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Unification

Unification is about “finding a way” to make two terms equal:

▶ f (a,X ) and f (Y , b) can be made equal by “sending” X to b
and Y to a, as they both become f (a, b).
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Unification Modulo AC

AC-unification is unification in the presence of
associative-commutative function symbols.

For instance, if f is an AC function symbol, then:

f (a, f (b, c)) ≈ f (c , f (a, b)).
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In this Talk

1. Briefly discuss first-order AC-unification.

2. Explain the nominal setting and describe the obstacles
towards a nominal AC-unification algorithm.

3. Discuss our work in progress to formalise nominal
AC-matching.
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Our Work in First Order AC-Unification in a Nutshell

We modified Stickel’s seminal AC-unification algorithm to avoid
mutual recursion and formalised it in the PVS proof assistant. We
proved the adjusted algorithm’s termination, soundness and
completeness [AFSS22].
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Main Related Work
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The AC Step for AC-Unification

We explain via an example the AC Step for AC-unification.

How do we generate a complete set of unifiers for:

f (X ,X ,Y , a, b, c) ≈? f (b, b, b, c ,Z ).
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Eliminate Common Arguments

Eliminate common arguments in the terms we are trying to unify.

Now we must unify f (X ,X ,Y , a) with f (b, b,Z ).
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Introducing a Linear Equation on N

According to the number of times each argument appear in the
terms, transform the unification problem into a linear equation on
N.

After this step, our equation is:

2X1 + X2 + X3 = 2Y1 + Y2,

where variable X1 corresponds to argument X , variable X2

corresponds to argument Y and so on.
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Basis of Solutions

Generate a basis of solutions to the linear equation.

Table: Solutions for the Equation 2X1 + X2 + X3 = 2Y1 + Y2

X1 X2 X3 Y1 Y2 2X1 + X2 + X3 2Y1 + Y2

0 0 1 0 1 1 1
0 1 0 0 1 1 1
0 0 2 1 0 2 2
0 1 1 1 0 2 2
0 2 0 1 0 2 2
1 0 0 0 2 2 2
1 0 0 1 0 2 2

12 / 117



Associating New Variables

Associate new variables with each solution.

Table: Solutions for the Equation 2X1 + X2 + X3 = 2Y1 + Y2

X1 X2 X3 Y1 Y2 2X1 + X2 + X3 2Y1 + Y2 New Variables
0 0 1 0 1 1 1 Z1

0 1 0 0 1 1 1 Z2

0 0 2 1 0 2 2 Z3

0 1 1 1 0 2 2 Z4

0 2 0 1 0 2 2 Z5

1 0 0 0 2 2 2 Z6

1 0 0 1 0 2 2 Z7
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Old and New Variables

Observing the previous Table, relate the “old” variables and the
“new” ones.

After this step, we obtain:

X1 ≈? Z6 + Z7

X2 ≈? Z2 + Z4 + 2Z5

X3 ≈? Z1 + 2Z3 + Z4

Y1 ≈? Z3 + Z4 + Z5 + Z7

Y2 ≈? Z1 + Z2 + 2Z6
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All the Possible Cases

Decide whether we will include (set to 1) or not (set to 0) every
“new” variable. Observe that every “old” variable must be
different than zero.

In our example, we have 27 = 128 possibilities of
including/excluding the variables Z1, . . . ,Z7, but after observing
that X1,X2,X3,Y1,Y2 cannot be set to zero, we have 69 cases.
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Dropping Impossible Cases

Drop the cases where the variables that in fact represent constants
or subterms headed by a different AC function symbol are assigned
to more than one of the “new” variables.

For instance, the potential new unification problem

{X1 ≈? Z6,X2 ≈? Z4,X3 ≈? f (Z1,Z4),

Y1 ≈? Z4,Y2 ≈? f (Z1,Z6,Z6)}

should be discarded as the variable X3, which represents the
constant a, cannot unify with f (Z1,Z4).
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Dropping More Cases and Proceeding

Replace “old” variables by the original terms they substituted and
proceed with the unification.

Some new unification problems may be unsolvable and will be
discarded later. For instance:

{X ≈? Z6,Y ≈? Z4, a ≈? Z4, b ≈? Z4, Z ≈? f (Z6,Z6)}
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Solutions of f (X ,X ,Y , a, b, c) ≈? f (b, b, b, c ,Z )

In our example, the solutions will be:
σ1 = {Y → f (b, b),Z → f (a,X ,X )}

σ2 = {Y → f (Z2, b, b),Z → f (a,Z2,X ,X )}
σ3 = {X → b,Z → f (a,Y )}

σ4 = {X → f (Z6, b),Z → f (a,Y ,Z6,Z6)}
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Termination, Soundness and Completeness

We have proved termination, soundness and completeness:

▶ Termination - Hard

▶ Soundness - Easy

▶ Completeness - Hard

19 / 117



Amount of Theorems and TCCs Proved

Table: Number of theorems and TCCs in each file.

File Theorems TCCs Total

unification alg.pvs 10 19 29

termination alg.pvs 80 35 115

rename input.pvs 21 23 44

apply ac step.pvs 29 12 41

aux unification.pvs 204 58 262

diophantine.pvs 73 44 117

unification.pvs 86 14 100

substitution.pvs 144 22 166

equality.pvs 67 18 85

terms.pvs 131 48 179

list.pvs 256 110 366

Total 1101 403 1504
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Systems with Bindings

Systems with bindings frequently appear in mathematics and
computer science, but are not captured adequately in first-order
syntax.

For instance, the formulas ∃x : x ≥ 0 and ∃y : y ≥ 0 are not
syntactically equal, but should be considered equivalent in a
system with binding.
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Nominal

The nominal setting extends first-order syntax, replacing the
concept of syntactical equality by α-equivalence, which let us
represent smoothly those systems.

Profiting from the nominal paradigm implies adapting basic
notions (substitution, rewriting, equality) to it.
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Atoms and Variables

Consider a set of variables X = {X ,Y ,Z , . . .} and a set of atoms
A = {a, b, c , . . .}.
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Nominal Terms

Nominal terms are inductively generated according to the grammar:

t, s ::= a | π · X | [a]t | f (t1, . . . , tn)

where π is a permutation that exchanges a finite number of atoms.
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Freshness predicate

a#t means that if a occurs in t then it does so under an
abstractor [a].

A context is a set of constraints of the form a#X . Contexts are
denoted as ∆, ∇ or Γ.
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Adapting to Nominal

We believe it won’t be too hard to adapt the proofs of soundness
and completeness to nominal AC-unification.
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Fixpoint Equations π · X ≈? X

Nominal Unification - π ·X ≈? X is solved by adding dom(π)#X
to our context.

Nominal C-Unification - There are infinite solutions to
π · X ≈? X , and there is an enumeration procedure to do it (see
[ARCSFNS17]). In the algorithm for nominal C-unification,
equations such as π · X ≈? X are part of the output.

Nominal AC-Unification - Work in progress, similar to nominal
C-unification (more details in Appendix).
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Termination

Termination will be harder. Equations such as

f (X ,W ) ≈? f (π · X , π · Y )

give us a loop.
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The Loop

After solving the corresponding Diophantine equation, we generate
7 branches. One of them is:

{X ≈? Y1+X1,W ≈? Z1+W1, π ·X ≈? W1+X1, π ·Y ≈? Z1+Y1}

and after we instantiate the variables that we can we get:

P1 = {f (π · Y1, π · X1) ≈? f (W1,X1)},
σ = {X 7→ f (Y1,X1), W 7→ f (Z1,W1),Y 7→ f (π−1 · Z1, π

−1 · Y1)}
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The Loop

The problem before and after are respectively:

P = {f (X ,W ) ≈? f (π · X , π · Y )}
P1 = {f (X1,W1) ≈? f (π · X1, π · Y1)}
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Focus on Nominal AC-Matching

Due to time constraints, we switched the focus from nominal
AC-unification to nominal AC-matching.

Advantages:

▶ Important problem, with applications such as nominal
rewriting.

▶ Should be easier than nominal AC-unification.
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Matching and Unification

Matching can be seen as an easier version of unification, where the
terms in the right-hand side do not contain variables that can be
instantiated.
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From unification to matching via X I

Given an algorithm of unification, one can adapt it by adding as a
parameter a set of protected variables X , which cannot be
instantiated.

The adapted algorithm can then be used for:

▶ Unification - By putting X = ∅.
▶ Matching - By putting X as the set of variables in the

right-hand side.

▶ α-Equivalence - By putting X as the set of variables that
appear in the problem.
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From unification to matching via X II

OBS: This approach was taken when adapting a nominal
C-unification algorithm to handle matching (see [AdCSF+21]).

This approach could be used in future works to reason about
nominal AC-unification, and it takes advantage from the fact that
we already have a first-order AC-unification algorithm formalised.
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Nominal AC-Matching

Things to Worry About:

▶ Does the matching problem “stays” a matching problem? -
Done

▶ Termination - Almost Done

▶ Soundness and Completeness - TO DO
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Does the matching problem “stays” a matching problem? I

Initially, in our matching problem, all the variables on the
right-hand side are protected.

But when we start introducing the new variables Zi s, can we get a
problem where an unprotected variable appears in the right-hand
side?
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Does the matching problem “stays” a matching problem?
II

Idea: Prove that every new variable Zi introduced in the

AC Step will be instantiated.
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Termination

Given a matching problem P, the idea is to use a lexicographic
measure like

(Vars(P), size(P))

▶ Vars(P) is the set of variables in the problem P.

▶ size(P) is the multiset of the size of each equation
ti ≈? si ∈ P.
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High Level View of a Proof Sketch of Termination

Let f (s1, . . . , sm) ≈? f (t1, . . . , tn) be the equation to which we
apply the AC-step.

If after AC-step we do not instantiate any variable, then the
equations after the AC-Step will be of the form ti ≈? sj and hence
the size component of the lexicographic measure will decrease.

If we instantiate a variable, then the Vars component of the
lexicographic measure will decrease.
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Soundness and Completeness of Nominal AC-Matching
and AC-Unification

We expect the proofs of soundness and completeness of nominal
AC-matching to be a straightforward adaptation from their
first-order counterparts.

The proofs of soundness and completeness could be reused for
nominal AC-unification.
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Thank You

Thank you! Any comments/suggestions/doubts? 1

1to see more of my work, visit https://gabriel951.github.io/.
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The loop in f (X ,W ) ≈? f (π · X , π · Y )

We found a loop while solving f (X ,W ) ≈? f (π · X , π · Y ).
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Table of Solutions

The table with the solutions of the Diophantine equations is shown
below. The name of the new variables was chosen to make clearer
the loop we will fall into.

The Diophantine equation associated2 is U1 + U2 = V1 + V2 and
the table of solutions is:

Table: Solutions for the Equation U1 + U2 = V1 + V2

U1 U2 V1 V2 U1 + U2 V1 + V2 New Variables

0 1 0 1 1 1 Z1

0 1 1 0 1 1 W1

1 0 0 1 1 1 Y1

1 0 1 0 1 1 X1

2variable U1 is associated with argument X , variable U2 is associated with
argument W , variable V1 is associated with argument π · X and variable V2 is
associated with argument π · Y .
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After AC Step

{X ≈? X1,W ≈? Z1, π · X ≈? X1, π · Y ≈? Z1}
{X ≈? Y1,W ≈? W1, π · X ≈? W1, π · Y ≈? Y1}
{X ≈? Y1 + X1,W ≈? W1, π · X ≈? W1 + X1, π · Y ≈? Y1}
{X ≈? Y1 + X1,W ≈? Z1, π · X ≈? X1, π · Y ≈? Z1 + Y1}
{X ≈? X1,W ≈? Z1 +W1, π · X ≈? W1 + X1, π · Y ≈? Z1}
{X ≈? Y1,W ≈? Z1 +W1, π · X ≈? W1, π · Y ≈? Z1 + Y1}
{X ≈? Y1 + X1,W ≈? Z1 +W1, π · X ≈? W1 + X1, π · Y ≈? Z1 + Y1}
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After instantiating the variables

7 branches are generated:

B1− {π · X ≈? X}, σ = {W 7→ π · Y }
B2− σ = {W 7→ π2 · Y ,X 7→ π · Y }
B3− {f (π2 · Y , π · X1) ≈? f (W ,X1)}, σ = {X 7→ f (π · Y ,X1)}
B4− No solution

B5− No solution

B6− σ = {W 7→ f (Z1, π · X ),Y 7→ f (π−1 · Z1, π
−1 · X )}

B7− {f (π · Y1, π · X1) ≈? f (W1,X1)},
σ = {X 7→ f (Y1,X1), W 7→ f (Z1,W1),Y 7→ f (π−1 · Z1, π

−1 · Y1)}
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The Loop

Focusing on Branch7, notice that the problem before the AC Step
and the problem after the AC Step and instantiating the variables
are:

P = {f (X ,W ) ≈? f (π · X , π · Y )}
P1 = {f (X1,W1) ≈? f (π · X1, π · Y1)}
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Is f (X ,W ) ≈? f (πX , πY ) finitary?

Is there a finite set of triples ⟨∇, σ,FP⟩ that solve
f (X ,W ) ≈? f (πX , πY )?

As will be shown in the next slides, the answer is yes.
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Branch 3 is also a loop

Branch 3 also give us a loop and this can be seen more clearly if
we write the result of taking branch 3 as:

P1 = {f (X1,W1) ≈? f (πX1, πY1)},
σB3 = {X0 7→ f (Y1,X1),W0 7→ W1,Y0 7→ π−1Y1}

OBS: We are going to consider X = X0,W = W0 and Y = Y0.
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Output of the algorithm and solutions

Let k be the order of π. I will show that it’s enough for our
algorithm to take branches 3 and 7 at most 2k times.

The output of the algorithm will be triples ⟨∅, σ,FP⟩ such that σ is
of the form σByσBxn . . . σBx1 , where xi is either 3 or 7 and y is
different than 3 or 7.

A solution ⟨∆, δ⟩ to f (X ,W ) ≈? f (πX , πY ) is such that δ is of
the form δ′δByδBxm . . . δBx1 , where xi is either 3 or 7 and y is
different than 3 or 7.
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σB3 and σB7

At the i-th iteration, the substitutions σB3 and σB7 differ only by
the fact that σB7 introduces variables Zi+1:

σB3 = {Xi 7→ f (Yi+1,Xi+1),Wi 7→ Wi+1,Yi 7→ π−1Yi+1}
σB7 = {Xi 7→ f (Yi+1,Xi+1),Wi 7→ f (Zi+1,Wi+1),

Yi 7→ f (π−1Zi+1, π
−1Yi+1)}
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Notation

[π1, . . . , πn]X is syntactic sugar for π1X , . . . , πnX . Hence, the term
denoted as f ([π1, . . . , πn]Y ,Z ) is the term f (π1Y , . . . , πnY ,Z ).
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Examples of the optional argument notation

If a term is of the form f (Z o ,X ,Y ) then the term is either
f (X ,Y ) or f (Z ,X ,Y ).

If a term is of the form f (Z o ,X o ,Y ) then the term is one of:

▶ Y

▶ f (Z ,Y )

▶ f (X ,Y )

▶ f (Z ,X ,Y )

Finally, if a term is of the form f ([Id , π, π2]Z o ,X ,Y ) then either
ALL the arguments Id Z , πZ , π2Z are in the term or NONE of
them are. Hence, the term is either f ([Id , π, π2]Z ,X ,Y ) or
f (X ,Y ).
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σBxi

The optional argument notation let us write σBxi as

{Xi 7→ f (Yi+1,Xi+1),Wi 7→ f (Z o
i+1,Wi+1),Yi 7→ f (π−1Z o

i+1, π
−1Yi+1)}

whether xi is equal to 3 or 7.
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σBxn . . . σBx1 and δBxm . . . δBx1 I

Let’s calculate σBxn . . . σBx1 applied to X0,W0 and Y0.
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σBxn . . . σBx1 and δBxm . . . δBx1 II

X0 7→ f (Y1,X1)

7→ f (π−1Z o
2 , [π

−1, Id ]Y2,X2)

7→ f (π−1Z o
2 , [π

−2, π−1]Z o
3 , [π

−2, π−1, Id ]Y3,X3)

...

7→ f (π−1Z o
2 , . . . , [π

−(n−1), . . . , π−1]Z o
n , [π

−(n−1), . . . , Id ]Yn,Xn)
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σBxn . . . σBx1 and δBxm . . . δBx1 III

W0 7→ f (Z o
1 ,W1)

7→ f (Z o
1 ,Z

o
2 ,W2)

...

7→ f (Z o
1 ,Z

o
2 , . . . ,Z

o
n ,Wn)
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σBxn . . . σBx1 and δBxm . . . δBx1 IV

Y0 7→ f (π−1Z o
1 , π

−1Y1)

7→ f (π−1Z o
1 , π

−2Z o
2 , π

−2Y2)

...

7→ f (π−1Z o
1 , π

−2Z o
2 , . . . , π

−nZ o
n , π

−nYn)
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σBxn . . . σBx1 and δBxm . . . δBx1 V

The computation for δBxm . . . δBx1 is analogous, replacing n by m.
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Is there a substitution more general than δBxm . . . δBx1?

Pick n such that k ≤ n < 2k and n ≡ m (mod k). Consider the
substitution σ∗ = σBxn . . . σBx1 , where

σBxi =


σB7, if i ≤ k and

∃j : j ≡ i (mod k) and Zj ∈ Args(δBxm . . . δBx1W0)

σB3, otherwise
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σ∗ ≤ δBxm . . . δBx1 I

We can find λ such that δBxm . . . δBx1 = λσ∗. Define λ by:

▶ If i ≤ k and ∃j : j ≡ i (mod k) then λZi 7→ f (Zi ,Zj1 , . . . ,Zjl ),
where j1, . . . , jl are all the indices that are equal to i modulo k
such that Zj1 , . . . ,Zjl appear in Args(δBxm . . . δBx1W0)

▶ Otherwise, λZi 7→ Zi
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σ∗ ≤ δBxm . . . δBx1 II

▶ λYn 7→ Ym

▶ λWn 7→ Wm
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σ∗ ≤ δBxm . . . δBx1 III

▶ Given a variable Zj , let ij be the index such that ij ≤ k and
ij ≡ j (mod k). Then,

λXn 7→ f ([π−ik+1 , . . . , π−k ]Z o
k+1, . . . , [π

−in , . . . , π−(n−1)]Z o
n ,

[π−n, . . . , π−(m−1)]Ym,Xm)
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A set of triples is enough I

We only need to output the set of triples generated after taking
branches 3 or 7 at most 2k times and then taking another branch.

A triple output by the algorithm in this case is of the form
⟨∅, σByσBxn . . . σBx1 ,FPBy ⟩, where xi is either 3 or 7 and y is
different than 3 or 7 and n ≤ 2k.
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A set of triples is enough II

If δ is of the form δ′δByi δBxm . . . δBx1 , then the triple output by the
algorithm that we are looking for would be (∅, σByiσ∗,FPByi ),
where FPByi would be the fixpoint equation of branch yi (it may
be empty).
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Lesson Learned

We don’t need to include an equation like f (X ,W ) ≈? f (πX , πY )
in the output of our algorithm. A set of triples ⟨∇, σ,FP⟩ is
enough!

Is this always the case? If we have f (t1, . . . , tm) ≈? f (s1, . . . , sn)
and there exists π1X ∈ Args(t) and π2X ∈ Args(s), is a set of
triples always enough? Can we generalise the argument we used for
f (X ,W ) ≈? f (πX , πY )?
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Difficulties in Generalising our Reasoning

▶ We may not get exactly a loop after applying the AC Step
and after we instantiate the variables. For instance, adapting
Stickel’s example we may have :

P0 = {f (2X1,X2,X3) ≈? f (2πX2,Y1)}
P1 = {f (πZ2, πZ4, 2πZ5) ≈? f (Z3,Z4,Z5,Z7)}

▶ There may be more than one “doubly” suspended variable.
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Generating all Solutions to πX ≈? X

Can we generate all solutions to πX ≈? X?
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Changing our View

Solving πX ≈? X is equivalent to finding all the terms t such that
there is a context Γ such that Γ ⊢ πt ≈? t.
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A trivial procedure

Generate every term t and then find (if possible) the minimal
context ∇ such that ∇ ⊢ πt ≈? t.

70 / 117



Enumerate all Solutions

Let’s try to find a more interesting procedure. What should we aim
for when solving fixpoint equations?

Two step plan:

1. An enumeration procedure solveFixpoint that enumerates
all solutions

2. From the enumeration procedure, put bounds in the number
of recursive calls to obtain a terminating algorithm.
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Enumeration Procedure I

The enumeration procedure will be given as a set of
non-deterministic rules, that operate on triples of the form
(Γ, σ,FP), where FP is a set of fixpoint equations we have to solve
and of freshness problems we have to solve.

The initial call will be with the triple (∅, Id , {πX ≈? X}).
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Enumeration Procedure II

Rules of the enumeration procedure:

▶ (Var)

▶ (Func)

▶ (Abs a) and (Abs b)

▶ (AC Func)

▶ Old rules for solving freshness problems

▶ (Term)
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Enumeration Procedure III

The freshness problems are introduced by rule (Abs b).

As we go applying the enumeration rules, no variable X appear in
more than one fixpoint equation.
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Variable Rule

(Var) rule:

(Γ, σ, {πX ≈? X} ∪ FP)
Var
==⇒ (Γ ∪ dom(π)#X , σ,FP)
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Syntactic Function Rule

Let g be an arbitrary syntactic function symbol of arity m and let
σ′ = {X 7→ g(X1, . . . ,Xm)}, where X1, . . . ,Xm are new variables.

The (Func) rule:

(Γ, σ, {πX ≈? X} ∪ FP)
Func
===⇒

(Γ, σ′σ, {πX1 ≈? X1, . . . , πXm ≈? Xm} ∪ σ′FP)
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Abstraction Rule - First case

Let a ̸∈ dom(π). Let σ′ = {X 7→ [a]X1}, where X1 is a new
variable.
The (Abs a) rule:

(Γ, σ, {πX ≈? X} ∪ FP)
Abs a
====⇒ (Γ, σ′σ, {πX1 ≈? X1} ∪ σ′FP)
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Abstraction Rule - Second case

Let a ∈ dom(π). Let π′ = (a πa) π and let σ′ = {X 7→ [a]X1},
where X1 is a new variable.
The (Abs b) rule:

(Γ, σ, {πX ≈? X} ∪ FP)
Abs b
====⇒

(Γ, σ′σ, {π′X1 ≈? X1} ∪ σ′FP ∪ {a#?πX1})
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AC Function rule I

Let m be an arbitrary number and let ψ be an arbitrary
permutation from {1, . . . ,m} to {1, . . . ,m}, such that:

ψ = (x1x2 . . . xm1)(xm1+1xm1+2 . . . xm2) . . . (xmk−1+1xmk−1+2 . . . xmk
)

and let l1, . . . , lk be the length of the cycles.

Let σ′ be:

σ′ = X 7→ f (X1, π
1X1 . . . , π

l1−1X1︸ ︷︷ ︸, . . . ,Xk , π
1Xk , . . . , π

lk−1Xk︸ ︷︷ ︸)
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AC Function rule II

The (AC Func) rule is:

(Γ, σ, {πX ≈? X} ∪ FP)
ACFunc
=====⇒

(Γ, σ′σ, {πl1X1 ≈? X1, ..., π
lkXk ≈? Xk} ∪ σ′FP)
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Termination rule

(Term) rule:

(Γ, σ, ∅) Term
===⇒ (Γ, σ)
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Solution when t is an Atom

A solution is when t = σX is an atom ai ̸∈ dom(π):

⟨∅,X 7→ ai ⟩

Notice that this solution, however, is less general than
⟨dom(π)#X , Id⟩ if we consider the substitution σ′ = X 7→ ai .
Therefore, there is no need for a rule for atoms.
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Example 1 I

Let ∗ and + be AC-function symbols and π = (123456). Consider
the solution:

⟨∅,X 7→ ∗(+(1, 4),+(2, 5),+(3, 6))⟩

How can we inductively generate this solution?
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Example 1 II

1. In the first rule application we may consider m = 3 and the
permutation ψ = (123). Then, we would instantiate
X 7→ ∗(X1, π

1X1, π
2X1) and proceed to solve π3X1 ≈? X1.

2. In the second rule application we may consider m = 2 and the
permutation ψ = (12). Our algorithm would instantiate
X1 7→ +(X2, π

3X2) and proceed to solve (π3)2X2 ≈? X2.
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Example 1 III

3. In the third rule application, notice that (π3)2 = π6 = Id .
The solution to π6X2 ≈? X2 would be ⟨∅, Id⟩.

4. Plugging this value back, we would generate the solution

⟨∅,X 7→ ∗(+(X2, π
3X2),+(πX2, π

4X2),+(π2X2, π
5X2))⟩
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Example 1 IV

The particular solution:

⟨∅,X 7→ ∗(+(1, 4),+(2, 5),+(3, 6))⟩

can be obtained from:

⟨∅,X 7→ ∗(+(X2, π
3X2),+(πX2, π

4X2),+(π2X2, π
5X2))⟩

by instantiating X2 7→ 1.
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Example 2 I

Let ∗ and + be AC-function symbols and π = (123456). Consider
the solution:

⟨∅,X 7→ ∗(+(1, 3, 5),+(2, 4, 6))⟩

How can we inductively generate this solution?
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Example 2 II

1. In the first rule application we may consider m = 2 and the
permutation ψ = (12). Then, we would instantiate
X 7→ ∗(X1, πX1) and proceed to solve π2X1 ≈? X1.

2. In the second rule application we may consider m = 3 and the
permutation ψ = (123). Our algorithm would instantiate
X1 7→ +(X2, π

2X2, π
4X2) and proceed to solve (π2)3X2 ≈? X2.
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Example 2 III

3. In the third rule application, notice that (π2)3 = π6 = Id .
The solution to π6X2 ≈? X2 would be ⟨∅, Id⟩.

4. Plugging this value back, we would generate the solution

⟨∅,X 7→ ∗(+(X2, π
2X2, π

4X2),+(πX2, π
3X2, π

5X2)⟩
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Example 2 IV

The particular solution:

⟨∅,X 7→ ∗(+(1, 3, 5),+(2, 4, 6))⟩

can be obtained from

⟨∅,X 7→ ∗(+(X2, π
2X2, π

4X2),+(πX2, π
3X2, π

5X2)⟩

by instantiating X2 7→ 1.
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A Modified Example 2 I

What happens if we change the previous example to consider
π = (123456)(7891011)?
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A Modified Example 2 II

In the first two steps the algorithm would proceed as in the
previous example.

In the third, we would have the equation π6X2 ≈? X2, where
π6 = (7891011) and we would solve it by

⟨{7, 8, 9, 10, 11}#X2, Id⟩
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A Modified Example 2 III

Plugging this value back, we would get the solution:

⟨{7, 8, 9, 10, 11}#X2,X 7→ ∗(+(X2, π
2X2, π

4X2),+(πX2, π
3X2, π

5X2)⟩

which is more general than

⟨∅,X 7→ ∗(+(1, 3, 5),+(2, 4, 6))⟩

by taking the instantiation X2 7→ 1
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Example 3 I

Let ∗ and + be AC-function symbols and π = (123456)(78).
Consider the solution:

⟨∅,X 7→ ∗(+(1, 3, 5, 7),+(2, 4, 6, 8))

How can we inductively generate this solution?
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Example 3 II

1. In the first rule application we may consider m = 2 and the
permutation ψ = (12). Then, we would instantiate
X 7→ ∗(X1, πX1) and proceed to solve π2X1 ≈? X1.

2. In the second rule application we may consider m = 4 and the
permutation ψ = (123)(4). Then, we would instantiate
X1 7→ +(X2, π

2X2, π
4X2,X3) and proceed to solve

(π2)3X2 ≈? X2 and (π2)1X3 ≈? X3.
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Example 3 III

3. Since π6 = Id , the solution to (π2)3X2 ≈? X2 is ⟨∅, Id⟩.

4. One base solution to π2X3 ≈? X3 is ⟨{1, 2, 3, 4, 5, 6}#X3, Id⟩.
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Example 3 IV

Plugging back the solutions we get

⟨{1, 2, 3, 4, 5, 6}#X3,

X 7→ ∗(+(X2, π
2X2, π

4X2,X3),+(πX2, π
3X2, π

5X2, πX3))⟩

which is actually more general than:

⟨∅,X 7→ ∗(+(1, 3, 5, 7),+(2, 4, 6, 8))

since we can take the instantiation:

X2 7→ 1,X3 7→ 7
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What happens with more than one fixed-point equation

If P = {πX ≈? X , ρX ≈? X}, what do we do?

Idea: Follow the approach described in the FROCOS paper “On
Solving Nominal Fixpoint Equations”.
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Frocos Approach - Notation

Let {πiX ≈? X} be the unification problem we have to solve.
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Frocos - General AC-Matcher

Definition 7 of the Frocos paper:

Definition 1
Let t1, . . . , tk be terms. We say that δ is a most general
AC-matcher of the ti s if it is a most general AC-unifier of the
problem {Z ≈? ti}i=1,...,k , where Z is a new variable.
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Frocos - Generated Solutions

1. For each i , let ⟨Γi ,X 7→ ti ⟩ be an arbitrary solution (if exists
any) to πiX ≈? X .

2. Find (if exists) the most general AC-matcher δ of the terms
ti . Consider X the new variable.

3. Given every

a#Y ∈
⋃

1≤i≤k

Γi ,

we see if there is some Γ such that Γ ⊢ a#δY .

4. The solution is: ⟨Γ, δ⟩.

PS: This is Definition 8 of the Frocos paper.
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Alternative Approach - Adapting the Inductive Generation
of Solutions

Let’s say we want to solve {πX ≈? X , ρX ≈? X}. One possibility
is to adapt our inductive thinking to handle more than one fixpoint
equation. Let’s say that we have a solution (Γ, σ) to both
equations. Let’s denote σX as t.
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Alternative Approach - Base Cases

Atoms. The base case for atoms is still less general than the one
for variables, so we would drop that.

Variables. We would output the solution

⟨dom(π)#X ∪ dom(ρ)#X , Id⟩
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Alternative Approach - Inductive Cases

Syntactic Function. If t = g(t1, . . . , tm) we would try to find the
solutions to {πXi ≈? Xi , ρXi ≈? Xi} for every i and then assemble
them together as described for the syntactic function case where
we only had one fixpoint equation.

Abstraction. Similar to the case where we only had one fixpoint
equation.
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Alternative Approach - AC Case I

If t = f (t1, . . . , tm) we have:

f (πt1, . . . , πtm) ≈? f (t1, . . . , tm) ≈? f (ρt1, . . . , ρtm)
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Alternative Approach - AC Case II

This case is more problematic because it is as if the equation
πX ≈? X “forces” the instantiation:

X 7→ f (X1, πX1, . . . , π
l1−1X1︸ ︷︷ ︸, . . . ,Xk , πXk , . . . , π

lk−1Xk︸ ︷︷ ︸)
while the equation ρX ≈? X “forces” the instantiation:

X 7→ f (X ′
1, ρX

′
1, . . . , ρ

l ′1−1X ′
1︸ ︷︷ ︸, . . . ,X ′

k , ρX
′
k , . . . , ρ

l ′k−1X ′
k︸ ︷︷ ︸)
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Relating π and ρ in the AC case

Idea: A term tk is associated with the moderated variable πi1Xi2

and also with the moderated variable ρj1X ′
j2
and hence we will

have the equation πi1Xi2 ≈? ρj1X ′
j2
.
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Sketch of an Example I

Let σX = t = f (t1, . . . , t6).
Consider that the permutation associated with π is
ψ1 = (123) (456), i.e. the substitution associated is:

X 7→ f (X1, πX1, π
2X1,X2, πX2, π

2X2).

Consider that the permutation associated with ρ is
ψ2 = (12) (3456), i.e. the substitution associated is:

X 7→ f (X ′
1, πX

′
1,X

′
2, πX

′
2, π

2X ′
2, π

3X ′
2)
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Sketch of an Example II

The equations we have to solve are:

π3X1 ≈? X1, π
3X2 ≈? X2

ρ2X ′
1 ≈? X ′

1, ρ
4X ′

2 ≈? X ′
2

X ′
1 ≈? X1, X

′
2 ≈? π2X1, πX

′
2 ≈? X2
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Sketch of an Example III

Of course we start by instantiating the last ones:

X ′
1 7→ X1

X ′
2 7→ π2X1

X2 7→ π3X1
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Sketch of an Example IV

And in the next iteration, the equations we will work on are:

π3X1 ≈? X1, ρ
2X1 ≈? X1, π

−2ρ4π2X1 ≈? X1

and we have:

X 7→ f (X1, πX1, π
2X1, π

3X1, π
4X1, π

5X1)
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What about fixpoint equations with more than one
variable?

If we have the equations π1X ≈? X and π2Y ≈? Y we can solve
them separately obtaining solutions (Γ1, {X 7→ t}) and
(Γ2, {Y 7→ s}) for the first and the second and then combine them
obtaining the solution:

⟨Γ1 ∪ Γ2, {X 7→ t, Y 7→ s}⟩
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Nice Triple

As we go applying the rules, the triple (Γ, σ,FP) maintain certain
relations, which will be used in the proof of correctness and
completeness. We collect those in the following definition:

Definition 2
We say that (Γ, σ,FP) is a nice triple if the following conditions
are satisfied:

1. Vars(FP) ∩ dom(σ) = ∅.
2. TO DO: I will add as we go advancing in the proofs of

correctness and completeness.
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Correctness

Theorem 3
Suppose that (Γ, σ,FP) is a nice triple. If (∇, δ) is obtained from
(Γ, σ,FP) after finitely many applications of the rules in
solveFixpoint, then:

▶ ∇ ⊢ δ(πiXi ) ≈ δXi for every {πiXi ≈? Xi} ∈ FP.

▶ ∇ ⊢ a#δt for every a#?t ∈ FP.

Corollary 4

If (∇, δ) ∈ solveFixpoint(∅, Id , {πX ≈? X}) then
∇ ⊢ δ(πX ) ≈? δX .
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Proof of Correctness

▶ It’s in a separate file.

▶ Depends on the correctness of each rule. I proved for the all
the cases of rules.
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Completeness

TO DO
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Bounds in the Enumeration Procedure

We’ll put a bound in the enumeration procedure, to obtain a
terminating algorithm. We will bind by the depth of nd and also by
the arity of the flattened form of AC-functions m.
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