n$  there exists  $G \in \mathcal{G}$  such that  $\mathcal{P}(G, G')$ .

The set  $\mathcal{G}$  is called  $\mathcal{P}$ -minimal complete set of common  $\mathcal{B}_{\mathcal{M}}$ -generalizations of  $O_1, \ldots, O_n$  and is denoted by  $\operatorname{mcsg}_{\mathcal{B}_{\mathcal{M}}, \mathcal{P}}(O_1, \ldots, O_n)$  if, in addition, the following holds:

■ **Minimality:** no distinct elements of  $\mathcal{G}$  are  $\mathcal{P}$ -comparable: if  $G_1, G_2 \in \mathcal{G}$  and  $\mathcal{P}(G_1, G_2)$ , then  $G_1 = G_2$ .

The type of the  $(\mathcal{B}_{\mathcal{M}}, \mathcal{P})$ -generalization problem between generalizable objects  $O_1, \ldots, O_n \in \mathcal{O}$  is

- **unitary** (1): if  $mcsg_{\mathcal{B}_{\mathcal{M}},\mathcal{P}}(O_1,\ldots,O_n)$  is a singleton,
- finitary (ω): if mcsg<sub>B<sub>M</sub>,P</sub>(O<sub>1</sub>,...,O<sub>n</sub>) is finite and contains at least two elements,
- infinitary (∞): if  $mcsg_{\mathcal{B}_{\mathcal{M}},\mathcal{P}}(O_1,\ldots,O_n)$  is infinite,
- nullary (0): if mcsg<sub>BM,P</sub>(O<sub>1</sub>,...,O<sub>n</sub>) does not exist (i.e., minimality and completeness contradict each other).

The type of  $(\mathcal{B}_{\mathcal{M}}, \mathcal{P})$ -generalization over  $\mathcal{O}$  is

- **unitary** (1): if each (*B*<sub>*M*</sub>, *P*)-generalization problem between generalizable objects from *O* is unitary,
- finitary (ω): if each (B<sub>M</sub>, P)-generalization problem between generalizable objects from O is unitary or finitary, and there exists a finitary problem,
- infinitary (∞): if each (B<sub>M</sub>, P)-generalization problem between generalizable objects from O is unitary, finitary, or infinitary, and there exists an infinitary problem,
- **nullary** (0): if there exists a nullary  $(\mathcal{B}_{\mathcal{M}}, \mathcal{P})$ -generalization problem between generalizable objects from  $\mathcal{O}$ .

Let  $\mathcal{S} \subseteq \mathcal{O}$ .

S-fragment of the generalization problem:

■ the given objects  $O_1, ..., O_n$  are restricted to belong to S:  $O_1 \in S, ..., O_n \in S$ 

S-**variant** of the generalization problem:

• the desired generalizations G are restricted to belong to S:

 $\mathsf{G}\in\mathcal{S}$ 

It also makes sense to consider an  $S_1$ -variant of an  $S_2$ -fragment of the problem, where  $S_1$  and  $S_2$  are not necessarily the same.

Interesting questions:

- Generalization type: What is the (*B*<sub>M</sub>, *P*)-generalization type over *O*?
- Generalization algorithm/procedure: How to compute (or enumerate) a complete set of generalizations (preferably, mcsg<sub>BM,P</sub>) for objects from O.

# Some concrete cases: FOSG

First-order syntactic generalization:

| Generic                | Concrete (FOSG)                                                    |
|------------------------|--------------------------------------------------------------------|
| Ø                      | First-order terms                                                  |
| $\mathcal{M}$          | First-order substitutions                                          |
| B                      | $\doteq$ (syntactic equality)                                      |
| $\mathcal{P}$          | $\succeq$ : $s \succeq t$ iff $s \doteq t\sigma$ for some $\sigma$ |
| $\equiv_{\mathcal{P}}$ | Equi-generality: $\succeq$ and $\preceq$                           |
| Туре                   | Unitary                                                            |
| Algorithm              | [Plotkin70, Reynolds70, Huet76]                                    |

#### Example

 $\mathsf{mcsg}(f(a, f(a, c)), f(b, f(b, c))) = \{f(x, f(x, c))\}.$ 

# Some concrete cases: FOEG

First-order equational generalization modulo an equational theory E:

| Generic                | Concrete (FOEG)                                                                  |
|------------------------|----------------------------------------------------------------------------------|
| Ø                      | First-order terms                                                                |
| $\mathcal{M}$          | First-order substitutions                                                        |
| B                      | $\doteq_{E}$ (equality modulo the theory <i>E</i> )                              |
| $\mathcal{P}$          | $\succeq_{E}$ : $s \succeq_{E} t$ iff $s \doteq_{E} t\sigma$ for some $\sigma$ . |
| $\equiv_{\mathcal{P}}$ | Equi-generality modulo E: $\succeq_E$ and $\preceq_E$                            |
| Туре                   | Depends on a particular $E$                                                      |
| Algorithm              | Depends on a particular $E$                                                      |

# Some concrete cases: FOEG, AC

First-order equational generalization, the AC case:

| Generic                | Concrete (FOEG: AC)                                                                 |
|------------------------|-------------------------------------------------------------------------------------|
| Ø                      | First-order terms                                                                   |
| $\mathcal{M}$          | First-order substitutions                                                           |
| B                      | $\doteq_{AC}$ (equality modulo AC)                                                  |
| $\mathcal{P}$          | $\succeq_{AC}$ : $s \succeq_{AC} t$ iff $s \doteq_{AC} t\sigma$ for some $\sigma$ . |
| $\equiv_{\mathcal{P}}$ | Equi-generality modulo AC: $\succeq_{AC}$ and $\preceq_{AC}$                        |
| Туре                   | Finitary                                                                            |
| Algorithm              | [Alpuente et al, 2014]                                                              |

#### Example

If f is an AC symbol, then

 $\mathsf{mcsg}(f(f(a,a),b),\ f(f(b,b),a)) = \{f(f(x,x),y),\ f(f(x,a),b)\}.$ 

## Some concrete cases: FOEG, Abs

First-order equational generalization, the absorption case.

Axioms: f(x,e) = e, f(e,x) = e.

| Generic                | Concrete (FOEG: Abs)                                                                   |
|------------------------|----------------------------------------------------------------------------------------|
| O                      | First-order terms                                                                      |
| $\mathcal{M}$          | First-order substitutions                                                              |
| B                      | $\doteq_{Abs}$ (equality modulo Abs)                                                   |
| $\mathcal{P}$          | $\succeq_{Abs}$ : $s \succeq_{Abs} t$ iff $s \doteq_{Abs} t\sigma$ for some $\sigma$ . |
| $\equiv_{\mathcal{P}}$ | Equi-generality modulo Abs: $\succeq_{Abs}$ and $\preceq_{Abs}$                        |
| Туре                   | Infinitary                                                                             |
| Algorithm              | Andres Gonzalez et al, ongoing work                                                    |

# Some concrete cases: FOEG, GSC

First-order equational generalization for a ground subterm-collapsing theory, axiomatized with two equalities f(a) = a, f(b) = b.

| Generic                | Concrete (FOEG: GSC)                                                                   |
|------------------------|----------------------------------------------------------------------------------------|
| O                      | First-order terms                                                                      |
| $\mathcal{M}$          | First-order substitutions                                                              |
| ${\mathcal B}$         | $\doteq_{GSC}$ (equality modulo GSC)                                                   |
| ${\cal P}$             | $\succeq_{GCS}$ : $s \succeq_{GSC} t$ iff $s \doteq_{GSC} t\sigma$ for some $\sigma$ . |
| $\equiv_{\mathcal{P}}$ | Equi-generality modulo GSC: $\succeq_{GSC}$ and $\preceq_{GSC}$                        |
| Туре                   | Nullary                                                                                |
| Algorithm              | TBD                                                                                    |

#### Example

The problem  $a \triangleq_{GSC}^{?} b$  has no mcsg: the complete set of generalizations contains an infinite chain  $x \preceq_{GCS} f(x) \preceq_{GCS} f(f(x)) \cdots$ .

# Summary for some FOEG theory types

- A, C, AC: finitary [Alpuente et al, 2014]
- U<sup>>1</sup>, (ACU)<sup>>1</sup>, (CU)<sup>>1</sup>, (AU)<sup>>1</sup>, (AU)(CU): nullary Their single-symbol versions as well as linear variants are finitary [Cerna&Kutsia, FSCD'20];
- I, AI, CI: infinitary [Cerna&Kutsia, TOCL, 2020];
- (UI)<sup>>1</sup>, (AUI)<sup>>1</sup>, (CUI)<sup>>1</sup>, (ACUI)<sup>>1</sup>, semirings: nullary [Cerna 2020];
- Commutative theories: unitary [Baader 1991].

# Some concrete cases: FOVG

First-order variadic generalization:

| Generic                | Concrete (FOVG)                                                      |
|------------------------|----------------------------------------------------------------------|
| O                      | Variadic terms and their sequences                                   |
| $\mathcal{M}$          | Substitutions (for terms and for sequences)                          |
| B                      | $\doteq$ (syntactic equality)                                        |
| $\mathcal{P}$          | $\succeq$ : $s \succeq t$ iff $s \doteq t\sigma$ for some $\sigma$ . |
| $\equiv_{\mathcal{P}}$ | Equi-generality: $\succeq$ and $\preceq$                             |
| Туре                   | Finitary (also for the rigid variant)                                |
| Algorithm              | [Kutsia et al, 2014]                                                 |

#### Example

mcsg(g(f(a), f(a)), g(f(a), f)) for the unrestricted case is

 $\{g(f(a),f(X)), \ g(f(X,Y),f(X)), \ g(f(X,Y),f(Y))\}.$ 

For the rigid variant, it is  $\{g(f(a), f(X))\}$ .

# Some concrete cases: FOCG

First-order clausal generalization.

| Generic                | Concrete (FOCG)                                                                   |
|------------------------|-----------------------------------------------------------------------------------|
| Ø                      | First-order clauses                                                               |
| $\mathcal{M}$          | First-order substitutions                                                         |
| B                      | $\subseteq$                                                                       |
| $\mathcal{P}$          | $\succeq_{CI}$ : $s \succeq_{CI} t$ iff $s \supseteq t\sigma$ for some $\sigma$ . |
|                        | ( $t \sigma$ -subsumes $s$ )                                                      |
| $\equiv_{\mathcal{P}}$ | Equi-generality modulo CI: $\succeq_{CI}$ and $\preceq_{CI}$                      |
| Туре                   | Unitary                                                                           |
| Algorithm              | [Plotkin, 1970]                                                                   |

#### Example

Let 
$$C_1 := p(a) \leftarrow q(a), q(b)$$
  $C_2 := p(b) \leftarrow q(b), q(x)$ 

 $G_1 := p(y) \leftarrow q(y), q(b) \qquad G_2 := p(y) \leftarrow q(y), q(b), q(z)$ 

Then  $G_1$  and  $G_2$  both are lggs of  $C_1$  and  $C_2$ , and  $G_1 \equiv_{\mathcal{P}} G_2$ .

# Some concrete cases: HOG $_{\alpha\beta\eta}$

Higher-order  $\alpha\beta\eta$ -generalization

| Generic                | Concrete (HOG $_{\alpha\beta\eta}$ )                                     |
|------------------------|--------------------------------------------------------------------------|
| O                      | Simply-typed $\lambda$ terms                                             |
| $\mathcal{M}$          | Higher-order substitutions                                               |
| B                      | $pprox$ (equality modulo $lphaeta\eta$ )                                 |
| $\mathcal{P}$          | ightharpoonrightarrow tsizes tsizes tsizes tsizes to the substitution σ. |
| $\equiv_{\mathcal{P}}$ | Equi-general ( $\succsim$ and $\precsim$ ) modulo $lphaeta\eta$          |
| Туре                   | nullary in general [Buran&Cerna, to appear]                              |
|                        | unitary for the TMS variant [Cerna&Kutsia, 2019]                         |
| Algorithm              | TMS variant [Cerna&Kutsia, 2019],                                        |
|                        | patterns [Baumgartner et al, 2017]                                       |

# Some concrete cases: HOG $_{\alpha\beta\eta}$

#### Example

Various top-maximal shallow lggs for

 $\lambda x. f(h(g(g(x))), h(g(x)), a)$  and  $\lambda x. f(g(g(x)), g(x), h(a))$ 

#### Projection-based:

 $\lambda x.f(X(h(g(g(x))),g(g(x))),X(h(g(x)),g(x)),X(a,h(a))),$ 

Common subterms:

 $\lambda x.f(X(g(g(x))), X(g(x))), Z(a)),$ 

Patterns:

 $\lambda x.f(X(x), Y(x), Z).$ 

Description logics.

Decidable fragments of first-order logic.

The basic syntactic building blocks in DLs:

 $\blacksquare$  (primitive) concept names  $P, Q, \dots$  (unary predicates),

 $\blacksquare$  role names  $r, q, \dots$  (binary predicates),

 $\blacksquare$  individual names  $a, b, \dots$  (constants).

. . .

Starting from these constructions, complex concept descriptions and roles are built using constructors, which determine the expressive power of the DL.

$$\begin{aligned} \mathcal{EL}: \quad C, D &:= P \mid \top \mid C \sqcap D \mid \exists r.C. \\ \mathcal{FLE}: \quad C, D &:= P \mid \top \mid C \sqcap D \mid \exists r.C \mid \forall r.C. \end{aligned}$$

An interpretation  $\mathcal{I} = (\Delta_\mathcal{I}, \cdot^\mathcal{I})$  consists of

- $\blacksquare$  a non-empty set  $\Delta^{\mathcal{I}}$ , called the interpretation domain, and
- **\blacksquare** a mapping  $\cdot^{\mathcal{I}}$ , called the extension mapping.

An interpretation  $\mathcal{I} = (\Delta_{\mathcal{I}}, \cdot^{\mathcal{I}})$  consists of

 $\blacksquare$  a non-empty set  $\Delta^{\mathcal{I}}$ , called the interpretation domain, and

**a** mapping  $\cdot^{\mathcal{I}}$ , called the extension mapping.

The mapping maps

• every concept name P to a set  $P^{\mathcal{I}} \subseteq \Delta_{\mathcal{I}}$ ,

every role name r to a binary relation  $r^{\mathcal{I}} \subseteq \Delta_{\mathcal{I}} \times \Delta_{\mathcal{I}}$ .

An interpretation  $\mathcal{I} = (\Delta_{\mathcal{I}}, \cdot^{\mathcal{I}})$  consists of

 $\blacksquare$  a non-empty set  $\Delta^{\mathcal{I}}$ , called the interpretation domain, and

**a** mapping  $\cdot^{\mathcal{I}}$ , called the extension mapping.

The mapping maps

• every concept name P to a set  $P^{\mathcal{I}} \subseteq \Delta_{\mathcal{I}}$ ,

every role name *r* to a binary relation  $r^{\mathcal{I}} \subseteq \Delta_{\mathcal{I}} \times \Delta_{\mathcal{I}}$ .

For the other concept descriptions:

$$T^{\mathcal{I}} = \Delta_{\mathcal{I}},$$

$$(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}},$$

$$(\exists r.C)^{\mathcal{I}} = \{ d \in \Delta_{\mathcal{I}} \mid \exists e. (d, e) \in r^{\mathcal{I}} \land e \in C^{\mathcal{I}} \},$$

$$(\forall r.C)^{\mathcal{I}} = \{ d \in \Delta_{\mathcal{I}} \mid \forall e. (d, e) \in r^{\mathcal{I}} \Rightarrow e \in C^{\mathcal{I}} \}.$$

A concept description *C* is subsumed by *D*, written  $C \sqsubseteq D$ , if  $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$  holds for all interpretations  $\mathcal{I}$ .

 $C \equiv D$ : if C and D subsume each other.

A concept description D is called a least common subsumer of  $C_1$  and  $C_2$ , if

 $\blacksquare$   $C_1 \sqsubseteq D$  and  $C_2 \sqsubseteq D$  and

If there exists D' such that  $C_1 \sqsubseteq D'$  and  $C_2 \sqsubseteq D'$ , then  $D \sqsubseteq D'$ .

A concept description C is subsumed by D, written  $C \sqsubseteq D$ , if  $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$  holds for all interpretations  $\mathcal{I}$ .

 $C \equiv D$ : if C and D subsume each other.

A concept description D is called a least common subsumer of  $C_1$  and  $C_2$ , if

 $\blacksquare$   $C_1 \sqsubseteq D$  and  $C_2 \sqsubseteq D$  and

If there exists D' such that  $C_1 \sqsubseteq D'$  and  $C_2 \sqsubseteq D'$ , then  $D \sqsubseteq D'$ .

The problem of computing the least common subsumer of two or more concept descriptions is a version of the problem of computing generalizations in DLs.

#### DLs $\mathcal{EL}$ and $\mathcal{FLE}$ :

| Generic                | Concrete (DL)                         |
|------------------------|---------------------------------------|
| Ø                      | Concept descriptions                  |
| $\mathcal{M}$          | Contains only the identity mapping    |
| B                      |                                       |
| $\mathcal{P}$          |                                       |
| $\equiv_{\mathcal{P}}$ | $\equiv: \sqsubseteq$ and $\supseteq$ |
| Туре                   | Unitary                               |
| Algorithm              | [Baader et al, 1999]                  |

#### Example (EL)

 $C = P \sqcap \exists r. (\exists r. (P \sqcap Q) \sqcap \exists s. Q) \sqcap \exists r. (P \sqcap \exists s. P)$ 

 $D = \exists r.(P \sqcap \exists r.P \sqcap \exists s.Q)$ 

 $LCS(C,D) = \exists r.(\exists r.P \sqcap \exists s.Q) \sqcap \exists r.(P \sqcap \exists s.\top)$ 

#### Some concrete cases: ProxGen

Quantitative generalization modulo fuzzy proximity relations:

| Generic                | Concrete (ProxGen)                                                   |
|------------------------|----------------------------------------------------------------------|
| Ø                      | First-order terms                                                    |
| $\mathcal{M}$          | First-order substitutions                                            |
| B                      | $pprox_{\mathcal{R},\lambda}$ (approximate equality)                 |
| $\mathcal{P}$          | $\succeq$ : $s \succeq t$ iff $s \doteq t\sigma$ for some $\sigma$ . |
| $\equiv_{\mathcal{P}}$ | Equi-generality: $\succeq$ and $\preceq$                             |
| Туре                   | Finitary                                                             |
| Algorithm              | [Kutsia&Pau, 2022]                                                   |

#### Some concrete cases: ProxGen

If we defined  $\mathcal{P}$  as  $\succeq_{\mathcal{R},\lambda}$  where  $s \succeq_{\mathcal{R},\lambda} t$  iff  $s \approx_{\mathcal{R},\lambda} t\sigma$  for some  $\sigma$ , then it would not be consistent with  $\mathcal{B}$ .

If  $\mathcal{R}(a, b) = 0.7$  and  $\mathcal{R}(b, c) = 0.7$ , then both a and b are  $(\mathcal{R}, 0.7)$ -generalizations of a and b, but c is not.

But taking  $\mathcal{P} = \succeq_{\mathcal{R},\lambda}$ , we would get that *c* is also a  $(\mathcal{R}, 0.7)$ -generalization of *a* and *b*, which is wrong.

# Some more concrete cases

Clausal generalization:

• based on relative  $\theta$ -subsumption,

based on T-implication.

Order-sorted generalization:

syntactic,

modulo equational theories.

Variadic generalization:

- for commutative (orderless) theories,
- for term-graphs.

Generalization in the description logic  $\mathcal{EL}$ :

an approach that allows variables in the generalization

#### Some more concrete cases

Nominal generalization:

allowing finitely many atoms
 using atom variables
 ...

Higher-order generalization:

- simple types, modulo  $\alpha\beta\eta$  and equational theories,
- let polymorphic lambda-calculus ( $\lambda 2$ ),
- second order variadic terms,
- **.**..

# **Applications**

Typical applications fall into one of the following areas:

- learning and reasoning,
- synthesis and exploration,
- analysis and repair.

- Studying the influence of the signature of equational theories on the generalization type
- Investigating methods of combining generalization algorithms over disjoint equational theories
- Characterization of equational theories exhibiting similar behavior and properties for generalization problems

- Studying the influence of the signature of equational theories on the generalization type
- Investigating methods of combining generalization algorithms over disjoint equational theories
- Characterization of equational theories exhibiting similar behavior and properties for generalization problems
- Studying generalization in more expressive theories (higher-order, quantitative, ...)

- Studying the influence of the signature of equational theories on the generalization type
- Investigating methods of combining generalization algorithms over disjoint equational theories
- Characterization of equational theories exhibiting similar behavior and properties for generalization problems
- Studying generalization in more expressive theories (higher-order, quantitative, ...)
- Studying the influence of the preference relation choice on the type and solution set of generalization problems

- Studying the influence of the signature of equational theories on the generalization type
- Investigating methods of combining generalization algorithms over disjoint equational theories
- Characterization of equational theories exhibiting similar behavior and properties for generalization problems
- Studying generalization in more expressive theories (higher-order, quantitative, ...)
- Studying the influence of the preference relation choice on the type and solution set of generalization problems
- Combination with other kind of generalization and abstraction techniques + new applications

#### Reference

David Cerna and Temur Kutsia.

Anti-unification and Generalization: a Survey. In: E. Elkind, editor. *Proceedings of IJCAI 2023 - 32nd International Joint Conference on Artificial Intelligence.* ijcai.org, 2023. 6563–6573