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Motivation

• The process of combining several numerical values into a single
value that somehow represents them all is called aggregation and the
numerical function that carries out this process is called of
aggregation function.

• When we add membership degrees or truth values in a fuzzy context
(or some of its extensions) these Aggregation functions have certain
properties.

• If we consider that each membership degree represents the opinion
of a specialist then, if all are zeros or all are ones, the result of the
aggregation must also be zero or one, respectively and furthermore,
the aggregation result should be increasing.

• Other conditions can also be imposed in certain circumstances. For
example commutativity.
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Aggregation Functions and Properties

Definition
For each n ≥ 2, A : [0,1]n → [0,1] is an n-dimensional aggregation
function when A(0, . . . ,0) = 0, A(1, . . . ,1) = 1 and is increasing, that is,
A(x1, . . . , xn) ≤ A(y1, . . . , yn) whenever xi ≤ yi ,∀i = 1, . . . ,n.

Definition
A :

∞⋃
n=1

[0,1]n → [0,1] is an extended aggregate function if A(x) = x for

each x ∈ [0,1] and for any n ≥ 2, A|[0,1]n is an n-dimensional
aggregation function.

• Given an extended aggregation function A, it is not necessary to have
any relationship between A|[0,1]m and A|[0,1]n when m ̸= n.
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Extended Aggregation Functions

• The Arithmetic Mean

M(x1, . . . , xn) =

n∑
i=1

xi

n

for each n ∈ {1, . . . ,n}, is an example of extended aggregation
function where there is a strong relation between the aggregation
functions which form the family.

• The arithmetic mean satisfy the self-identity property:

M(x1, . . . , xn) = M(x1, . . . , xn,M(x1, . . . , xn)) (1)
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Generation of extended aggregation functions

• Given a bivariate aggregation function A we can obtain an extended

aggregation function A :
∞⋃
i=1

[0,1]n → [0,1] as following:

1. A(x) = x ;
2. A(x1, . . . , xn) = A(A(x1, . . . , xn−1), xn) for each n ≥ 2.

• Note that if A is idempotent, i.e. A(x , x) = x for all x ∈ [0,1], then A
satisfies the self-identity condition.

• As extended aggregation functions are generally families of
independent aggregation functions, here we will only consider fixed
arity aggregation functions.
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Extra Properties
From now on, A will always represent an arbitrary n-dimensional
aggregation function unless we explicitly say otherwise.

Idempotecy

• A is idempotent when worth A((x)n) = x , ∀x ∈ [0,1].

Proposition
A is idempotent iff ∀x ∈ [0,1]n, we have that minx ≤ A(x) ≤ maxx.

Proof: (⇒) Since A increasing and idempotent then,

minx = A((minx)n) ≤ A(x) ≤ A((maxx)n) = max x.

(⇐) Since min ≤ A ≤ max, then

x = min(x)n ≤ A((x)n) ≤ max(x)n = x .

So, A((x)n) = x . □
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Idempotency

Example
The arithmetic mean, median, minimum and maximum are idempotent
aggregation functions. Two other examples of n-dimensional
aggregation functions are:

G(x1, . . . , xn) =
n

√√√√ n∏
i=1

xi

and for any r > 0,

P[r ](x1, . . . , xn) =

r

√√√√√ n∑
i=1

x r
i

n

called of geometric mean and power mean, respectively.
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Internal
• A is interna if A(x) ∈ {x1, . . . , xn} for each x = (x1, . . . , xn) ∈ [0,1]n. .

• Clearly, every internal aggregation function also is idempotent.

Example

• Projections, minimum, maximum and median (when n is odd) are the
best known examples of internal aggregation functions.

• The following function is also an internal aggregation function

As(x) =

{
0 if x = (0)n

πs(x)(x) otherwise where s(x) =

⌈
n∑

i=1

xi

⌉

• Let λ ∈ [0,1] and an internal aggregation function A. Then, the
function

Aλ(x) =
{

min(x) if A(x) ≤ λ
max(x) if A(x) > λ

is also an internal aggregation function.
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Commutativity

• Intuitively, A is commutative if the result does not depend on the order
of the arguments.

• A is commutative if for every permutation (p(1), . . . ,p(n)) of (1, . . . ,n)
and (x1, . . . , xn) ∈ [0,1]n, we have A(x1, . . . , xn) = A(xp(1), . . . , xp(n)).

Example

• The arithmetic mean, the product (P(x1, . . . , xn) =
n∏

i=1
xi ), the

geometric mean, the minimum, and the maximum are examples of
commutative aggregation functions.

• Given i ∈ {1, . . . ,n}, the projection πi and the function A(x , y) = xy

with the convention that 00 = 0, are examples of non-commutative
aggregation functions.
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Commutativity and ordering

• Notation: For each x ∈ [0,1]n, x↗ and x↘ denote the increasing and
decreasing ordering of x.

Proposition
Let A be an n-dimensional aggregation function. Then the functions
A↗,A↘ : [0,1]n → [0,1] defined by

A↗(x) = A(x↗) and A↘(x) = A(x↘)

are commutative n-dimensional aggregation functions.
Obviously, when A is commutative then A = A↗ = A↘.
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Neutral Element
• An element e ∈ [0,1] is a neutral element of A if for all x ∈ [0,1],

A(e, . . . ,e, x ,e, . . . ,e) = x .

• Not every aggregation function has a neutral element (for example
the arithmetic mean). But, if A has a neutral element then this one is
unique.

Example
Let A be an n-dimensional aggregation function such that
min ≤ A ≤ max. So given any e ∈ [0,1] fixed the function

Ae(x) =

 min(x) if x ≤ (e)n

max(x) if x ≥ (e)n

A(x) else

is an idempotent aggregation function with e as neutral element.

12 of 52



Neutral Element
Proposition
Let A1 and A2 be n-dimensional aggregation functions with neutral
elements e1 and e2, respectively. If A1 ≤ A2 then e2 ≤ e1.

Proof: suppose that e1 < e2. Then, e2 = A1(e2,e1, . . . ,e1) ≤
A2(e2,e1, . . . ,e1) ≤ A2(e2, . . . ,e2,e1) = e1 which is an contradiction.
Therefore, e2 ≤ e1. □

Corollary
If A ≤ min and A has a neutral element e, then e = 1.

Corollary
If A ≥ max and A has a neutral element a, then a is 0.
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Absorbing element

• a ∈ [0,1] is an absorbing element of A, if for each x1, . . . , xn−1 ∈ [0,1]
and i ∈ {1, . . . ,n}, we have that A(x1, . . . , xi−1,a, xi , . . . , xn−1) = a.

• Clearly, if A has an absorbing element, then it is unique.

Proposition
Let A1 and A2 be n-dimensional aggregation function with absorbing
elements a1 and a2, respectively. If A1 ≤ A2 then a1 ≤ a2.

Proof: a1 = A1(a1, . . . ,a1,a2) ≤ A2(a1, . . . ,a1,a2) = a2. □

Corollary
If A ≤ min then 0 is the absorbing element of A.

Proof: Direct from above Proposition, because 0 is the absorbing ele-
ment of the min. □
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Absorbing element

Corollary
If A ≥ max then 1 is the absorbing element of A.

• Note that there are aggregation functions with 0 as an absorbing
element that are greater than the minimum. For example, the
geometric mean.

• Similarly, there are aggregation functions that have 1 as an absorbing
element that are smaller than the maximum. For example, given an
aggregation function A such that A ≤ max, then the function:

AA(x) =
{

1 if max(x) = 1
A(x) otherwise

has 1 as the absorbing element and is smaller than max.
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Absorbing element

Example
For each a ∈ [0,1] the function

Aa(x) =

 0 if x = (0)n

1 if x = (1)n

a otherwise

is an n-dimensional aggregation function with a as absorbing element.

Proposition
If A has an absorbing element a ∈ (0,1) then A has no neutral element.

Proof: Let e be a neutral element of A. If a < e we have that
a = A(0,a . . . ,a) ≤ A(0,e, . . . ,e) = 0 and therefore a = 0 which is a
contradiction. In the case of e ≤ a we have that 1 = A(1,e, . . . ,e) ≤
A(1,a, . . . ,a) = a and therefore a = 1 which is a contradiction. □
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Linear aggregation functions

• A is shift-invariant if ∀λ ∈ [−1,1]

A(λ+ x1, . . . , λ+ xn) = A(x1, . . . , xn) + λ

whenever xi ∈ [0,1], xi + λ ∈ [0,1] and A(x1, . . . , xn) + λ ∈ [0,1] with
i = 1, . . . ,n.

• A is homogeneous if for each λ ∈ [0,1]

A(λx1, . . . , λxn) = λA(x1, . . . , xn)

whenever xi ∈ [0,1] with i = 1, . . . ,n.

• An aggregation function which is both, shift-invariant and
homogeneous is called of linear.

• All linear aggregation function is idempotent.

• The minimum, maximum, projections and arithmetic mean are
examples of linear aggregation functions.
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Classification of Aggregation Functions
There are several classifications of aggregation functions, but the best
known and accepted one is the one that considers the minimum and ma-
ximum as referents to obtain four classes of aggregation functions and,
except for the minimum and maximum itself, every aggregation function
belongs to one and just one of these classes.

• Averaging;

• Conjunctives;

• Disjunctives;

• Mixed.
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Averaging functions

• An aggregation function A is considered a averaging function if
min ≤ A ≤ max.

• The averaging result cannot exceed the highest value nor be below
the lowest value of the entries. This is important if we want to fusion
the opinion of several experts on how much a given alternative
satisfies a given criterion.

Proposition
A is an averaging function iff A is idempotent.
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Averaging functions based on weighting vectors

• In some situations it is necessary to consider that the inputs have
different weights. This is the case, for example, when in decision
making the assessment of a senior specialist on whether a given
alternative meets a criterion has greater weight than that of another
specialist with less qualifications.

• A vector w = (w1, . . . ,wn) ∈ [0,1]n is called of weighting vector if
n∑

i=1
wi = 1.

• Listed below are some examples of averaging functions based on an
arbitrary weighting vector w. Consider x = (x1, . . . , xn) ∈ [0,1]n

◦ Weighted arithmetic mean: Mw(x) =
n∑

i=1
wixi .

◦ Ordered weighted averaging (OWA):

owaw(x) = Mw↘(x) =
n∑

i=1
wix(i) with (x(1), . . . , x(n)) = x↘.
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Examples of averaging functions based on weighting vectors

• Reverse ordered weighted averaging (ROWA):

Rowaw(x) = Mw↗(x) =
n∑

i=1
wix(i) com (x(1), . . . , x(n)) = x↗.

• Weighted geometric mean: Gw(x) =
n∏

i=1
xwi

i .

• Weighted power mean: Pw,[r ](x) =
(

n∑
i=1

wix r
i

) 1
r

for a fixed r > 0.

• Weighted harmonic mean: Hw(x) =
(

n∑
i=1

wi
xi

)−1

with the convention

that wi
0 = 0.

• Sine trigonometric mean: SMw(x) = 2
π arcsin

(
n∑

i=1
wi sin(

π
2 xi)

)
.
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OWA-like averaging functions

• OWA is not a specific aggregation function, but rather a family of
them.

• Every OWA is a ROWA and vice versa.

• Every weighted averaging function supports an OWA-like version.

• For example,

◦ The ordered geometric mean is the following:

OWGw(x) = Gw(x↘) =
n∏

i=1

xwi
(i)

◦ Let r > 0. The ordered weighted power mean is the following:

OWPw,[r ](x) = Pw,[r ](x↘) =

(
n∑

i=1

wix r
(i)

) 1
r
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Choquet integrals

• Choquet integrals are a widely used family of aggregation functions
that generalize the Lebsegue integral.

• It was introduced in 1953 by the French mathematician Gustave
Choquet.

• The main characteristic of Choquet integrals is that they allow the
inputs to be aggregated in a way that not only considers the
importance of individual inputs, as is the case with weighted
averages, nor their magnitude, as is the case with averages weighted
orders, but also takes groups (or coalitions) into account.

• Choquet integrals are based on measurements.
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Fuzzy measures

Definition
A fuzzy measure is a function m : ℘({1, . . . , n}) → [0, 1] such that for all
X ,Y ⊆ {1, . . . , n} we have that

1. If X ⊆ Y then m(X ) ≤ m(Y );

2. m(∅) = 0 and m(Nn) = 1.

• Fuzzy measures theory considers a generalization of the notion of measure
where the additive property is replaced by a weak monotonicity property.

• The best known fuzzy measures are:

◦ Uniform measure: mU(X ) = |X |
n

◦ Dirac Measure w.r.t. i ∈ {1, . . . ,n}:

mi
D(X ) =

{
1 if i ∈ X
0 if i ̸∈ X
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Fuzzy measures examples
• additive measure w.r.t. a weighting vector ω = (w1, . . . ,wn):

mω(X ) =
∑
i∈X

wi .

• Symmetric measure w.r.t. a weighting vector ω = (w1, . . . ,wn):

mω
s (X ) =

|X |∑
i=1

wi .

• Power measure w.r.t. p > 0: mp
P(X ) =

(
|X |
n

)
.

• Bedregal relative measure: mR(X ) =

∑
i∈X

i

n∑
i=1

i
=

2
∑

i∈X
i

n(n+1) .
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Discrete Choquet integrals

Definition
Let m : ℘({1, . . . ,n}) → [0,1] be a fuzzy measure. The discrete
Choquet integral w.r.t. m is the function Cm : [0,1]n → [0,1] defined by

Cm(x) =
n∑

i=1

(x(i) − x(i−1))m(Γi) (2)

where x = (x1, . . . , xn) ∈ [0,1]n and (x(1), . . . , x(n)) is a permutation
increasing of x, that is, a permutation such that
0 = x(0) ≤ x(1) ≤ . . . ≤ x(n) and Γi = {(i), . . . , (n)}.

Proposition
Given a fuzzy measure m : ℘({1, . . . ,n}) → [0,1] the discrete Choquet
integral w.r.t. m is a linear and idempotent aggregation function.
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Theorem
An aggregation function A : [0,1]n → [0,1] is a Choquet integral, i.e.
A = Cm for some fuzzy measure m if and only if A is linear and additive
comonotone

• The OWA’s (and therefore the minimum, maximum, and the weighted
arithmetic mean) are Choquet integrals.

• Recently some generalizations of these integrals have been
proposed.
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Conjunctives Aggregation Functions

• Conjunctive aggregation unctions model the fuzzy conjunction, that
is, the logical “and” in fuzzy logic.

• An n-dimensional aggregation function A is conjunctive if A ≤ min.

• Therefore, every conjunctive aggregation function has 0 as an
absorbing element and if it has a neutral element, this is necessarily
1.

• In fact, every aggregation function with 1 as a neutral element is
conjunctive, but not every conjunctive aggregation function has a
neutral element, such as the function

A(x) = min(x2
1 , . . . , x

2
n ).

• Those aggregation functions that have 1 as a neutral element are
called semi-copulas.
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Triangular norms

• Triangular norms were introduced in 1942 by Menger to generalize
the axiom of triangular inequality of (metric) distances in metric
spaces probabilistic.

• The notion of triangular norm given by Menger was very general, as it
did not require the existence of a fixed neutral element nor
associativity.

• Later, Schweizer and Sklar divided the triangular Norms into t-norms
and t-conorms (the dual operation to t-norm), and in the case of
t-norms they treat them as a semigroup operation on the unitary
interval [0,1] with neutral element 1.

• Alsina, Trillas and Valverde in 1980 used t-norms to model fuzzy
conjunction, generalizing different interpretations to fuzzy conjunction
proposals until then.
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T-norms
Definition
T : [0,1]× [0,1] → [0,1] is a triangular norm (t-norm) if it satisfies the
following axioms:

(T1) T (x , y) = T (y , x) – Commutativity;

(T2) T (x ,T (y , z)) = T (T (x , y), z) – Associativity;

(T3) If x ≤ x ′ and y ≤ y ′ then T (x , y) ≤ T (x ′, y ′) –
Monotonicity;

(T4) T (x ,1) = x – 1-Identity.
• Note that for any t-norm T , since T (0,1) = 0, and that by

monotonicity T (0,0) ≤ T (0,1), then T (0, x) = 0 and by the
commutativity T (x ,0) = 0 for all x ∈ [0,1].

• Therefore, T (x , y) = x ∧ y when x , y ∈ {0,1}, that is, every t-norm
behaves like the classical conjunction when we only consider
Boolean values 0 and 1.

30 of 52



Examplos of t-norms

• Gödel: TG(x , y) = min(x , y)

• Łukasiewicz: TL(x , y) = max(x + y − 1,0)

• Product: TP(x , y) = xy

• Weak:

TW (x , y) =
{

0 if max(x , y) < 1
TG(x , y) otherwise

• Hamacher for γ ≥ 0: TH,γ(x , y) =
xy

γ+(1−γ)(x+y−xy)
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Disjunctive Aggregation Functions

• Disjunctive aggregation functions model fuzzy disjunction or the “or”
of fuzzy logic.

• An aggregation function A is disjunctive if max ≤ A.

• There is a duality between disjunctive and conjunctive aggregation
functions. Given a conjunctive aggregation function
A : [0,1]n → [0,1], the function Ad : [0,1]n → [0,1], defined by :

Ad (x1, . . . , xn) = 1 − A(1 − x1, . . . ,1 − xn)

is a disjunctive aggregation function.

• The duals of t-norms are called t-norms. Basically, a t-conorm is an
aggregation function of arity 2, which is commutative, associative and
has 0 as a neutral element.
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Mixed Aggregation Functions

• Mixed aggregation functions are aggregation functions that are
neither average, neither conjunctive nor disjunctive.

• An n-dimensional aggregate function A is mixed if there exists
x,y ∈ [0,1]n such that either A(x) < minx and miny < A(y), or,
A(x) < maxx and maxy < A(y). Therefore, mixed aggregation
functions are not comparable with the minimum or are not
comparable with the maximum.

• Mixed aggregation functions are useful in decision making when
some attributes are positive while others negative.

• For example, some symptoms can contribute to closing the diagnosis
of a patient while others may contribute to ruling out this diagnosis.
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Uninorms
• An important class of mixed aggregation functions is the class of

uninorms which are neither t-norms nor t-connorms.

• Uninorms are a generalization of the notion of t-norm and t-conorm.

• An aggregation function U : [0,1]2 → [0,1] is a uninorm if it is
commutative, associative and has a neutral element.

Proposition
Let U be a uninorm. U is a mixed aggregation function if and only if the
neutral element of U is different from 0 and 1.

Proposition
Let U : [0,1]2 → [0,1] be an uninorm with e ∈ [0,1] as neutral element.
If e > min(x , y) and max(x , y) > e then min(x , y) ≤ U(x , y) ≤ max(x , y).
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Aplications in Decision Making

• There are several methods in which fuzzy logic can assist in decision
making.

• Most of them use aggregation functions

• These methods can be classified into two:

◦ Based on fuzzy and
◦ Based on fuzzy decision matrices
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Decision making based on fuzzy decision matrices

• A fuzzy decision matrix is a [0,1]-valued matrix where the rows
represent the alternatives, the columns the criteria or attributes
considered, and the values in each position (i , j) represent how much
the i-th alternative meets the j-th attribute.

• Elements of multi-attribute and multi-expert decision making based
on decision matrices:

◦ A set E = {e1, . . . ,em} of experts
◦ A set X = {x1, . . . , xn} of alternatives
◦ A set A = {a1, . . . ,ap} of attributes or criteria
◦ A vector of weights w = (w1, . . . ,wp)

T for the attributes
◦ Decision matrices R1, . . . ,Rm of dimension n × p
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Proposed method for decision making based on fuzzy
decision matrices

Step 1: Aggregate the matrices R1 to Rm into a single matrix RC,
called of consensus decision matrix, defined for each
i = 1, . . . ,n and j = 1, . . . ,p, as:

RC ij = owaΛ(R1
ij , . . . ,R

m
ij ) (3)

where Λ = (λ1, . . . , λm) is the weight vector:

• If m is even: λi =
1

2
m
2 +2−i +

1
2

m
2 m

for every i = 1, . . . , m
2 ,

and λi = λm+1−i for every i = m
2 + 1, . . . ,m.

• If m is odd: λi =
1

2
m+1

2 +2−i
+ 1

2
m+1

2 m
+ 1

4m for every

i = 1, . . . , m+1
2 , and λi = λm+1−i for every

i = m+1
2 + 1, . . . ,m.
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Proposed method for decision making based on fuzzy
decision matrices

Step 2: For each alternative xi , with i = 1, . . . ,n, using the
weighted arithmetic mean, determine the total collective
index Oi as follows:

Oi = Mw(RC i1, . . . ,RC in) (4)

Step 3: Determine a ranking of alternatives based on the total
collective indices in such a way that xi > xj when Oi > Oj
and xi ∼ xj when Oi = Oj .
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Illustrative example
Consider the problem of purchasing a central air conditioning system.
Suppose that we have

• Three alternative of central air conditioning systems : {A1,A2,A3};

• Four attributes: a1 (economy), a2 (functionality), a3 (operability) and
a4 (longevity);

• The vector of weights for the attributes is:
w = (0.2134,0.1707,0.2805,0.3354).

• three experts: {p1,p2,p3};

• Each expert provides a grade to represent how much, in his opinion,
each one of the three alternatives satisfy each of the four criteria.
These expert assessments are placed in the form of Tables, as for
example:
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Illustrative Example: Expert Decision Matrices

Tabela: Decision matrix of p1 Table: Decision matrix of p2

R1 a1 a2 a3 a4 R2 a1 a2 a3 a4
A1 0.6 0.45 0.45 0.35 A1 0.7 0.45 0.65 0.55
A2 0.6 0.4 0.55 0.15 A2 0.75 0.55 0.65 0.55
A3 0.6 0.7 0.55 0.7 A3 0.55 0.65 0.6 0.4

Tabela: Decision matrix of p3.

R3 a1 a2 a3 a4

A1 0.6 0.35 0.55 0.45
A2 0.55 0.55 0.5 0.4
A3 0.4 0.4 0.45 0.55

40 of 52



Illustrative Example: Consensus Decision Matrix
As there are three experts (m = 3), the weighting vector is calculated as
follows:

λ1 = 1
23 + 1

3·22 + 1
4·3 = 1

8 + 1
6 = 0.2916

λ2 = 1
22 + 1

3·22 + 1
4·3 = 1

4 + 1
6 = 0.416

λ3 = 1
23 + 1

3·22 + 1
4·3 = 1

8 + 1
6 = 0.2916.

Determine the consensus decision matrix RC obtained from Tables R1,
R2 and R3 considering Equation (3). For example, RC11 is calculated as
follows:

RC11 = owaΛ(R1
11,R

2
11,R

3
11)

= owaΛ(0.6,0.7,0.6)
= 0.2916·0.6 + 0.416·0.6 + 0.2916·0.7
= 0.62916
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Illustrative Example: Consensus Decision Matrix

Tabela: Consensus decision matrix

RC a1 a2 a3 a4

A1 0.62916 0.42083 0.55 0.45
A2 0.62916 0.50625 0.564583 0.37083
A3 0.52083 0.5916 0.535416 0.55
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Illustrative Example: Total collective index and final ranking
The total collective index is calculated using Equation (??) as follows:

• O1 = 0.5216716

• O2 = 0,517220416

• O3 = 0,542262083

For example, below show how O1 was obtained.

O1 = Mw(0.62916,0.42083,0.55,0,45)
= 0.2134·0.62916 + 0.1707·0.42083 + 0.2805·0.55 + 0.3354·0.45
= 0.511305416

So, from this total collective index, we obtain the following ranking of al-
ternatives:

A3 > A1 > A2
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The Image Reduction using Aggregation
Functions
The image reduction process consists basically in a mechanism
that reduces the size of as we illustrate below.

−→

Figura: Illustration of the image reduction process.
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The Image Reduction using Aggregation
Functions

The greatest motivation to think about reducing an image is the
possibility of storing the same information using a smaller memory
space than the original one.

The problem is that by reducing an image, we lose some of the
original information, since there is no way to get the original image
from the reduced image.
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The Image Reduction using Aggregation
Functions

Definition:
An image in grayscale can be defined as a matrix M of size n × m,
with elements M(i , j) in the continuous interval [0,1]. Each element
M(i , j) of the matrix M represents one pixel.

Remark:
• A color image is obtained by combining three grayscale layers.
• For simplicity, we will only use grayscale images.
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The Image Reduction using GM Functions

In the figure below we see an example of 6x8 grayscale image.

Figura: Representation of an image 6 × 8 in grayscale.
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The Image Reduction using Aggregation
Functions

Among the many techniques of image reduction, we describe the
simple method used by Farias et al.1:

Image reduction algorithm:
To reduce an image we follow these steps:

1. Input a n × m image;

2. Input the scale of reduction, i.e., input natural numbers n0 and m0 such that n
n0

and m
m0

are natural numbers;

3. Partition the image into distinct blocks of size n0 × m0;

4. Choose an aggregation function A : [0, 1]n0·m0 −→ [0, 1];

5. Apply the selected function in each block;

6. Build the new image;

1A.D.S. Farias, V.S. Costa, L.R.A. Lopes, R.H.N. Santiago, B. Bedregal. On
Generalized Mixture Functions. Transactions on Fuzzy Sets and Systems,
Vol.1, No.2, (2022), 99–128.
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The Image Reduction using aggregation
Functions
In the figure below we illustrate the image reduction process.

Figura: Example of image reduction by blocks 3 × 3.
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Other Applications

• Classifier ensembles take a collection of classifiers that process the
same information and their output is combined in some way. In the
following paper, this combination is made with a generalization of the
Choquet integral:
Thiago V. V. Batista, Benjamı́n R. C. Bedregal, Ronei M. Moraes:
Constructing multi-layer classifier ensembles using the Choquet integral
based on overlap and quasi-overlap functions. Neurocomputing 500:
413-421 (2022)

• Applications of pseudo overlap (grouping) functions in multi-attribute
(group) decision-making,fuzzy mathematical morphology and image
processing are discussed in the following paper:
Xiaohong Zhang, Rong Liang, Humberto Bustince, Benjamı́n R. C. Bedregal,
Javier Fernández, Mengyuan Li, Qiqi Ou: Pseudo Overlap Functions, Fuzzy
Implications and Pseudo Grouping Functions with Applications. Axioms
11(11): 593 (2022)
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Other Applications

• A class of extended aggregation function was used in a wavelet-fuzzy
power quality diagnosis method which was evaluated an experimental
microgrid with different energy sources and load types.
D.H.S. Nolasco, F.B. Costa, E.S. Palmeira, D.K. Alves, B. Bedregal, T.O.A.
Rocha, R.L.A. Ribeiro, J.C.L. Silva. Wavelet–fuzzy power quality diagnosis
system with inference method based on overlap functions: Case study in an
AC microgrid. Eng. Appl. Artif. Intell. 85: 284–294 (2019)

• An accurate way to tackle classification problems is by using fuzzy
rule-based classification systems (FRBCS) and using a
generalization of Choquet integrals, we obtain an statistical tie with
the state of the art in FRBCS.
G. Lucca, G.P. Dimuro, J. Fernández, H. Bustince, B.. Bedregal, J.A. Sanz.
Improving the Performance of Fuzzy Rule-Based Classification Systems
Based on a Nonaveraging Generalization of CC-Integrals Named
CF1F2-Integrals. IEEE Trans. Fuzzy Syst. 27(1): 124–134 (2019)
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