GENERALIZATION: A SURVEY

Temur Kutsia
RISC, Johannes Kepler University Linz

UNIVERSITY LINZ

Generalization: an abstract view

\mathcal{O} : a set of syntactic objects.
■ Typically, expressions (e.g., terms, formulas, ...) in some formal language.
\mathcal{M} : a set of mappings from \mathcal{O} to \mathcal{O}.

- Typically, variable substitutions.

Generalization: an abstract view

\mathcal{O} : a set of syntactic objects.
■ Typically, expressions (e.g., terms, formulas, ...) in some formal language.
\mathcal{M} : a set of mappings from \mathcal{O} to \mathcal{O}.

- Typically, variable substitutions.
$\mu(\mathrm{O})$ is called an instance of the object O with respect to $\mu \in \mathcal{M}$.

Generalization: an abstract view

A base relation \mathcal{B} is a binary reflexive relation on \mathcal{O}.
An object $\mathrm{G} \in \mathcal{O}$ is a generalization of the object $\mathrm{O} \in \mathcal{O}$ with respect to \mathcal{B} and \mathcal{M} (briefly, $\mathcal{B}_{\mathcal{M}}$-generalization) if $\mathcal{B}(\mu(\mathrm{G}), \mathrm{O})$ holds for some mapping $\mu \in \mathcal{M}$.

Generalization: an abstract view

A preference relation \mathcal{P} : a binary reflexive transitive relation on \mathcal{O}.
$\mathcal{P}\left(\mathrm{O}_{1}, \mathrm{O}_{2}\right)$ indicates that the object O_{1} is preferred over O_{2}.
It induces an equivalence relation $\equiv_{\mathcal{P}}$:

$$
\mathrm{O}_{1} \equiv{ }_{\mathcal{P}} \mathrm{O}_{2} \text { iff } \mathcal{P}\left(\mathrm{O}_{1}, \mathrm{O}_{2}\right) \text { and } \mathcal{P}\left(\mathrm{O}_{2}, \mathrm{O}_{1}\right) .
$$

Generalization: an abstract view

The base relation \mathcal{B} and the preference relation \mathcal{P} are consistent on \mathcal{O} with respect to \mathcal{M} or, shortly, \mathcal{M}-consistent, if the following holds:

■ If G_{1} is a $\mathcal{B}_{\mathcal{M}}$-generalization of O and $\mathcal{P}\left(\mathrm{G}_{1}, \mathrm{G}_{2}\right)$ holds for some G_{2}, then G_{2} is also a $\mathcal{B}_{\mathcal{M}}$-generalization of O .

Generalization: an abstract view

The base relation \mathcal{B} and the preference relation \mathcal{P} are consistent on \mathcal{O} with respect to \mathcal{M} or, shortly, \mathcal{M}-consistent, if the following holds:

■ If G_{1} is a $\mathcal{B}_{\mathcal{M}}$-generalization of O and $\mathcal{P}\left(\mathrm{G}_{1}, \mathrm{G}_{2}\right)$ holds for some G_{2}, then G_{2} is also a $\mathcal{B}_{\mathcal{M}}$-generalization of O .

Generalization: an abstract view

The base relation \mathcal{B} and the preference relation \mathcal{P} are consistent on \mathcal{O} with respect to \mathcal{M} or, shortly, \mathcal{M}-consistent, if the following holds:

■ If G_{1} is a $\mathcal{B}_{\mathcal{M}}$-generalization of O and $\mathcal{P}\left(\mathrm{G}_{1}, \mathrm{G}_{2}\right)$ holds for some G_{2}, then G_{2} is also a $\mathcal{B}_{\mathcal{M}}$-generalization of O .

Generalization: an abstract view

The base relation \mathcal{B} and the preference relation \mathcal{P} are consistent on \mathcal{O} with respect to \mathcal{M} or, shortly, \mathcal{M}-consistent, if the following holds:

■ If G_{1} is a $\mathcal{B}_{\mathcal{M}}$-generalization of O and $\mathcal{P}\left(G_{1}, G_{2}\right)$ holds for some G_{2}, then G_{2} is also a $\mathcal{B}_{\mathcal{M}}$-generalization of O.

Generalization: an abstract view

The base relation \mathcal{B} and the preference relation \mathcal{P} are consistent on \mathcal{O} with respect to \mathcal{M} or, shortly, \mathcal{M}-consistent, if the following holds:

■ If G_{1} is a $\mathcal{B}_{\mathcal{M}}$-generalization of O and $\mathcal{P}\left(G_{1}, G_{2}\right)$ holds for some G_{2}, then G_{2} is also a $\mathcal{B}_{\mathcal{M}}$-generalization of O .

We consider only consistent base and preference relations.

Generalization: an abstract view

An object G is called a most \mathcal{P}-preferred common
$\mathcal{B}_{\mathcal{M}}$-generalization of objects $\mathrm{O}_{1}, \ldots, \mathrm{O}_{n}, n \geq 2$ if
$\square \mathrm{G}$ is a $\mathcal{B}_{\mathcal{M}}$-generalization of each O_{i}, and
■ for any G^{\prime} that is also a $\mathcal{B}_{\mathcal{M}}$-generalization of each O_{i}, if $\mathcal{P}\left(\mathrm{G}^{\prime}, \mathrm{G}\right)$, then $\mathrm{G}^{\prime} \equiv_{\mathcal{P}} \mathrm{G}$.
(If G^{\prime} is \mathcal{P}-preferred over G , then they are \mathcal{P}-equivalent.)

Generalization: an abstract view

$\left(\mathcal{B}_{\mathcal{M}}, \mathcal{P}\right)$-generalization problem over \mathcal{O} :

Given: Objects $\mathrm{O}_{1}, \ldots, \mathrm{O}_{n} \in \mathcal{O}, n \geq 2$.
Find: An object $\mathrm{G} \in \mathcal{O}$ that is a most \mathcal{P}-preferred common $\mathcal{B}_{\mathcal{M}}$-generalization of $\mathrm{O}_{1}, \ldots, \mathrm{O}_{n}$.

Generalization: an abstract view

$\left(\mathcal{B}_{\mathcal{M}}, \mathcal{P}\right)$-generalization problem over \mathcal{O} :

Given: Objects $\mathrm{O}_{1}, \ldots, \mathrm{O}_{n} \in \mathcal{O}, n \geq 2$.
Find: An object $G \in \mathcal{O}$ that is a most \mathcal{P}-preferred common $\mathcal{B}_{\mathcal{M}}$-generalization of $\mathrm{O}_{1}, \ldots, \mathrm{O}_{n}$.

This problem may have zero, one, or more solutions.
Two reasons of zero solutions:

- either the objects $\mathrm{O}_{1}, \ldots, \mathrm{O}_{n}$ have no common $\mathcal{B}_{\mathcal{M}}$-generalization at all (i.e, $\mathrm{O}_{1}, \ldots, \mathrm{O}_{n}$ are not generalizable), or
- they are generalizable but have no most \mathcal{P}-preferred common $\mathcal{B}_{\mathcal{M}}$-generalization.

Generalization: an abstract view

To characterize "informative" sets of possible solutions, we introduce two notions: \mathcal{P}-complete and \mathcal{P}-minimal complete sets of common $\mathcal{B}_{\mathcal{M}}$-generalizations of multiple objects.

Generalization: an abstract view

A set of objects $\mathcal{G} \subseteq \mathcal{O}$ is called a \mathcal{P}-complete set of common $\mathcal{B}_{\mathcal{M}}$-generalizations of the given objects $\mathrm{O}_{1}, \ldots, \mathrm{O}_{n}, n \geq 2$, if the following properties are satisfied:

■ Soundness: every $\mathrm{G} \in \mathcal{G}$ is a common $\mathcal{B}_{\mathcal{M}}$-generalization of $\mathrm{O}_{1}, \ldots, \mathrm{O}_{n}$, and

- Completeness: for each common $\mathcal{B}_{\mathcal{M}}$-generalization G^{\prime} of $\mathrm{O}_{1}, \ldots, \mathrm{O}_{n}$ there exists $\mathrm{G} \in \mathcal{G}$ such that $\mathcal{P}\left(\mathrm{G}, \mathrm{G}^{\prime}\right)$.

Generalization: an abstract view

A set of objects $\mathcal{G} \subseteq \mathcal{O}$ is called a \mathcal{P}-complete set of common $\mathcal{B}_{\mathcal{M}}$-generalizations of the given objects $\mathrm{O}_{1}, \ldots, \mathrm{O}_{n}, n \geq 2$, if the following properties are satisfied:

- Soundness: every $\mathrm{G} \in \mathcal{G}$ is a common $\mathcal{B}_{\mathcal{M}}$-generalization of $\mathrm{O}_{1}, \ldots, \mathrm{O}_{n}$, and
- Completeness: for each common $\mathcal{B}_{\mathcal{M}}$-generalization G^{\prime} of $\mathrm{O}_{1}, \ldots, \mathrm{O}_{n}$ there exists $\mathrm{G} \in \mathcal{G}$ such that $\mathcal{P}\left(\mathrm{G}, \mathrm{G}^{\prime}\right)$.

The set \mathcal{G} is called \mathcal{P}-minimal complete set of common $\mathcal{B}_{\mathcal{M}}$-generalizations of $\mathrm{O}_{1}, \ldots, \mathrm{O}_{n}$ and is denoted by $\operatorname{mcsg}_{\mathcal{B}_{\mathcal{M}}, \mathcal{P}}\left(\mathrm{O}_{1}, \ldots, \mathrm{O}_{n}\right)$ if, in addition, the following holds:

- Minimality: no distinct elements of \mathcal{G} are \mathcal{P}-comparable: if $\mathrm{G}_{1}, \mathrm{G}_{2} \in \mathcal{G}$ and $\mathcal{P}\left(\mathrm{G}_{1}, \mathrm{G}_{2}\right)$, then $\mathrm{G}_{1}=\mathrm{G}_{2}$.

Generalization: an abstract view

The type of the $\left(\mathcal{B}_{\mathcal{M}}, \mathcal{P}\right)$-generalization problem between generalizable objects $\mathrm{O}_{1}, \ldots, \mathrm{O}_{n} \in \mathcal{O}$ is
\square unitary (1): if $\operatorname{mcsg}_{\mathcal{B}_{\mathcal{M}}, \mathcal{P}}\left(\mathrm{O}_{1}, \ldots, \mathrm{O}_{n}\right)$ is a singleton,
\square finitary (ω) : if $\operatorname{mcsg}_{\mathcal{B}_{\mathcal{M}}, \mathcal{P}}\left(\mathrm{O}_{1}, \ldots, \mathrm{O}_{n}\right)$ is finite and contains at least two elements,
\square infinitary (∞) : if $\operatorname{mcsg}_{\mathcal{B}, \mathcal{M}}\left(\mathrm{O}_{1}, \ldots, \mathrm{O}_{n}\right)$ is infinite,
\square nullary (0): if $\operatorname{mcsg}_{\mathcal{B}_{\mathcal{M}}, \mathcal{P}}\left(\mathrm{O}_{1}, \ldots, \mathrm{O}_{n}\right)$ does not exist (i.e., minimality and completeness contradict each other).

Generalization: an abstract view

The type of $\left(\mathcal{B}_{\mathcal{M}}, \mathcal{P}\right)$-generalization over \mathcal{O} is

- unitary (1): if each ($\left.\mathcal{B}_{\mathcal{M}}, \mathcal{P}\right)$-generalization problem between generalizable objects from \mathcal{O} is unitary,
- finitary (ω) : if each $\left(\mathcal{B}_{\mathcal{M}}, \mathcal{P}\right)$-generalization problem between generalizable objects from \mathcal{O} is unitary or finitary, and there exists a finitary problem,
■ infinitary (∞) : if each $\left(\mathcal{B}_{\mathcal{M}}, \mathcal{P}\right)$-generalization problem between generalizable objects from \mathcal{O} is unitary, finitary, or infinitary, and there exists an infinitary problem,
■ nullary (0): if there exists a nullary $\left(\mathcal{B}_{\mathcal{M}}, \mathcal{P}\right)$-generalization problem between generalizable objects from \mathcal{O}.

Generalization: an abstract view

Let $\mathcal{S} \subseteq \mathcal{O}$.
\mathcal{S}-fragment of the generalization problem:
■ the given objects $\mathrm{O}_{1}, \ldots, \mathrm{O}_{n}$ are restricted to belong to \mathcal{S} :

$$
\mathrm{O}_{1} \in \mathcal{S}, \ldots, \mathrm{O}_{n} \in \mathcal{S}
$$

\mathcal{S}-variant of the generalization problem:

- the desired generalizations G are restricted to belong to \mathcal{S} :

$$
G \in \mathcal{S}
$$

It also makes sense to consider an \mathcal{S}_{1}-variant of an \mathcal{S}_{2}-fragment of the problem, where \mathcal{S}_{1} and \mathcal{S}_{2} are not necessarily the same.

Generalization: an abstract view

Interesting questions:

- Generalization type: What is the $\left(\mathcal{B}_{\mathcal{M}}, \mathcal{P}\right)$-generalization type over \mathcal{O} ?
■ Generalization algorithm/procedure: How to compute (or enumerate) a complete set of generalizations (preferably, $\operatorname{mcsg}_{\mathcal{B}_{\mathcal{M}}, \mathcal{P}}$) for objects from \mathcal{O}.

Some concrete cases: FOSG

First-order syntactic generalization:

Generic	Concrete (FOSG)
\mathcal{O}	First-order terms
\mathcal{M}	First-order substitutions
\mathcal{B}	\doteq (syntactic equality)
\mathcal{P}	$\succeq: s \succeq t$ iff $s \doteq t \sigma$ for some σ
$\equiv \mathcal{P}$	Equi-generality: \succeq and \preceq
Type	Unitary
Algorithm	[Plotkin70, Reynolds70, Huet76]

Example

$$
\operatorname{mcsg}(f(a, f(a, c)), f(b, f(b, c)))=\{f(x, f(x, c))\} .
$$

Some concrete cases: FOEG

First-order equational generalization modulo an equational theory E :

Generic	Concrete (FOEG)
\mathcal{O}	First-order terms
\mathcal{M}	First-order substitutions
\mathcal{B}	\doteq_{E} (equality modulo the theory E)
\mathcal{P}	$\succeq_{\mathrm{E}}: \quad s \succeq_{\mathrm{E}} t$ iff $s \doteq_{\mathrm{E}}$ t σ for some σ.
$\equiv_{\mathcal{P}}$	Equi-generality modulo $\mathrm{E}: \succeq_{\mathrm{E}}$ and \preceq_{E}
Type	Depends on a particular E
Algorithm	Depends on a particular E

Some concrete cases: FOEG, AC

First-order equational generalization, the AC case:

Generic	Concrete (FOEG: AC)
\mathcal{O}	First-order terms
\mathcal{M}	First-order substitutions
\mathcal{B}	$\dot{\bar{A}}_{\mathrm{AC}}$ (equality modulo AC)
\mathcal{P}	$\succeq_{\mathrm{AC}}: \quad s \succeq_{\mathrm{AC}} t$ iff $s \doteq_{\mathrm{AC}} t \sigma$ for some σ.
$\equiv_{\mathcal{P}}$	Equi-generality modulo $\mathrm{AC}: \succeq_{\mathrm{AC}}$ and \preceq_{AC}
Type	Finitary
Algorithm	[Alpuente et al, 2014]

Example

If f is an AC symbol, then

$$
\operatorname{mcsg}(f(f(a, a), b), f(f(b, b), a))=\{f(f(x, x), y), f(f(x, a), b)\} .
$$

Some concrete cases: FOEG, Abs

First-order equational generalization, the absorption case.
Axioms: $\quad f(x, e)=e, \quad f(e, x)=e$.

Generic	Concrete (FOEG: Abs)
\mathcal{O}	First-order terms
\mathcal{M}	First-order substitutions
\mathcal{B}	$\doteq_{\text {Abs }}($ equality modulo Abs)
\mathcal{P}	$\succeq_{\text {Abs }}: s \succeq_{\text {Abs }} t$ iff $s \doteq_{\text {Abs }} t \sigma$ for some σ.
$\equiv_{\mathcal{P}}$	Equi-generality modulo Abs: $\succeq_{\text {Abs }}$ and $\preceq_{\text {Abs }}$
Type	Infinitary
Algorithm	Andres Gonzalez et al, ongoing work

Some concrete cases: FOEG, GSC

First-order equational generalization for a ground subterm-collapsing theory, axiomatized with two equalities $f(a)=a, f(b)=b$.

Generic	Concrete (FOEG: GSC)
\mathcal{O}	First-order terms
\mathcal{M}	First-order substitutions
\mathcal{B}	$\doteq_{\text {GSC }}$ (equality modulo GSC)
\mathcal{P}	\succeq GCS: $s \succeq$ GSC t iff $s \doteq$ GSC $t \sigma$ for some σ.
$\equiv_{\mathcal{P}}$	Equi-generality modulo GSC: \succeq GSC and \preceq GSC
Type	Nullary
Algorithm	TBD

Example

The problem $a \triangleq{ }^{\triangleq}$? $\mathrm{GSC} b$ has no mcsg: the complete set of generalizations contains an infinite chain $x \preceq_{\text {Gcs }} f(x) \preceq_{\text {Gcs }} f(f(x)) \cdots$.

Summary for some FOEG theory types

- A, C, AC: finitary [Alpuente et al, 2014]

■ $U^{>1},(\mathrm{ACU})^{>1},(\mathrm{CU})^{>1},(\mathrm{AU})^{>1},(\mathrm{AU})(\mathrm{CU})$: nullary Their single-symbol versions as well as linear variants are finitary [Cerna\&Kutsia, FSCD'20];

■ I, AI, CI: infinitary [Cerna\&Kutsia, TOCL, 2020];
■ (UI) ${ }^{>1},(\text { AUI })^{>1},(\text { CUI })^{>1},(\text { ACUI })^{>1}$, semirings: nullary [Cerna 2020];

- Commutative theories: unitary [Baader 1991].

Some concrete cases: FOVG

First-order variadic generalization:

Generic	Concrete (FOVG)
\mathcal{O}	Variadic terms and their sequences
\mathcal{M}	Substitutions (for terms and for sequences)
\mathcal{B}	\doteq (syntactic equality)
\mathcal{P}	$\succeq: s \succeq t$ iff $s \doteq t \sigma$ for some σ.
$\equiv \mathcal{P}$	Equi-generality: \succeq and \preceq
Type	Finitary (also for the rigid variant)
Algorithm	[Kutsia et al, 2014]

Example

$\operatorname{mcsg}(g(f(a), f(a)), g(f(a), f))$ for the unrestricted case is

$$
\{g(f(a), f(X)), \quad g(f(X, Y), f(X)), \quad g(f(X, Y), f(Y))\}
$$

For the rigid variant, it is $\{g(f(a), f(X))\}$.

Some concrete cases: FOCG

First-order clausal generalization.

Generic	Concrete (FOCG)
\mathcal{O}	First-order clauses
\mathcal{M}	First-order substitutions
\mathcal{B}	\subseteq
\mathcal{P}	$\succeq \mathrm{cl}: \quad s \succeq \mathrm{cl} t$ iff $s \supseteq t \sigma$ for some σ. $(t \sigma$-subsumes $s)$
$\equiv \mathcal{P}$	Equi-generality modulo CI: $\succeq \mathrm{cl}$ and $\preceq \mathrm{cl}$
Type	Unitary
Algorithm	[Plotkin, 1970]

Example

$$
\begin{array}{lll}
\text { Let } & C_{1}:=p(a) \leftarrow q(a), q(b) & C_{2}:=p(b) \leftarrow q(b), q(x) \\
& G_{1}:=p(y) \leftarrow q(y), q(b) & G_{2}:=p(y) \leftarrow q(y), q(b), q(z)
\end{array}
$$

Then G_{1} and G_{2} both are Iggs of C_{1} and C_{2}, and $G_{1} \equiv_{\mathcal{P}} G_{2}$.

Some concrete cases: $\mathbf{H O G}_{\alpha \beta \eta}$

Higher-order $\alpha \beta \eta$-generalization

Generic	Concrete $\left(\mathrm{HOG}_{\alpha \beta \eta}\right)$
\mathcal{O}	Simply-typed λ terms
\mathcal{M}	Higher-order substitutions
\mathcal{B}	\approx (equality modulo $\alpha \beta \eta)$
\mathcal{P}	$\succsim: s \succsim t$ iff $s \approx t \sigma$ for a substitution σ.
$\equiv \mathcal{P}$	Equi-general $(\succsim$ and $\precsim)$ modulo $\alpha \beta \eta$
Type	nullary in general [Buran\&Cerna, to appear] unitary for the TMS variant [Cerna\&Kutsia, 2019]
Algorithm	TMS variant [Cerna\&Kutsia, 2019], patterns [Baumgartner et al, 2017]

Some concrete cases: $\mathbf{H O G}_{\alpha \beta \eta}$

Example

Various top-maximal shallow Iggs for

$$
\lambda x . f(h(g(g(x))), h(g(x)), a) \text { and } \lambda x . f(g(g(x)), g(x), h(a))
$$

Projection-based:

$$
\lambda x . f(X(h(g(g(x))), g(g(x))), X(h(g(x)), g(x)), X(a, h(a)))
$$

Common subterms:

$$
\lambda x . f(X(g(g(x))), X(g(x))), Z(a))
$$

Patterns:

$$
\lambda x . f(X(x), Y(x), Z)
$$

Some concrete cases: DLs

Description logics.
Decidable fragments of first-order logic.
The basic syntactic building blocks in DLs:
■ (primitive) concept names P, Q, \ldots (unary predicates),
■ role names r, q, \ldots (binary predicates),
■ individual names a, b, \ldots (constants).
Starting from these constructions, complex concept descriptions and roles are built using constructors, which determine the expressive power of the DL.

$$
\begin{aligned}
\mathcal{E L}: & C, D:=P|\top| C \sqcap D \mid \exists r . C . \\
\mathcal{F L E}: & C, D:=P|\top| C \sqcap D|\exists r . C| \forall r . C .
\end{aligned}
$$

Some concrete cases: DLs

An interpretation $\mathcal{I}=\left(\Delta_{\mathcal{I}}, \cdot^{\mathcal{I}}\right)$ consists of
■ a non-empty set $\Delta^{\mathcal{I}}$, called the interpretation domain, and

- a mapping ${ }^{\mathcal{I}}$, called the extension mapping.

Some concrete cases: DLs

An interpretation $\mathcal{I}=\left(\Delta_{\mathcal{I}}, \cdot^{\mathcal{I}}\right)$ consists of
■ a non-empty set $\Delta^{\mathcal{I}}$, called the interpretation domain, and
■ a mapping ${ }^{I}$, called the extension mapping.
The mapping maps
■ every concept name P to a set $P^{\mathcal{I}} \subseteq \Delta_{\mathcal{I}}$,
■ every role name r to a binary relation $r^{\mathcal{I}} \subseteq \Delta_{\mathcal{I}} \times \Delta_{\mathcal{I}}$.

Some concrete cases: DLs

An interpretation $\mathcal{I}=\left(\Delta_{\mathcal{I}},{ }^{\mathcal{I}}\right)$ consists of

- a non-empty set $\Delta^{\mathcal{I}}$, called the interpretation domain, and

■ a mapping ${ }^{I}$, called the extension mapping.
The mapping maps
\square every concept name P to a set $P^{\mathcal{I}} \subseteq \Delta_{\mathcal{I}}$,
■ every role name r to a binary relation $r^{\mathcal{I}} \subseteq \Delta_{\mathcal{I}} \times \Delta_{\mathcal{I}}$.
For the other concept descriptions:
■ $\mathrm{T}^{\mathcal{I}}=\Delta_{\mathcal{I}}$,
■ $(C \sqcap D)^{\mathcal{I}}=C^{\mathcal{I}} \cap D^{\mathcal{I}}$,
■ $(\exists r . C)^{\mathcal{I}}=\left\{d \in \Delta_{\mathcal{I}} \mid \exists e .(d, e) \in r^{\mathcal{I}} \wedge e \in C^{\mathcal{I}}\right\}$,
■ $(\forall r . C)^{\mathcal{I}}=\left\{d \in \Delta_{\mathcal{I}} \mid \forall e .(d, e) \in r^{\mathcal{I}} \Rightarrow e \in C^{\mathcal{I}}\right\}$.

Some concrete cases: DLs

A concept description C is subsumed by D, written $C \sqsubseteq D$, if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ holds for all interpretations \mathcal{I}.
$C \equiv D$: if C and D subsume each other.
A concept description D is called a least common subsumer of C_{1} and C_{2}, if

- $C_{1} \sqsubseteq D$ and $C_{2} \sqsubseteq D$ and

■ if there exists D^{\prime} such that $C_{1} \sqsubseteq D^{\prime}$ and $C_{2} \sqsubseteq D^{\prime}$, then $D \sqsubseteq D^{\prime}$.

Some concrete cases: DLs

A concept description C is subsumed by D, written $C \sqsubseteq D$, if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ holds for all interpretations \mathcal{I}.
$C \equiv D$: if C and D subsume each other.
A concept description D is called a least common subsumer of
C_{1} and C_{2}, if

- $C_{1} \sqsubseteq D$ and $C_{2} \sqsubseteq D$ and

■ if there exists D^{\prime} such that $C_{1} \sqsubseteq D^{\prime}$ and $C_{2} \sqsubseteq D^{\prime}$, then $D \sqsubseteq D^{\prime}$.

The problem of computing the least common subsumer of two or more concept descriptions is a version of the problem of computing generalizations in DLs.

Some concrete cases: DLs

DLs $\mathcal{E L}$ and $\mathcal{F L E}$:

Generic	Concrete (DL)
\mathcal{O}	Concept descriptions
\mathcal{M}	Contains only the identity mapping
\mathcal{B}	\sqsupseteq
\mathcal{P}	\sqsubseteq
$\equiv \mathcal{P}$	$\equiv: \sqsubseteq$ and \sqsupseteq
Type	Unitary
Algorithm	[Baader et al, 1999]

Example ($\mathcal{E L}$)

$$
\begin{aligned}
C & =P \sqcap \exists r .(\exists r .(P \sqcap Q) \sqcap \exists s . Q) \sqcap \exists r .(P \sqcap \exists s . P) \\
D & =\exists r .(P \sqcap \exists r . P \sqcap \exists s . Q) \\
L C S(C, D) & =\exists r .(\exists r . P \sqcap \exists s . Q) \sqcap \exists r .(P \sqcap \exists s . \top)
\end{aligned}
$$

Some concrete cases: ProxGen

Quantitative generalization modulo fuzzy proximity relations:

Generic	Concrete (ProxGen)
\mathcal{O}	First-order terms
\mathcal{M}	First-order substitutions
\mathcal{B}	$\approx_{\mathcal{R}, \lambda}$ (approximate equality)
\mathcal{P}	$\succeq: \quad s \succeq t$ iff $s \doteq t \sigma$ for some σ.
$\equiv \mathcal{\mathcal { P }}$	Equi-generality: \succeq and \preceq
Type	Finitary
Algorithm	[Kutsia\&Pau, 2022]

Some concrete cases: ProxGen

If we defined \mathcal{P} as $\succsim_{\mathcal{R}, \lambda}$ where $s \succsim_{\mathcal{R}, \lambda} t$ iff $s \approx_{\mathcal{R}, \lambda} t \sigma$ for some σ, then it would not be consistent with \mathcal{B}.

If $\mathcal{R}(a, b)=0.7$ and $\mathcal{R}(b, c)=0.7$, then both a and b are ($\mathcal{R}, 0.7$)-generalizations of a and b, but c is not.

But taking $\mathcal{P}=\succsim_{\mathcal{R}, \lambda}$, we would get that c is also a ($\mathcal{R}, 0.7$)-generalization of a and b, which is wrong.

Some more concrete cases

Clausal generalization:

- based on relative θ-subsumption,
- based on T-implication.

Order-sorted generalization:
■ syntactic,

- modulo equational theories.

Variadic generalization:
■ for commutative (orderless) theories,

- for term-graphs.

Generalization in the description logic $\mathcal{E L}$:
■ an approach that allows variables in the generalization

Some more concrete cases

Nominal generalization:

- allowing finitely many atoms
- using atom variables

■...
Higher-order generalization:
■ simple types, modulo $\alpha \beta \eta$ and equational theories,

- polymorphic lambda-calculus ($\lambda 2$),
- second order variadic terms,

■...

Applications

Typical applications fall into one of the following areas:

- learning and reasoning,
- synthesis and exploration,

■ analysis and repair.

Future directions

- Studying the influence of the signature of equational theories on the generalization type
- Investigating methods of combining generalization algorithms over disjoint equational theories
- Characterization of equational theories exhibiting similar behavior and properties for generalization problems

Future directions

- Studying the influence of the signature of equational theories on the generalization type
- Investigating methods of combining generalization algorithms over disjoint equational theories
- Characterization of equational theories exhibiting similar behavior and properties for generalization problems
- Studying generalization in more expressive theories (higher-order, quantitative, ...)

Future directions

- Studying the influence of the signature of equational theories on the generalization type
■ Investigating methods of combining generalization algorithms over disjoint equational theories
- Characterization of equational theories exhibiting similar behavior and properties for generalization problems
- Studying generalization in more expressive theories (higher-order, quantitative, ...)
- Studying the influence of the preference relation choice on the type and solution set of generalization problems

Future directions

- Studying the influence of the signature of equational theories on the generalization type
- Investigating methods of combining generalization algorithms over disjoint equational theories
■ Characterization of equational theories exhibiting similar behavior and properties for generalization problems
■ Studying generalization in more expressive theories (higher-order, quantitative, ...)
- Studying the influence of the preference relation choice on the type and solution set of generalization problems
- Combination with other kind of generalization and abstraction techniques + new applications

Reference

David Cerna and Temur Kutsia.
Anti-unification and Generalization: a Survey.
In: E. Elkind, editor. Proceedings of IJCAI 2023-
32nd International Joint Conference on Artificial Intelligence. ijcai.org, 2023. 6563-6573

