
Formalising Nominal AC-Matching

XX Seminário Informal (, mas Formal!) 2023

Gabriel Ferreira Silva (Universidade de Braśılia - UnB)
Advisor: Mauricio Ayala-Rincón (Universidade de Braśılia - UnB)

Co-Advisor: Maribel Fernández (King’s College London)

https://gabriel951.github.io/

1 / 117

https://gabriel951.github.io/

Joint Work With

Figure:
Mauricio
Ayala-Rincón

Figure:
Maribel
Fernández

Figure:
Daniele
Nantes

Figure: Temur
Kutsia

2 / 117

Outline

1. Introduction

2. First Order AC-Unification
Example of the AC Step for AC-Unification

3. The Nominal Setting

4. Adapting AC-Unification to the Nominal Setting

5. Nominal AC-Matching

6. More Details About Adapting to Nominal AC-Unification

7. Generating all Solutions to πX ≈? X

3 / 117

Unification

Unification is about “finding a way” to make two terms equal:

▶ f (a,X) and f (Y , b) can be made equal by “sending” X to b
and Y to a, as they both become f (a, b).

4 / 117

Unification Modulo AC

AC-unification is unification in the presence of
associative-commutative function symbols.

For instance, if f is an AC function symbol, then:

f (a, f (b, c)) ≈ f (c , f (a, b)).

5 / 117

In this Talk

1. Briefly discuss first-order AC-unification.

2. Explain the nominal setting and describe the obstacles
towards a nominal AC-unification algorithm.

3. Discuss our work in progress to formalise nominal
AC-matching.

6 / 117

Our Work in First Order AC-Unification in a Nutshell

We modified Stickel’s seminal AC-unification algorithm to avoid
mutual recursion and formalised it in the PVS proof assistant. We
proved the adjusted algorithm’s termination, soundness and
completeness [AFSS22].

7 / 117

Main Related Work

8 / 117

The AC Step for AC-Unification

We explain via an example the AC Step for AC-unification.

How do we generate a complete set of unifiers for:

f (X ,X ,Y , a, b, c) ≈? f (b, b, b, c ,Z).

9 / 117

Eliminate Common Arguments

Eliminate common arguments in the terms we are trying to unify.

Now we must unify f (X ,X ,Y , a) with f (b, b,Z).

10 / 117

Introducing a Linear Equation on N

According to the number of times each argument appear in the
terms, transform the unification problem into a linear equation on
N.

After this step, our equation is:

2X1 + X2 + X3 = 2Y1 + Y2,

where variable X1 corresponds to argument X , variable X2

corresponds to argument Y and so on.

11 / 117

Basis of Solutions

Generate a basis of solutions to the linear equation.

Table: Solutions for the Equation 2X1 + X2 + X3 = 2Y1 + Y2

X1 X2 X3 Y1 Y2 2X1 + X2 + X3 2Y1 + Y2

0 0 1 0 1 1 1
0 1 0 0 1 1 1
0 0 2 1 0 2 2
0 1 1 1 0 2 2
0 2 0 1 0 2 2
1 0 0 0 2 2 2
1 0 0 1 0 2 2

12 / 117

Associating New Variables

Associate new variables with each solution.

Table: Solutions for the Equation 2X1 + X2 + X3 = 2Y1 + Y2

X1 X2 X3 Y1 Y2 2X1 + X2 + X3 2Y1 + Y2 New Variables
0 0 1 0 1 1 1 Z1

0 1 0 0 1 1 1 Z2

0 0 2 1 0 2 2 Z3

0 1 1 1 0 2 2 Z4

0 2 0 1 0 2 2 Z5

1 0 0 0 2 2 2 Z6

1 0 0 1 0 2 2 Z7

13 / 117

Old and New Variables

Observing the previous Table, relate the “old” variables and the
“new” ones.

After this step, we obtain:

X1 ≈? Z6 + Z7

X2 ≈? Z2 + Z4 + 2Z5

X3 ≈? Z1 + 2Z3 + Z4

Y1 ≈? Z3 + Z4 + Z5 + Z7

Y2 ≈? Z1 + Z2 + 2Z6

14 / 117

All the Possible Cases

Decide whether we will include (set to 1) or not (set to 0) every
“new” variable. Observe that every “old” variable must be
different than zero.

In our example, we have 27 = 128 possibilities of
including/excluding the variables Z1, . . . ,Z7, but after observing
that X1,X2,X3,Y1,Y2 cannot be set to zero, we have 69 cases.

15 / 117

Dropping Impossible Cases

Drop the cases where the variables that in fact represent constants
or subterms headed by a different AC function symbol are assigned
to more than one of the “new” variables.

For instance, the potential new unification problem

{X1 ≈? Z6,X2 ≈? Z4,X3 ≈? f (Z1,Z4),

Y1 ≈? Z4,Y2 ≈? f (Z1,Z6,Z6)}

should be discarded as the variable X3, which represents the
constant a, cannot unify with f (Z1,Z4).

16 / 117

Dropping More Cases and Proceeding

Replace “old” variables by the original terms they substituted and
proceed with the unification.

Some new unification problems may be unsolvable and will be
discarded later. For instance:

{X ≈? Z6,Y ≈? Z4, a ≈? Z4, b ≈? Z4, Z ≈? f (Z6,Z6)}

17 / 117

Solutions of f (X ,X ,Y , a, b, c) ≈? f (b, b, b, c ,Z)

In our example, the solutions will be:
σ1 = {Y → f (b, b),Z → f (a,X ,X)}

σ2 = {Y → f (Z2, b, b),Z → f (a,Z2,X ,X)}
σ3 = {X → b,Z → f (a,Y)}

σ4 = {X → f (Z6, b),Z → f (a,Y ,Z6,Z6)}

18 / 117

Termination, Soundness and Completeness

We have proved termination, soundness and completeness:

▶ Termination - Hard

▶ Soundness - Easy

▶ Completeness - Hard

19 / 117

Amount of Theorems and TCCs Proved

Table: Number of theorems and TCCs in each file.

File Theorems TCCs Total

unification alg.pvs 10 19 29

termination alg.pvs 80 35 115

rename input.pvs 21 23 44

apply ac step.pvs 29 12 41

aux unification.pvs 204 58 262

diophantine.pvs 73 44 117

unification.pvs 86 14 100

substitution.pvs 144 22 166

equality.pvs 67 18 85

terms.pvs 131 48 179

list.pvs 256 110 366

Total 1101 403 1504

20 / 117

Systems with Bindings

Systems with bindings frequently appear in mathematics and
computer science, but are not captured adequately in first-order
syntax.

For instance, the formulas ∃x : x ≥ 0 and ∃y : y ≥ 0 are not
syntactically equal, but should be considered equivalent in a
system with binding.

21 / 117

Nominal

The nominal setting extends first-order syntax, replacing the
concept of syntactical equality by α-equivalence, which let us
represent smoothly those systems.

Profiting from the nominal paradigm implies adapting basic
notions (substitution, rewriting, equality) to it.

22 / 117

Atoms and Variables

Consider a set of variables X = {X ,Y ,Z , . . .} and a set of atoms
A = {a, b, c , . . .}.

23 / 117

Nominal Terms

Nominal terms are inductively generated according to the grammar:

t, s ::= a | π · X | [a]t | f (t1, . . . , tn)

where π is a permutation that exchanges a finite number of atoms.

24 / 117

Freshness predicate

a#t means that if a occurs in t then it does so under an
abstractor [a].

A context is a set of constraints of the form a#X . Contexts are
denoted as ∆, ∇ or Γ.

25 / 117

Adapting to Nominal

We believe it won’t be too hard to adapt the proofs of soundness
and completeness to nominal AC-unification.

26 / 117

Fixpoint Equations π · X ≈? X

Nominal Unification - π ·X ≈? X is solved by adding dom(π)#X
to our context.

Nominal C-Unification - There are infinite solutions to
π · X ≈? X , and there is an enumeration procedure to do it (see
[ARCSFNS17]). In the algorithm for nominal C-unification,
equations such as π · X ≈? X are part of the output.

Nominal AC-Unification - Work in progress, similar to nominal
C-unification (more details in Appendix).

27 / 117

Termination

Termination will be harder. Equations such as

f (X ,W) ≈? f (π · X , π · Y)

give us a loop.

28 / 117

The Loop

After solving the corresponding Diophantine equation, we generate
7 branches. One of them is:

{X ≈? Y1+X1,W ≈? Z1+W1, π ·X ≈? W1+X1, π ·Y ≈? Z1+Y1}

and after we instantiate the variables that we can we get:

P1 = {f (π · Y1, π · X1) ≈? f (W1,X1)},
σ = {X 7→ f (Y1,X1), W 7→ f (Z1,W1),Y 7→ f (π−1 · Z1, π

−1 · Y1)}

29 / 117

The Loop

The problem before and after are respectively:

P = {f (X ,W) ≈? f (π · X , π · Y)}
P1 = {f (X1,W1) ≈? f (π · X1, π · Y1)}

30 / 117

Focus on Nominal AC-Matching

Due to time constraints, we switched the focus from nominal
AC-unification to nominal AC-matching.

Advantages:

▶ Important problem, with applications such as nominal
rewriting.

▶ Should be easier than nominal AC-unification.

31 / 117

Matching and Unification

Matching can be seen as an easier version of unification, where the
terms in the right-hand side do not contain variables that can be
instantiated.

32 / 117

From unification to matching via X I

Given an algorithm of unification, one can adapt it by adding as a
parameter a set of protected variables X , which cannot be
instantiated.

The adapted algorithm can then be used for:

▶ Unification - By putting X = ∅.
▶ Matching - By putting X as the set of variables in the

right-hand side.

▶ α-Equivalence - By putting X as the set of variables that
appear in the problem.

33 / 117

From unification to matching via X II

OBS: This approach was taken when adapting a nominal
C-unification algorithm to handle matching (see [AdCSF+21]).

This approach could be used in future works to reason about
nominal AC-unification, and it takes advantage from the fact that
we already have a first-order AC-unification algorithm formalised.

34 / 117

Nominal AC-Matching

Things to Worry About:

▶ Does the matching problem “stays” a matching problem? -
Done

▶ Termination - Almost Done

▶ Soundness and Completeness - TO DO

35 / 117

Does the matching problem “stays” a matching problem? I

Initially, in our matching problem, all the variables on the
right-hand side are protected.

But when we start introducing the new variables Zi s, can we get a
problem where an unprotected variable appears in the right-hand
side?

36 / 117

Does the matching problem “stays” a matching problem?
II

Idea: Prove that every new variable Zi introduced in the

AC Step will be instantiated.

37 / 117

Termination

Given a matching problem P, the idea is to use a lexicographic
measure like

(Vars(P), size(P))

▶ Vars(P) is the set of variables in the problem P.

▶ size(P) is the multiset of the size of each equation
ti ≈? si ∈ P.

38 / 117

High Level View of a Proof Sketch of Termination

Let f (s1, . . . , sm) ≈? f (t1, . . . , tn) be the equation to which we
apply the AC-step.

If after AC-step we do not instantiate any variable, then the
equations after the AC-Step will be of the form ti ≈? sj and hence
the size component of the lexicographic measure will decrease.

If we instantiate a variable, then the Vars component of the
lexicographic measure will decrease.

39 / 117

Soundness and Completeness of Nominal AC-Matching
and AC-Unification

We expect the proofs of soundness and completeness of nominal
AC-matching to be a straightforward adaptation from their
first-order counterparts.

The proofs of soundness and completeness could be reused for
nominal AC-unification.

40 / 117

Thank You

Thank you! Any comments/suggestions/doubts? 1

1to see more of my work, visit https://gabriel951.github.io/.

41 / 117

https://gabriel951.github.io/

References I

Mauricio Ayala-Rincón, Washington de Carvalho Segundo,
Maribel Fernández, Gabriel Ferreira Silva, and Daniele
Nantes-Sobrinho, Formalising nominal C-unification generalised
with protected variables, Math. Struct. Comput. Sci. (2021).

Mauricio Ayala-Rincón, Maribel Fernández, Gabriel Ferreira
Silva, and Daniele Nantes Sobrinho, A Certified Algorithm for
AC-Unification, Formal Structures for Computation and
Deduction, FSCD 2022 (2022).

M. Ayala-Rincón, W. Carvalho-Segundo, M. Fernández, and
D. Nantes-Sobrinho, On Solving Nominal Fixpoint Equations.

42 / 117

The loop in f (X ,W) ≈? f (π · X , π · Y)

We found a loop while solving f (X ,W) ≈? f (π · X , π · Y).

43 / 117

Table of Solutions

The table with the solutions of the Diophantine equations is shown
below. The name of the new variables was chosen to make clearer
the loop we will fall into.

The Diophantine equation associated2 is U1 + U2 = V1 + V2 and
the table of solutions is:

Table: Solutions for the Equation U1 + U2 = V1 + V2

U1 U2 V1 V2 U1 + U2 V1 + V2 New Variables

0 1 0 1 1 1 Z1

0 1 1 0 1 1 W1

1 0 0 1 1 1 Y1

1 0 1 0 1 1 X1

2variable U1 is associated with argument X , variable U2 is associated with
argument W , variable V1 is associated with argument π · X and variable V2 is
associated with argument π · Y .

44 / 117

After AC Step

{X ≈? X1,W ≈? Z1, π · X ≈? X1, π · Y ≈? Z1}
{X ≈? Y1,W ≈? W1, π · X ≈? W1, π · Y ≈? Y1}
{X ≈? Y1 + X1,W ≈? W1, π · X ≈? W1 + X1, π · Y ≈? Y1}
{X ≈? Y1 + X1,W ≈? Z1, π · X ≈? X1, π · Y ≈? Z1 + Y1}
{X ≈? X1,W ≈? Z1 +W1, π · X ≈? W1 + X1, π · Y ≈? Z1}
{X ≈? Y1,W ≈? Z1 +W1, π · X ≈? W1, π · Y ≈? Z1 + Y1}
{X ≈? Y1 + X1,W ≈? Z1 +W1, π · X ≈? W1 + X1, π · Y ≈? Z1 + Y1}

45 / 117

After instantiating the variables

7 branches are generated:

B1− {π · X ≈? X}, σ = {W 7→ π · Y }
B2− σ = {W 7→ π2 · Y ,X 7→ π · Y }
B3− {f (π2 · Y , π · X1) ≈? f (W ,X1)}, σ = {X 7→ f (π · Y ,X1)}
B4− No solution

B5− No solution

B6− σ = {W 7→ f (Z1, π · X),Y 7→ f (π−1 · Z1, π
−1 · X)}

B7− {f (π · Y1, π · X1) ≈? f (W1,X1)},
σ = {X 7→ f (Y1,X1), W 7→ f (Z1,W1),Y 7→ f (π−1 · Z1, π

−1 · Y1)}

46 / 117

The Loop

Focusing on Branch7, notice that the problem before the AC Step
and the problem after the AC Step and instantiating the variables
are:

P = {f (X ,W) ≈? f (π · X , π · Y)}
P1 = {f (X1,W1) ≈? f (π · X1, π · Y1)}

47 / 117

Is f (X ,W) ≈? f (πX , πY) finitary?

Is there a finite set of triples ⟨∇, σ,FP⟩ that solve
f (X ,W) ≈? f (πX , πY)?

As will be shown in the next slides, the answer is yes.

48 / 117

Branch 3 is also a loop

Branch 3 also give us a loop and this can be seen more clearly if
we write the result of taking branch 3 as:

P1 = {f (X1,W1) ≈? f (πX1, πY1)},
σB3 = {X0 7→ f (Y1,X1),W0 7→ W1,Y0 7→ π−1Y1}

OBS: We are going to consider X = X0,W = W0 and Y = Y0.

49 / 117

Output of the algorithm and solutions

Let k be the order of π. I will show that it’s enough for our
algorithm to take branches 3 and 7 at most 2k times.

The output of the algorithm will be triples ⟨∅, σ,FP⟩ such that σ is
of the form σByσBxn . . . σBx1 , where xi is either 3 or 7 and y is
different than 3 or 7.

A solution ⟨∆, δ⟩ to f (X ,W) ≈? f (πX , πY) is such that δ is of
the form δ′δByδBxm . . . δBx1 , where xi is either 3 or 7 and y is
different than 3 or 7.

50 / 117

σB3 and σB7

At the i-th iteration, the substitutions σB3 and σB7 differ only by
the fact that σB7 introduces variables Zi+1:

σB3 = {Xi 7→ f (Yi+1,Xi+1),Wi 7→ Wi+1,Yi 7→ π−1Yi+1}
σB7 = {Xi 7→ f (Yi+1,Xi+1),Wi 7→ f (Zi+1,Wi+1),

Yi 7→ f (π−1Zi+1, π
−1Yi+1)}

51 / 117

Notation

[π1, . . . , πn]X is syntactic sugar for π1X , . . . , πnX . Hence, the term
denoted as f ([π1, . . . , πn]Y ,Z) is the term f (π1Y , . . . , πnY ,Z).

52 / 117

Examples of the optional argument notation

If a term is of the form f (Z o ,X ,Y) then the term is either
f (X ,Y) or f (Z ,X ,Y).

If a term is of the form f (Z o ,X o ,Y) then the term is one of:

▶ Y

▶ f (Z ,Y)

▶ f (X ,Y)

▶ f (Z ,X ,Y)

Finally, if a term is of the form f ([Id , π, π2]Z o ,X ,Y) then either
ALL the arguments Id Z , πZ , π2Z are in the term or NONE of
them are. Hence, the term is either f ([Id , π, π2]Z ,X ,Y) or
f (X ,Y).

53 / 117

σBxi

The optional argument notation let us write σBxi as

{Xi 7→ f (Yi+1,Xi+1),Wi 7→ f (Z o
i+1,Wi+1),Yi 7→ f (π−1Z o

i+1, π
−1Yi+1)}

whether xi is equal to 3 or 7.

54 / 117

σBxn . . . σBx1 and δBxm . . . δBx1 I

Let’s calculate σBxn . . . σBx1 applied to X0,W0 and Y0.

55 / 117

σBxn . . . σBx1 and δBxm . . . δBx1 II

X0 7→ f (Y1,X1)

7→ f (π−1Z o
2 , [π

−1, Id]Y2,X2)

7→ f (π−1Z o
2 , [π

−2, π−1]Z o
3 , [π

−2, π−1, Id]Y3,X3)

...

7→ f (π−1Z o
2 , . . . , [π

−(n−1), . . . , π−1]Z o
n , [π

−(n−1), . . . , Id]Yn,Xn)

56 / 117

σBxn . . . σBx1 and δBxm . . . δBx1 III

W0 7→ f (Z o
1 ,W1)

7→ f (Z o
1 ,Z

o
2 ,W2)

...

7→ f (Z o
1 ,Z

o
2 , . . . ,Z

o
n ,Wn)

57 / 117

σBxn . . . σBx1 and δBxm . . . δBx1 IV

Y0 7→ f (π−1Z o
1 , π

−1Y1)

7→ f (π−1Z o
1 , π

−2Z o
2 , π

−2Y2)

...

7→ f (π−1Z o
1 , π

−2Z o
2 , . . . , π

−nZ o
n , π

−nYn)

58 / 117

σBxn . . . σBx1 and δBxm . . . δBx1 V

The computation for δBxm . . . δBx1 is analogous, replacing n by m.

59 / 117

Is there a substitution more general than δBxm . . . δBx1?

Pick n such that k ≤ n < 2k and n ≡ m (mod k). Consider the
substitution σ∗ = σBxn . . . σBx1 , where

σBxi =

σB7, if i ≤ k and

∃j : j ≡ i (mod k) and Zj ∈ Args(δBxm . . . δBx1W0)

σB3, otherwise

60 / 117

σ∗ ≤ δBxm . . . δBx1 I

We can find λ such that δBxm . . . δBx1 = λσ∗. Define λ by:

▶ If i ≤ k and ∃j : j ≡ i (mod k) then λZi 7→ f (Zi ,Zj1 , . . . ,Zjl),
where j1, . . . , jl are all the indices that are equal to i modulo k
such that Zj1 , . . . ,Zjl appear in Args(δBxm . . . δBx1W0)

▶ Otherwise, λZi 7→ Zi

61 / 117

σ∗ ≤ δBxm . . . δBx1 II

▶ λYn 7→ Ym

▶ λWn 7→ Wm

62 / 117

σ∗ ≤ δBxm . . . δBx1 III

▶ Given a variable Zj , let ij be the index such that ij ≤ k and
ij ≡ j (mod k). Then,

λXn 7→ f ([π−ik+1 , . . . , π−k]Z o
k+1, . . . , [π

−in , . . . , π−(n−1)]Z o
n ,

[π−n, . . . , π−(m−1)]Ym,Xm)

63 / 117

A set of triples is enough I

We only need to output the set of triples generated after taking
branches 3 or 7 at most 2k times and then taking another branch.

A triple output by the algorithm in this case is of the form
⟨∅, σByσBxn . . . σBx1 ,FPBy ⟩, where xi is either 3 or 7 and y is
different than 3 or 7 and n ≤ 2k.

64 / 117

A set of triples is enough II

If δ is of the form δ′δByi δBxm . . . δBx1 , then the triple output by the
algorithm that we are looking for would be (∅, σByiσ∗,FPByi),
where FPByi would be the fixpoint equation of branch yi (it may
be empty).

65 / 117

Lesson Learned

We don’t need to include an equation like f (X ,W) ≈? f (πX , πY)
in the output of our algorithm. A set of triples ⟨∇, σ,FP⟩ is
enough!

Is this always the case? If we have f (t1, . . . , tm) ≈? f (s1, . . . , sn)
and there exists π1X ∈ Args(t) and π2X ∈ Args(s), is a set of
triples always enough? Can we generalise the argument we used for
f (X ,W) ≈? f (πX , πY)?

66 / 117

Difficulties in Generalising our Reasoning

▶ We may not get exactly a loop after applying the AC Step
and after we instantiate the variables. For instance, adapting
Stickel’s example we may have :

P0 = {f (2X1,X2,X3) ≈? f (2πX2,Y1)}
P1 = {f (πZ2, πZ4, 2πZ5) ≈? f (Z3,Z4,Z5,Z7)}

▶ There may be more than one “doubly” suspended variable.

67 / 117

Generating all Solutions to πX ≈? X

Can we generate all solutions to πX ≈? X?

68 / 117

Changing our View

Solving πX ≈? X is equivalent to finding all the terms t such that
there is a context Γ such that Γ ⊢ πt ≈? t.

69 / 117

A trivial procedure

Generate every term t and then find (if possible) the minimal
context ∇ such that ∇ ⊢ πt ≈? t.

70 / 117

Enumerate all Solutions

Let’s try to find a more interesting procedure. What should we aim
for when solving fixpoint equations?

Two step plan:

1. An enumeration procedure solveFixpoint that enumerates
all solutions

2. From the enumeration procedure, put bounds in the number
of recursive calls to obtain a terminating algorithm.

71 / 117

Enumeration Procedure I

The enumeration procedure will be given as a set of
non-deterministic rules, that operate on triples of the form
(Γ, σ,FP), where FP is a set of fixpoint equations we have to solve
and of freshness problems we have to solve.

The initial call will be with the triple (∅, Id , {πX ≈? X}).

72 / 117

Enumeration Procedure II

Rules of the enumeration procedure:

▶ (Var)

▶ (Func)

▶ (Abs a) and (Abs b)

▶ (AC Func)

▶ Old rules for solving freshness problems

▶ (Term)

73 / 117

Enumeration Procedure III

The freshness problems are introduced by rule (Abs b).

As we go applying the enumeration rules, no variable X appear in
more than one fixpoint equation.

74 / 117

Variable Rule

(Var) rule:

(Γ, σ, {πX ≈? X} ∪ FP)
Var
==⇒ (Γ ∪ dom(π)#X , σ,FP)

75 / 117

Syntactic Function Rule

Let g be an arbitrary syntactic function symbol of arity m and let
σ′ = {X 7→ g(X1, . . . ,Xm)}, where X1, . . . ,Xm are new variables.

The (Func) rule:

(Γ, σ, {πX ≈? X} ∪ FP)
Func
===⇒

(Γ, σ′σ, {πX1 ≈? X1, . . . , πXm ≈? Xm} ∪ σ′FP)

76 / 117

Abstraction Rule - First case

Let a ̸∈ dom(π). Let σ′ = {X 7→ [a]X1}, where X1 is a new
variable.
The (Abs a) rule:

(Γ, σ, {πX ≈? X} ∪ FP)
Abs a
====⇒ (Γ, σ′σ, {πX1 ≈? X1} ∪ σ′FP)

77 / 117

Abstraction Rule - Second case

Let a ∈ dom(π). Let π′ = (a πa) π and let σ′ = {X 7→ [a]X1},
where X1 is a new variable.
The (Abs b) rule:

(Γ, σ, {πX ≈? X} ∪ FP)
Abs b
====⇒

(Γ, σ′σ, {π′X1 ≈? X1} ∪ σ′FP ∪ {a#?πX1})

78 / 117

AC Function rule I

Let m be an arbitrary number and let ψ be an arbitrary
permutation from {1, . . . ,m} to {1, . . . ,m}, such that:

ψ = (x1x2 . . . xm1)(xm1+1xm1+2 . . . xm2) . . . (xmk−1+1xmk−1+2 . . . xmk
)

and let l1, . . . , lk be the length of the cycles.

Let σ′ be:

σ′ = X 7→ f (X1, π
1X1 . . . , π

l1−1X1︸ ︷︷ ︸, . . . ,Xk , π
1Xk , . . . , π

lk−1Xk︸ ︷︷ ︸)

79 / 117

AC Function rule II

The (AC Func) rule is:

(Γ, σ, {πX ≈? X} ∪ FP)
ACFunc
=====⇒

(Γ, σ′σ, {πl1X1 ≈? X1, ..., π
lkXk ≈? Xk} ∪ σ′FP)

80 / 117

Termination rule

(Term) rule:

(Γ, σ, ∅) Term
===⇒ (Γ, σ)

81 / 117

Solution when t is an Atom

A solution is when t = σX is an atom ai ̸∈ dom(π):

⟨∅,X 7→ ai ⟩

Notice that this solution, however, is less general than
⟨dom(π)#X , Id⟩ if we consider the substitution σ′ = X 7→ ai .
Therefore, there is no need for a rule for atoms.

82 / 117

Example 1 I

Let ∗ and + be AC-function symbols and π = (123456). Consider
the solution:

⟨∅,X 7→ ∗(+(1, 4),+(2, 5),+(3, 6))⟩

How can we inductively generate this solution?

83 / 117

Example 1 II

1. In the first rule application we may consider m = 3 and the
permutation ψ = (123). Then, we would instantiate
X 7→ ∗(X1, π

1X1, π
2X1) and proceed to solve π3X1 ≈? X1.

2. In the second rule application we may consider m = 2 and the
permutation ψ = (12). Our algorithm would instantiate
X1 7→ +(X2, π

3X2) and proceed to solve (π3)2X2 ≈? X2.

84 / 117

Example 1 III

3. In the third rule application, notice that (π3)2 = π6 = Id .
The solution to π6X2 ≈? X2 would be ⟨∅, Id⟩.

4. Plugging this value back, we would generate the solution

⟨∅,X 7→ ∗(+(X2, π
3X2),+(πX2, π

4X2),+(π2X2, π
5X2))⟩

85 / 117

Example 1 IV

The particular solution:

⟨∅,X 7→ ∗(+(1, 4),+(2, 5),+(3, 6))⟩

can be obtained from:

⟨∅,X 7→ ∗(+(X2, π
3X2),+(πX2, π

4X2),+(π2X2, π
5X2))⟩

by instantiating X2 7→ 1.

86 / 117

Example 2 I

Let ∗ and + be AC-function symbols and π = (123456). Consider
the solution:

⟨∅,X 7→ ∗(+(1, 3, 5),+(2, 4, 6))⟩

How can we inductively generate this solution?

87 / 117

Example 2 II

1. In the first rule application we may consider m = 2 and the
permutation ψ = (12). Then, we would instantiate
X 7→ ∗(X1, πX1) and proceed to solve π2X1 ≈? X1.

2. In the second rule application we may consider m = 3 and the
permutation ψ = (123). Our algorithm would instantiate
X1 7→ +(X2, π

2X2, π
4X2) and proceed to solve (π2)3X2 ≈? X2.

88 / 117

Example 2 III

3. In the third rule application, notice that (π2)3 = π6 = Id .
The solution to π6X2 ≈? X2 would be ⟨∅, Id⟩.

4. Plugging this value back, we would generate the solution

⟨∅,X 7→ ∗(+(X2, π
2X2, π

4X2),+(πX2, π
3X2, π

5X2)⟩

89 / 117

Example 2 IV

The particular solution:

⟨∅,X 7→ ∗(+(1, 3, 5),+(2, 4, 6))⟩

can be obtained from

⟨∅,X 7→ ∗(+(X2, π
2X2, π

4X2),+(πX2, π
3X2, π

5X2)⟩

by instantiating X2 7→ 1.

90 / 117

A Modified Example 2 I

What happens if we change the previous example to consider
π = (123456)(7891011)?

91 / 117

A Modified Example 2 II

In the first two steps the algorithm would proceed as in the
previous example.

In the third, we would have the equation π6X2 ≈? X2, where
π6 = (7891011) and we would solve it by

⟨{7, 8, 9, 10, 11}#X2, Id⟩

92 / 117

A Modified Example 2 III

Plugging this value back, we would get the solution:

⟨{7, 8, 9, 10, 11}#X2,X 7→ ∗(+(X2, π
2X2, π

4X2),+(πX2, π
3X2, π

5X2)⟩

which is more general than

⟨∅,X 7→ ∗(+(1, 3, 5),+(2, 4, 6))⟩

by taking the instantiation X2 7→ 1

93 / 117

Example 3 I

Let ∗ and + be AC-function symbols and π = (123456)(78).
Consider the solution:

⟨∅,X 7→ ∗(+(1, 3, 5, 7),+(2, 4, 6, 8))

How can we inductively generate this solution?

94 / 117

Example 3 II

1. In the first rule application we may consider m = 2 and the
permutation ψ = (12). Then, we would instantiate
X 7→ ∗(X1, πX1) and proceed to solve π2X1 ≈? X1.

2. In the second rule application we may consider m = 4 and the
permutation ψ = (123)(4). Then, we would instantiate
X1 7→ +(X2, π

2X2, π
4X2,X3) and proceed to solve

(π2)3X2 ≈? X2 and (π2)1X3 ≈? X3.

95 / 117

Example 3 III

3. Since π6 = Id , the solution to (π2)3X2 ≈? X2 is ⟨∅, Id⟩.

4. One base solution to π2X3 ≈? X3 is ⟨{1, 2, 3, 4, 5, 6}#X3, Id⟩.

96 / 117

Example 3 IV

Plugging back the solutions we get

⟨{1, 2, 3, 4, 5, 6}#X3,

X 7→ ∗(+(X2, π
2X2, π

4X2,X3),+(πX2, π
3X2, π

5X2, πX3))⟩

which is actually more general than:

⟨∅,X 7→ ∗(+(1, 3, 5, 7),+(2, 4, 6, 8))

since we can take the instantiation:

X2 7→ 1,X3 7→ 7

97 / 117

What happens with more than one fixed-point equation

If P = {πX ≈? X , ρX ≈? X}, what do we do?

Idea: Follow the approach described in the FROCOS paper “On
Solving Nominal Fixpoint Equations”.

98 / 117

Frocos Approach - Notation

Let {πiX ≈? X} be the unification problem we have to solve.

99 / 117

Frocos - General AC-Matcher

Definition 7 of the Frocos paper:

Definition 1
Let t1, . . . , tk be terms. We say that δ is a most general
AC-matcher of the ti s if it is a most general AC-unifier of the
problem {Z ≈? ti}i=1,...,k , where Z is a new variable.

100 / 117

Frocos - Generated Solutions

1. For each i , let ⟨Γi ,X 7→ ti ⟩ be an arbitrary solution (if exists
any) to πiX ≈? X .

2. Find (if exists) the most general AC-matcher δ of the terms
ti . Consider X the new variable.

3. Given every

a#Y ∈
⋃

1≤i≤k

Γi ,

we see if there is some Γ such that Γ ⊢ a#δY .

4. The solution is: ⟨Γ, δ⟩.

PS: This is Definition 8 of the Frocos paper.

101 / 117

Alternative Approach - Adapting the Inductive Generation
of Solutions

Let’s say we want to solve {πX ≈? X , ρX ≈? X}. One possibility
is to adapt our inductive thinking to handle more than one fixpoint
equation. Let’s say that we have a solution (Γ, σ) to both
equations. Let’s denote σX as t.

102 / 117

Alternative Approach - Base Cases

Atoms. The base case for atoms is still less general than the one
for variables, so we would drop that.

Variables. We would output the solution

⟨dom(π)#X ∪ dom(ρ)#X , Id⟩

103 / 117

Alternative Approach - Inductive Cases

Syntactic Function. If t = g(t1, . . . , tm) we would try to find the
solutions to {πXi ≈? Xi , ρXi ≈? Xi} for every i and then assemble
them together as described for the syntactic function case where
we only had one fixpoint equation.

Abstraction. Similar to the case where we only had one fixpoint
equation.

104 / 117

Alternative Approach - AC Case I

If t = f (t1, . . . , tm) we have:

f (πt1, . . . , πtm) ≈? f (t1, . . . , tm) ≈? f (ρt1, . . . , ρtm)

105 / 117

Alternative Approach - AC Case II

This case is more problematic because it is as if the equation
πX ≈? X “forces” the instantiation:

X 7→ f (X1, πX1, . . . , π
l1−1X1︸ ︷︷ ︸, . . . ,Xk , πXk , . . . , π

lk−1Xk︸ ︷︷ ︸)
while the equation ρX ≈? X “forces” the instantiation:

X 7→ f (X ′
1, ρX

′
1, . . . , ρ

l ′1−1X ′
1︸ ︷︷ ︸, . . . ,X ′

k , ρX
′
k , . . . , ρ

l ′k−1X ′
k︸ ︷︷ ︸)

106 / 117

Relating π and ρ in the AC case

Idea: A term tk is associated with the moderated variable πi1Xi2

and also with the moderated variable ρj1X ′
j2
and hence we will

have the equation πi1Xi2 ≈? ρj1X ′
j2
.

107 / 117

Sketch of an Example I

Let σX = t = f (t1, . . . , t6).
Consider that the permutation associated with π is
ψ1 = (123) (456), i.e. the substitution associated is:

X 7→ f (X1, πX1, π
2X1,X2, πX2, π

2X2).

Consider that the permutation associated with ρ is
ψ2 = (12) (3456), i.e. the substitution associated is:

X 7→ f (X ′
1, πX

′
1,X

′
2, πX

′
2, π

2X ′
2, π

3X ′
2)

108 / 117

Sketch of an Example II

The equations we have to solve are:

π3X1 ≈? X1, π
3X2 ≈? X2

ρ2X ′
1 ≈? X ′

1, ρ
4X ′

2 ≈? X ′
2

X ′
1 ≈? X1, X

′
2 ≈? π2X1, πX

′
2 ≈? X2

109 / 117

Sketch of an Example III

Of course we start by instantiating the last ones:

X ′
1 7→ X1

X ′
2 7→ π2X1

X2 7→ π3X1

110 / 117

Sketch of an Example IV

And in the next iteration, the equations we will work on are:

π3X1 ≈? X1, ρ
2X1 ≈? X1, π

−2ρ4π2X1 ≈? X1

and we have:

X 7→ f (X1, πX1, π
2X1, π

3X1, π
4X1, π

5X1)

111 / 117

What about fixpoint equations with more than one
variable?

If we have the equations π1X ≈? X and π2Y ≈? Y we can solve
them separately obtaining solutions (Γ1, {X 7→ t}) and
(Γ2, {Y 7→ s}) for the first and the second and then combine them
obtaining the solution:

⟨Γ1 ∪ Γ2, {X 7→ t, Y 7→ s}⟩

112 / 117

Nice Triple

As we go applying the rules, the triple (Γ, σ,FP) maintain certain
relations, which will be used in the proof of correctness and
completeness. We collect those in the following definition:

Definition 2
We say that (Γ, σ,FP) is a nice triple if the following conditions
are satisfied:

1. Vars(FP) ∩ dom(σ) = ∅.
2. TO DO: I will add as we go advancing in the proofs of

correctness and completeness.

113 / 117

Correctness

Theorem 3
Suppose that (Γ, σ,FP) is a nice triple. If (∇, δ) is obtained from
(Γ, σ,FP) after finitely many applications of the rules in
solveFixpoint, then:

▶ ∇ ⊢ δ(πiXi) ≈ δXi for every {πiXi ≈? Xi} ∈ FP.

▶ ∇ ⊢ a#δt for every a#?t ∈ FP.

Corollary 4

If (∇, δ) ∈ solveFixpoint(∅, Id , {πX ≈? X}) then
∇ ⊢ δ(πX) ≈? δX .

114 / 117

Proof of Correctness

▶ It’s in a separate file.

▶ Depends on the correctness of each rule. I proved for the all
the cases of rules.

115 / 117

Completeness

TO DO

116 / 117

Bounds in the Enumeration Procedure

We’ll put a bound in the enumeration procedure, to obtain a
terminating algorithm. We will bind by the depth of nd and also by
the arity of the flattened form of AC-functions m.

117 / 117

	Introduction
	First Order AC-Unification
	Example of the AC Step for AC-Unification

	The Nominal Setting
	Adapting AC-Unification to the Nominal Setting
	Nominal AC-Matching
	Appendix
	More Details About Adapting to Nominal AC-Unification
	Generating all Solutions to X ? X

