Associative Anti-Unification

Gabriela de Souza Ferreira
Supervisor: Prof. Dr. Mauricio Ayala Ricón
Universidade de Brasília
February 10, 2023

Summary

(1) Introduction
(2) Basic Notions
(3) Associative Anti-Unification
4. Conclusion

About the development of work

This presentation is based in my masters final work, Syntactc, Commutative and Associative Anti-Unification, that was presented in the final of the last year and was supervised by Daniele Nantes.

TUniversidade de Brasilia
Symactic, Commutative and Associative Amit-Vifification

Cithet 6.

A上tum

This talk

- We will present the Anti-Unification Problem modulo empty (\emptyset) and associative (A) theories;
- We will present algorithms AUnif E based on simplification rules for each of these cases:
- pointing out the different results obtained for each equational theory,
- give examples;
- Analyse the termination, confluence and correctness properties of the anti-unification algorithms,
- with an especial attention on the prove of completeness of AUnif $_{A}$, that is different from the original approach in [AEEM14].

History

First notions:

- Popplestone [Pop70],
- Plotkin [Plo70],
- and Reynolds [Rey70],
- Machine Intelligence Journal.

Important results:

- Existence of the solutions of the Syntactic, Commutative and Associative Anti-Unification Problems [Baa91],
- Development of methods to solve these problems [AEEM14].

Syntax

Before define the Anti-Unification Problem we need to define some basic concepts Finite Signature: $\sigma=\Sigma_{\emptyset} \cup \Sigma_{A} \cup \Sigma_{C}$.

- $\Sigma_{\emptyset}=\{\underbrace{a: 0, b: 0, c: 0, d: 0}_{\text {constants }}, f: n, \ldots\}$ without an equational theory.
- $\Sigma_{A}=\{h: 2\}$ with the associative function symbol

$$
A=\{h(x, h(y, z)) \approx h(h(x, y), z)\} .
$$

Generalizer

Definition (Generalizer)

Given two terms $s, t \in T\left(\mathcal{X}, \Sigma_{\emptyset}\right)$. A generalizer of s and t is a term $r \in T(\mathcal{X}, \Sigma)$ for which there exists a pair of substitutions $\bar{\theta}=\left(\theta_{1}, \theta_{2}\right)$ such that $r \theta_{1}=s$ and $r \theta_{2}=t$.

$$
\operatorname{gen}(s, t)
$$

Definition (Least General Generalization)

Given a signature Σ and terms s and $t \in T(\mathcal{X}, \Sigma)$. We define the the least general generalization of s and t as the greatest lower bound generalizer of s and t. In other words:

$$
\operatorname{lgg}(s, t)=\left\{r \in \operatorname{gen}(s, t) \mid r^{\prime} \leq r, \forall r^{\prime} \in \operatorname{gen}(s, t)\right\}
$$

Example - Generalizers

$$
s=f(f(a, b), a) \text { and } t=f(f(c, b), c)
$$

Comparing term structures

The least general generalizer of s and t is the generalizer which maintains more the structure of s and t as possible.

lgg :

Syntactic Anti-Unification Problem (AUP)

Definition $(\mathcal{A}\langle s, t\rangle)$

- Given: terms s and $t \in T\left(\mathcal{X}, \Sigma_{\emptyset}\right)$,
- Find: The least general generalizer of s and t.

Example

Let $s=f(f(a, b), a)$ and $t=f(f(c, b), c)$. Then, $r=f(f(z, b), z)$ it is an solution for the AUP $\mathcal{A}\langle s, t\rangle$.

A rule based anti-unification algorithm

Input: $\mathcal{A}\langle s, t\rangle$

Output: $x \sigma \in \operatorname{lgg}(s, t)$

AUnif ${ }_{\emptyset}$ rules

(Dec) : Decompose:

$$
\left\langle P \cup\left\{x: f\left(\overline{s_{n}}\right) \triangleq f\left(\overline{t_{n}}\right)\right\}\right| S|\sigma\rangle \Longrightarrow\left\langle P \cup\left\{\begin{array}{l}
x_{1}: s_{1} \triangleq t_{1}, \\
\vdots \\
x_{n}: s_{n} \triangleq t_{n}
\end{array}\right\}\right| S\left|\sigma\left\{x \mapsto f\left(\overline{x_{n}}\right)\right\}\right\rangle
$$

where x_{1}, \ldots, x_{n} are fresh variables.
(Sol): Solve: If $\operatorname{root}(s) \neq \operatorname{root}(t)$ and there is no constraint $\{y: s \triangleq t\} \in S$

$$
\langle P \cup\{x: s \triangleq t\}| S|\sigma\rangle \Longrightarrow\langle P| S \cup\{x: s \triangleq t\}|\sigma\rangle
$$

(Rec): Recover: If $\operatorname{root}(s) \neq \operatorname{root}(t)$

$$
\langle P \cup\{x: s \triangleq t\}| S \cup\{y: s \triangleq t\}|\sigma\rangle \Longrightarrow\langle P| S \cup\{y: s \triangleq t\}|\sigma\{x \mapsto y\}\rangle
$$

Example

Consider the AUP $\mathcal{A}\langle s, t\rangle$ for $s=f(f(a, b), a)$ and $t=f(f(c, b), c)$.

$$
\begin{gathered}
\langle\{x: f(f(a, b), a) \triangleq f(f(c, b), c)\}| \emptyset|i d\rangle \\
\left\langle\left\{x_{1}: f(a, b) \triangleq f(c, b), x_{2}: a \triangleq c\right\}\right| \emptyset|\underbrace{\left\{x \mapsto f\left(x_{1}, x_{2}\right)\right\}}_{\sigma_{1}}\rangle \\
\left\langle\left\{x_{1}: f(a, b) \triangleq f(c, b)\right\}\right|\left\{x_{2}: a \triangleq c\right\}\left|\sigma_{1}\right\rangle \\
\left\langle\left\{x_{3}: a \triangleq c, x_{4}: b \triangleq b\right\}\right|\left\{x_{2}: a \triangleq c\right\}|\underbrace{\sigma_{1}\left\{x_{2} \mapsto f\left(x_{3}, x_{4}\right)\right\}}_{\sigma_{2}}\rangle \\
(\text { (Rec) } \downarrow \\
\left\langle\left\{x_{4}: b \triangleq b\right\}\right|\left\{x_{2}: a \triangleq c\right\}|\underbrace{\sigma_{1}\left\{x_{3} \mapsto x_{2}\right\}}_{\sigma_{3}}\rangle \\
(\text { Dec) } \downarrow \\
\langle\emptyset|\left\{x_{2}: a \triangleq c\right\}|\underbrace{\sigma_{1}\left\{x_{4} \mapsto b\right\}}_{\sigma_{4}}\rangle
\end{gathered}
$$

Example - Continuation

Consider the AUP $\mathcal{A}\langle s, t\rangle$ for $s=f(f(a, b), a)$ and $t=f(f(c, b), c)$.

$$
\langle\{x: f(f(a, b), a) \triangleq f(f(c, b), c)\}| \emptyset|i d\rangle \stackrel{*}{\Longrightarrow}_{\text {AUnif }_{\emptyset}}\langle\emptyset|\left\{x_{2}: a \triangleq c\right\}|\underbrace{\sigma_{1}\left\{x_{4} \mapsto b\right\}}_{\sigma_{4}}\rangle
$$

Then, $\operatorname{AUnif}_{\emptyset}(s, t)$ gives $x \sigma_{4}=f\left(f\left(x_{2}, b\right), x_{2}\right)$.

Properties of AUnif \emptyset_{\emptyset}

Let $\mathcal{A}\langle s, t\rangle$ be an AUP,

- Termination AUnif \emptyset_{\emptyset} terminates
- Confluence AUnif \emptyset_{\emptyset} has a unique normal form except for variable renaming,
- Correctness $r \in \operatorname{lgg}(s, t)$ iff there exists a derivation

$$
\langle\{x: s \triangleq t\}| \emptyset|i d\rangle \xlongequal{*}_{\text {AUnif }_{\emptyset}}\langle\emptyset| S|\sigma\rangle
$$

such that $x \sigma \equiv r$.
Therefore $\mathcal{A}\langle s, t\rangle$ always will have a solution that is unique, except for variable renaming.

The Associative Anti-Unification Problem

Definition (Associative Anti-Unification Problem - AUP A_{A})

- Given: Two terms s and $t \in T\left(\mathcal{X}, \Sigma_{\emptyset \cup A}\right)$,
- Find: The set $\operatorname{lgg}_{A}(s, t)$.

The AUP_{A} for s and t is denoted by $\mathcal{A}_{A}\langle s, t\rangle$.

Flattening

Given h the associative function symbol with $n \leq 2$ arguments, flattened terms are canonical forms w.r.t. the set of rules given by the following rule schema

$$
h\left(x_{1}, \ldots, h\left(t_{1}, \ldots, t_{n}\right), \ldots, x_{n}\right) \longrightarrow h\left(x_{1}, \ldots, t_{1}, \ldots, t_{n}, \ldots, x_{n}\right)
$$

AUnif $_{A}:$ simplification rules

(Dec): Decompose $\left(f \in \Sigma_{\emptyset}\right.$ and $\left.x \in \mathcal{X}\right)$
(Sol): Solve
(Rec): Recover
(A-Dec): Associative Decompose

- (A-Left)
- (A-Right)

Associative for left and right sides

(A-Left) Associative-Left Decompose

$$
\begin{aligned}
&\left\langle P \cup\left\{x: h\left(s_{1}, \ldots, s_{n}\right) \triangleq h\left(t_{1}, \ldots, t_{m}\right)\right\}\right| S|\sigma\rangle \\
& \Longrightarrow\left\langle P \cup\left\{\begin{array}{l}
x_{1}: h\left(s_{1}, \ldots, s_{k}\right) \triangleq t_{1} \\
x_{2}: h\left(s_{k+1}, \ldots, s_{n}\right) \triangleq h\left(t_{2}, \ldots, t_{m}\right)
\end{array}\right\}\right| S\left|\sigma\left\{x \mapsto h\left(x_{1}, x_{2}\right)\right\}\right\rangle
\end{aligned}
$$

with $k \leq n-1$.
(A-Right) Associative-Right Decompose

$$
\begin{aligned}
\langle P \cup\{x & \left.\left.: h\left(s_{1}, \ldots, s_{n}\right) \triangleq h\left(t_{1}, \ldots, t_{m}\right)\right\}|S| \sigma\right\rangle \\
& \Longrightarrow\left\langle P \cup\left\{\begin{array}{l}
x_{1}: s_{1} \triangleq h\left(t_{1}, \ldots, t_{k}\right) \\
x_{2}: h\left(s_{2}, \ldots, s_{n}\right) \triangleq h\left(t_{k+1}, \ldots, t_{m}\right)
\end{array}\right\}\right| S\left|\sigma\left\{x \mapsto h\left(x_{1}, x_{2}\right)\right\}\right\rangle
\end{aligned}
$$

with and $1<k \leq m-1$.

Example: AUP_{A}.

Consider $\mathcal{A}_{A}\langle s, t\rangle$ an AUP_{A} with $s=h(h(a, a), h(b, c))$ and $t=h(h(b, b), c)$.

term	$s=h(h(a, a), h(b, c))$	$s=A \quad h(a, h(a, h(b, c)))$	
term	$t=h(h(b, b), c)$	$t=h(h(b, b), c)$	
generalizer	$r_{1}=h(h(x, x), y)$	$r_{2}=h(x, y)$	
term	$s=h(h(a, a), h(b, c))$	$s=A$	$h(a, h(a, h(b, c)))$
term	$t=A$	$h(b, h(b, c))$	$t=A$
generalizer	$r_{3}=h(x, h(b, h(b, c))$		

Notice that

- $r_{2}<A r_{1}, r_{3}$ and r_{4};
- $r_{1} \equiv{ }_{A} r_{4}$.

Example

To apply the rules of AUnif_{A} to solve this problem we first put s and t in they flattened form.

$$
h(h(a, a), h(b, c))
$$

flattening

$$
h(a, a, b, c)
$$

$$
h(h(b, b), c)
$$

flattening
$h(b, b, c)$

Example

$$
\begin{aligned}
& (A-L e f t)_{k=1}\langle\{x: h(a, a, b, c) \triangleq h(b, b, c)\}| \emptyset|i d\rangle \\
& (A-L e f t)_{k=2} \\
& C_{1}=\left\langle\left\{\begin{array}{l}
x_{1}: a \triangleq b \\
x_{2}: h(a, b, c) \triangleq h(b, c)
\end{array}\right\}\right| \emptyset|\underbrace{\left\{x \mapsto h\left(x_{1}, x_{2}\right)\right\}}_{\sigma_{1}}\rangle \\
& \text { (Sol), (A-Left) } \\
& \left\langle\left\{\begin{array}{l}
x_{3}: a \triangleq b, \\
x_{4}: h(b, c) \triangleq c
\end{array}\right\}\right|\left\{x_{1}: a \triangleq b\right\}|\underbrace{}_{(S o l),(S o l)} \downarrow| \\
& \left\langle\left\{\begin{array}{l}
x_{1}: h(a, a) \triangleq b \\
x_{2}: h(b, c) \triangleq h(b, c)
\end{array}\right\}\right| \emptyset\left|\sigma_{1}\right\rangle \\
& \text { (A-Left) } \\
& \left\langle\left\{\begin{array}{l}
x_{1}: h(a, b) \triangleq b, \\
x_{3}: b \triangleq b, \\
x_{4}: c \triangleq c
\end{array}\right\}\right| \emptyset\left|\sigma_{2}\right\rangle \\
& \langle\emptyset|\left\{\begin{array}{l}
x_{1}: a \triangleq b \\
x_{4}: h(b, c) \triangleq c
\end{array}\right\}|\underbrace{\sigma_{2}\left\{x_{3} \mapsto x_{1}\right\}}_{\sigma_{3}}\rangle \\
& \langle\emptyset|\left\{x_{1}: h(a, a) \triangleq b\right\}|\underbrace{\sigma_{2}\left\{x_{3} \mapsto b, x_{4} \mapsto c\right\}}_{\sigma_{4}}\rangle
\end{aligned}
$$

Therefore, AUnif $_{A}$ gives:

- $x \sigma_{3}=h\left(x_{1}, h\left(x_{1}, x_{4}\right)\right) \equiv{ }_{A} r_{1}$,
- $x \sigma_{4}=h\left(x_{1}, h(b, c)\right) \equiv{ }_{A} r_{3}$,

$$
h\left(x_{1}, h\left(x_{1}, x_{4}\right)\right) \cdots-\cdots \text { incomparable }^{2}<\cdots-\cdots\left(x_{1}, h(b, c)\right)
$$

Therefore, AUnif $_{A}$ is not confluent.

Properties of AUnif A

Let $\mathcal{A}_{A}\langle s, t\rangle$ be an AUP_{A}.

- Terminates AUnif A_{A} terminates.
- Sound If $\langle\{x: s \triangleq t\}| \emptyset|i d\rangle{ }^{*}{ }_{\text {AUnif }_{C}}\langle\emptyset| S|\sigma\rangle$ then $x \sigma \in \operatorname{gen}_{A}(s, t)$.
- Complete If $r \in \operatorname{lgg}_{A}(s, t)$, then there exists a derivation

$$
\langle\{x: s \triangleq t\}| \emptyset|i d\rangle{\stackrel{*}{\Longrightarrow} \text { Aunif }_{A}}^{\langle\emptyset| S|\sigma\rangle}
$$

such that $x \sigma \equiv{ }_{A} r$.
There was a problem in the original proof of Completeness of AUnif $_{A}$ in [AEEM14].

Notions

Before explain this problem we need to establish some notions.
Definition (Associative pair of positions)

Figure: Caption

Definition (Associative Pair of Subterms)

Let $s, t \in T\left(\mathcal{X}, \Sigma_{\emptyset \cup A}\right)$ be terms in flattened form. The pair of terms (u, v) is called an associative pair of subterms of s and t iff

1 (Regular Subterms) For each pair of positions $p \in \operatorname{pos}(s)$ and $p^{\prime} \in \operatorname{pos}(t)$ such that $\left.s\right|_{p}=u,\left.t\right|_{p^{\prime}}=v$ and $\left(p, p^{\prime}\right)$ is an associative pair of positions of s and t. Or:

Definition (Associative pair of subterms)

2 (Associative pair of subterms) There are positions an associative pair of positions (p, p^{\prime}) such that

$$
\left.s\right|_{p}
$$

$$
\left.t\right|_{p^{\prime}}
$$

(u, v)

(u, v)

(u, v)

Example

Given terms $s=h(a, b, c, d)$ and $t=h\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)$, it follows $\left(h(a, b), h\left(a^{\prime}, b^{\prime}\right)\right)$ is an associative pair of s and t.

Proof of Completeness given by [AEEM14]

Now we can explain the problem in the proof.
Lemma (c.f. Lemma 19 in [AEEM14])
Given flattened terms t and t^{\prime} such that every symbol in t and t^{\prime} is either free or associative, and a fresh variable x, then there is a sequence

$$
\left\langle\left\{y: t \triangleq t^{\prime}\right\}\right| \emptyset|i d\rangle \xlongequal{*}_{\mathrm{AUnif}_{A}}\langle P \cup\{y: u \triangleq v\}| S|\sigma\rangle
$$

such that there is no variable z such that $\{z: u \triangleq v\} \in S$ if and only if (u, v) is an associative pair of subterms of t and t^{\prime}.

Counter example: Simplification tree

Let $\mathcal{A}_{A}\langle s, t\rangle$ be an AUP_{A}, where $s=h(a, b, c, d)$ and $t=h\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)$, as applying the simplification rules of AUnif_{A} to solve this problem we obtain the following simplification tree:

Counter example: Description of configurations

$$
\begin{aligned}
C_{1} & =\left\langle\left\{x_{2}: h(b, c, d) \triangleq h\left(b^{\prime}, c^{\prime}, d^{\prime}\right)\right\}\right|\left\{x_{1}: a \triangleq a^{\prime}\right\}\left|\left\{x \mapsto h\left(x_{1}, x_{2}\right)\right\}\right\rangle, \\
C_{2} & =\left\langle\left\{x_{2}: h(c, d) \triangleq h\left(b^{\prime}, c^{\prime}, d^{\prime}\right)\right\}\right|\left\{x_{1}: h(a, b) \triangleq a^{\prime}\right\}\left|\left\{x \mapsto h\left(x_{1}, x_{2}\right)\right\}\right\rangle, \\
C_{3} & =\left\langle\left\{x_{1}: h(a, b, c) \triangleq a^{\prime}, x_{2}: d \triangleq h\left(b^{\prime}, c^{\prime}, d^{\prime}\right)\right\}\right| \emptyset\left|\left\{x \mapsto h\left(x_{1}, x_{2}\right)\right\}\right\rangle, \\
C_{4} & =\left\langle\left\{x_{2}: h(b, c, d) \triangleq h\left(c^{\prime}, d^{\prime}\right)\right\}\right|\left\{x_{1}: a \triangleq h\left(a^{\prime}, b^{\prime}\right)\right\}\left|\left\{x \mapsto h\left(x_{1}, x_{2}\right)\right\}\right\rangle, \\
C_{5} & =\left\langle\left\{x_{1}: a \triangleq h\left(a^{\prime}, b^{\prime}, c^{\prime}\right), x_{2}: h(b, c, d) \triangleq d^{\prime}\right\}\right| \emptyset\left|\left\{x \mapsto h\left(x_{1}, x_{2}\right)\right\}\right\rangle, \\
C_{1.1} & =\left\langle\left\{x_{3}: b \triangleq b^{\prime}, x_{4}: h(c, d) \triangleq h\left(c^{\prime}, d^{\prime}\right)\right\} \mid\left\{x_{1}: a \triangleq a^{\prime}\right\}\left\{x \mapsto h\left(x_{1}, h\left(x_{3}, x_{4}\right)\right)\right\}\right\rangle, \\
C_{1.2} & =\left\langle\left\{x_{3}: h(b, c) \triangleq b^{\prime}, x_{4}: d \triangleq h\left(c^{\prime}, d^{\prime}\right)\right\}\right|\left\{x_{1}: a \triangleq a^{\prime}\right\} \mid\left\{x \mapsto h\left(x_{1}, h\left(x_{3}, x_{4}\right)\right)\right\rangle, \\
C_{2.1} & =\left\langle\left\{x_{3}: c \triangleq b^{\prime}, x_{4}: d \triangleq h\left(c, d^{\prime}\right)\right\}\right|\left\{x_{1}: h(a, b) \triangleq a^{\prime}\right\} \mid\left\{x \mapsto h\left(x_{1}, h\left(x_{3}, x_{4}\right)\right)\right\rangle, \\
C_{2.2} & =\left\langle\left\{ x_{3}: c \triangleq h\left(b^{\prime}, c^{\prime}\right), x_{4}: d \triangleq d^{\prime}\left|\left\{x_{1}: h(a, b) \triangleq a^{\prime}\right\}\right|\left\{x \mapsto h\left(x_{1}, h\left(x_{3}, x_{4}\right)\right)\right\rangle,\right.\right. \\
C_{4.1} & =\left\langle\left\{x_{3}: b \triangleq c, x_{4}: h(c, d) \triangleq d^{\prime}\right\}\right|\left\{x_{1}: a \triangleq h\left(a, b^{\prime}\right)\right\} \mid\left\{x \mapsto h\left(x_{1}, h\left(x_{3}, x_{4}\right)\right)\right\rangle, \\
C_{4.2} & =\left\langle\left\{x_{3}: h(b, c) \triangleq c^{\prime}, x_{4}: d \triangleq d^{\prime}\right\}\right|\left\{x_{1}: a \triangleq h\left(a, b^{\prime}\right)\right\} \mid\left\{x \mapsto h\left(x_{1}, h\left(x_{3}, x_{4}\right)\right)\right\rangle ; \\
C_{1.1 .1} & =\left\langle\left\{x_{5}: c \triangleq c^{\prime}, x_{6}: d \triangleq d^{\prime}\right\}\right|\left\{x_{1}: a \triangleq a^{\prime}, x_{3}: b \triangleq b^{\prime}\right\}\left|\left\{x \mapsto h\left(x_{1}, h\left(x_{3}, h\left(x_{5}, x_{6}\right)\right)\right)\right\}\right\rangle,
\end{aligned}
$$

Counter example: conclusion

- There is no configuration $\left\langle P \cup\left\{y: h(a, b) \triangleq h\left(a^{\prime}, b^{\prime}\right)\right\}\right| S|\sigma\rangle$ in the simplification tree of $\operatorname{AUnif}_{A}(s, t)$;
- Lemma 19 in [AEEM14] does not hold!

This lemma is used to prove the completeness of AUnif $_{A}$ in [AEEM14]. In order to show that this property still holds, we replace the Lemma 19 in [AEEM14] for tree new lemmas (Lemma 4.2, 4.3 and 4.4) that will be stated in the following frames.

Lemma (4.2)

Let $\mathcal{A}_{A}\langle s, t\rangle$ an $A U P_{A}$. If $\left(p, p^{\prime}\right)$ is an associative pair of positions of s and t, then there exists a derivation of the form

$$
\langle\{x: s \triangleq t\}| \emptyset|i d\rangle \stackrel{*}{\Longrightarrow} \text { AUnif }_{A}\langle\{y: u \triangleq v\}| S|\sigma\rangle \text { with }\left(\left.s\right|_{p},\left.t\right|_{p^{\prime}}\right)=(u, v) .
$$

- Relates the arguments of the flattened terms with the configurations of AUnif A.

Lemma (4.3)

Let $\mathcal{A}_{A}\langle s, t\rangle$ be an $A U P_{A}$ and $\left(p, p^{\prime}\right)$ an associative pair of positions of s and t, such that

$$
\begin{gathered}
\left.s\right|_{p}=h\left(s_{1}, \ldots, s_{k}, u_{1}, \ldots, u_{n}, s_{k+1} \ldots, s_{q}\right) \\
\left.t\right|_{p^{\prime}}=h\left(t_{1}, \ldots, s_{k^{\prime}}, v_{1}, \ldots, v_{m}, t_{k^{\prime}+1}, \ldots, s_{q^{\prime}}\right)
\end{gathered}
$$

If $(u, v)=\left(h\left(\overline{u_{n}}\right), h\left(\overline{v_{m}}\right)\right)$ is an associative pair of subterms, then there exists derivations such that

1. $\langle\{x: s \triangleq t\}| \emptyset|i d\rangle \stackrel{*}{\Longrightarrow} \operatorname{AUnif}_{A}\left\langle P \cup\left\{y: h\left(u_{1}, \ldots, u_{i}\right) \triangleq v_{1}\right\}\right| S|\sigma\rangle$ with $1 \leq i \leq n-1$, and
2. $\langle\{x: s \triangleq t\}| \emptyset|i d\rangle \stackrel{*}{\Longrightarrow}$ AUnif $_{A}\left\langle P \cup\left\{y: u_{1} \triangleq h\left(v_{1}, \ldots, v_{j}\right)\right\}\right| S|\sigma\rangle$ with $1<j \leq m-1$.

- Relates the associative pairs of subterms with the configurations of the derivations of $\operatorname{AUnif}_{A}(s, t)$.

Lemma (4.4)
Let $\mathcal{A}_{A}\langle s, t\rangle$ be an $A U P_{A}$. If there exists a sequence of the form

$$
\langle\{x: s \triangleq t\}| \emptyset|i d\rangle \xlongequal{*}_{\text {AUnif }_{A}}\langle P \cup\{y: u \triangleq v\}| S|\sigma\rangle
$$

then (u, v) is an associative pair of subterms of s and t.

Conclusion

We have verified that:

problem	algorithm	terminating	confluent	sound	complete
AUP	AUnif $_{\emptyset}$	\checkmark	\checkmark	\checkmark	\checkmark
AUP $_{A}$	AUnif $_{A}$	\checkmark	\times	\checkmark	\checkmark

- AUP always have a unique solution (except for variable renaming)
- AUP_{A} always have a finite and minimal set of solutions (but AUnif A_{A} do not gives minimal solutions),

Future work

- To obtain measure that gives a maximal bound of the number of normal forms obtained by $\Longrightarrow_{\text {AUnif }_{C}}$ and \Longrightarrow AUnif $_{A}$.
- To extend the study of AUP_{A} for high order context of Nominal Framework, extending the work by Baumgartner et. al. in [BKLV15].

María Alpuente, Santiago Escobar, Javier Espert, and José Meseguer.
A modular order-sorted equational generalization algorithm.
Inf. Comput., 235:98-136, 2014.
Franz Baader.
Unification, weak unification, upper bound, lower bound, and generalization problems.
In Proc. of RTA, volume 488 of LNCS, pages 86-97. Springer, 1991.
Alexander Baumgartner, Temur Kutsia, Jordi Levy, and Mateu Villaret.

Nominal Anti-Unification.

In Proc. of. RTA, volume 36 of (LIPIcs), pages 57-73, Dagstuhl, Germany, 2015.
Gordon D Plotkin.
A note on inductive generalization.
Machine intelligence, 5:153-163, 1970.
RJ Popplestone.
An experiment in automatic induction.
Machine Intelligence, 5:203-215, 1970.
John C Reynolds.
Transformational systems and algebraic structure of atomic formulas.
Machine intelligence, 5:135-151, 1970.

