

FORMALISING COMBINATORIAL MATHEMATICS: A MODULAR APPROACH

CHELSEA EDMONDS | c.l.edmonds@sheffield.ac.uk

Research Associate | University of Sheffield

UnB Summer Workshop in Mathematics

8th of February 2024

PhD Work supported by supervisor: Prof. Lawrence Paulson

PhD Research funded by a joint Cambridge Australia Scholarship and Cambridge Department of Computer Science Studentship

Presentation supported by the EPSRC through the COVERT Project Grant

PRESENTATION OUTLINE

- An introduction to Isabelle/HOL & Locales
- The Motivating Problem
- A Basic Hierarchy Combinatorial Design Theory
- Locale Reasoning Patterns
 - Locale Interactions
 - Rewriting
 - Mutual & Reverse Sublocales
- Proofs with Locales
 - Using locale structures in proofs
 - Using locales to structure proofs
- Advantages vs Limitations

FORMALISING MATHEMATICS

WHAT IS FORMALISED MATHEMATICS?

- Formal Proofs that are machine checked by an underlying core axiomatic foundation.
- There are many different "proof assistants" that do this kind of work: Isabelle/HOL, HOL Light, Lean, Coq etc.

```
theorem assumes "prime p" shows "sqrt p \notin \mathbb{Q}"
proof
  from <prime p> have p: "l < p" by (simp add: prime_def)</pre>
 assume "sqrt p \in \mathbb{O}"
  then obtain m n :: nat where
      n: "n \neq 0" and sqrt_rat: "!sqrt p! = m / n"
    and "coprime m n" by (rule Rats_abs_nat_div_natE)
 have eq: m^2 = p * n^{2m}
  proof -
    from n and sqrt rat have "m = {sqrt p; * n" by simp
   then show m^2 = p * n^2
      by (metis abs of nat of nat eq iff of nat mult power2 eq square real sqrt abs2 rea
  ged
  have "p dvd m ∧ p dvd n"
  proof
   from eq have "p dvd m<sup>2</sup>" ...
                                                                      sledgehammer proofs
   with <prime p> show "p dvd m" by (rule prime_dvd_power_nat)
    then obtain k where "m = p * k"...
    with eq have "p * n^2 = p^2 * k^2" by (auto simp add: power2_eq_square ac_simps)
    with <prime p> show "p dvd n"
      by (metis dvd triv left nat mult dvd cancell power2 eq square prime dvd power nat
  ged
  then have "p dvd gcd m n" by simp
  with <coprime m n> have "p = 1" by simp
  with p show False by simp
ged
```

(`!p. prime p ==> ~rational(sqrt(&p))`,

GEN_TAC THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[] THEN
DISCH_THEN(CHOOSE_THEN SUBST1_TAC o MATCH_MP IRRATIONAL_SQRT_NONSQUARE) THEN
REWRITE_TAC[PRIME_EXP; ARITH_EQ]);;

Isabelle vs HOL Light: Proof of Irrationality

WHY FORMALISE?

ANNALS OF MATHEMATICS

Princeton University & Institute for Advanced Study

About	Editorial Board	Submiss
About	Editorial Board	Submis

ion Guidelines Subscriptions

criptions Contact

Quasi-projectivity of moduli spaces of polarized varieties

Pages 597-639 from Volume 159 (2004), Issue 2 by Georg Schumacher, Hajime Tsuji

Abstract

By means of analytic methods the quasi-projectivity of the moduli space of algebraically polarized varieties with a not necessarily reduced complex structure is proven including the case of nonuniruled polarized varieties.

ANNALS OF MATHEMATICS

Princeton University & Institute for Advanced Study

About	Editorial Board	Submission Guidelines	Subscriptions	Contact		
Non-quasi-projective moduli spaces Pages 1077-1096 from Volume 164 (2006), Issue 3 <i>by János Kollár</i>						
Abstract						
We show that every smooth toric variety (and many other algebraic spaces as well) can be realized as a moduli space for smooth, projective, polarized varieties. Some of these are not quasi-projective.						

This contradicts a recent paper (Quasi-projectivity of moduli spaces of polarized varieties, *Ann. of Math.***159** (2004) 597–639.).

¹ The result of Problem 11 contradicts the results announced by Levy [1963b]. Unfortunately, the construction presented there cannot be completed.

² The transfer to ZF was also claimed by Marek [1966] but the outlined method appears to be unsatisfactory and has not been published.

³ A contradicting result was announced and later withdrawn by Truss [1970].

⁴ The example in Problem 22 is a counterexample to another condition of Mostowski, who conjectured its sufficiency and singled out this example as a test case.

⁵ The independence result contradicts the claim of Felgner [1969] that the Cofinality Principle implies the Axiom of Choice. An error has been found by Morris (see Felgner's corrections to [1969]).

WHY FORMALISE?

To validate complex proofs

To reveal hidden assumptions, proof steps, and mathematical insights

To create central libraries of verified mathematical knowledge

To benefit from advances in automation and technology

Ultimate Goal: Augment Human Intelligence

FORMALISATION CHALLENGES

- Very quickly growing libraries
- Lots of **duplication**
- Theorem specific libraries
- Limited reusability of many results
- Limited ability to naturally use mathematical techniques
- Need for general techniques & modular & extensible libraries

INTRODUCTION TO ISABELLE & LOCALES

ISABELLE/HOL

- Simple type theory
- Sledgehammar automated proof search.
- Search tools: Query Search, Find Facts, SErAPIS
- The Isar structured proof language
- Interactive Development Environment
- Extensive existing libraries in Maths & Computer Science
- Additional features: Code generation, modularity, polymorphism, documentation generation ...

```
theorem assumes "prime p" shows "sqrt p \notin \mathbb{Q}"
proof
  from <prime p> have p: "l < p" by (simp add: prime def)</pre>
  assume "sqrt p \in \mathbb{Q}"
  then obtain m n :: nat where
      n: "n \neq 0" and sqrt rat: "!sqrt p! = m / n"
    and "coprime m n" by (rule Rats abs nat div natE)
  have eq: m^2 = p * n^{2n}
  proof -
    from n and sqrt rat have "m = !sqrt p! * n" by simp
    then show m^2 = p * n^{2m}
      by (metis abs of nat of nat eq iff of nat mult power2 eq square real sqrt abs2 rea
  ged
  have "p dvd m ∧ p dvd n"
  proof
                                                                      sledgehammer proofs
    from eq have "p dvd m2" ...
    with <prime p> show "p dvd m" by (rule prime_dvd_power_nat)
    then obtain k where "m = p * k" ...
    with eq have "p * n^2 = p^2 * k^2" by (auto simp add: power2_eq_square ac_simps)
    with <prime p> show "p dvd n"
      by (metis dvd_triv_left nat_mult_dvd_cancell power2_eq_square prime_dvd_power_nat
  ged
  then have "p dvd gcd m n" by simp
  with <coprime m n> have "p = 1" by simp
  with p show False by simp
ged
```

LOCALE BASICS

 Locales are Isabelle's module system. From a logical perspective, they are simply persistent contexts.

$$\wedge x_1 \dots x_n. \llbracket A_1; \dots; A_m \rrbracket \Rightarrow C.$$

• A simple example (taken from the Locales tutorial):

LOCALE BASICS – INHERITANCE & INTERPRETATIONS

We have direct inheritance

locale lattice = partial_order +
 assumes ex_inf: "∃inf. is_inf x y inf"
 and ex_sup: "∃sup. is_sup x y sup"
begin

And indirect inheritance

 ${\bf sublocale total_order} \subseteq {\tt lattice}$

Interpretations (global & local)

```
interpretation int: partial_order "(≤) :: [int, int] ⇒ bool"
    rewrites "int.less x y = (x < y)"
proof -</pre>
```

THE MOTIVATING PROBLEM

MOTIVATING PROBLEM – LARGE HIERARCHIES

THE CHALLENGES

4}, {0, 5, 6}, {1,

3, 5}, {1, 4, 6},

 $\{2, 3, 6\}, \{2, 4, 5\}$

Design Rep

The Fano Plane

FIRST ATTEMPTS...

Approach 1: Typeclasses?

```
class incidence_system_class =
  fixes D :: "'a design"
  assumes wellformed: "b ∈# blocks D ⇒ b ⊆ points D"
  record 'a block_design = "'a design" +
  size :: "nat"
  record 'a balanced_design = "'a design" +
  balance :: "nat"
  t :: nat
  record bibd = "'a block_design" + "'a balanced_design"
  (* X Can't combine records *)
  class block_design = incidence_system_class +
  fixes k :: "nat"
  (* X Can't add new type to class *)
```

Approach 2: Records + Locales?

```
record 'a design =
  points :: "'a set "
  blocks :: "'a set multiset"
```

```
locale incidence_system =
  fixes D :: "'a design" (structure)
  assumes wf: "b ∈# blocks D ⇒ b ⊆ points D"
```

Messier notation, less automation.

THE LOCALE-CENTRIC APPROACH

"The software engineering approach to formalising mathematics!"

- Use only locales to model different structures (no complex types/records etc)
- Use local definitions inside locale contexts
- Type-synonyms can be used with care to bundle objects
- The "Little Theories" approach for locale definitions
- Avoid duplication at all costs!
- First Introduced by Ballarin in a paper on "Formalising an Abstract Algebra Textbook" (2020)

```
record 'a design =
  points :: "'a set "
  blocks :: "'a set multiset"
locale incidence_system =
  fixes D :: "'a design" (structure)
  assumes wf: "b ∈# blocks D ⇒ b ⊆ points D"
```

```
locale incidence_system =
  fixes point_set :: "'a set" ("\mathcal{V}")
  fixes block_collection :: "'a set multiset" ("\mathcal{B}")
  assumes wellformed: "b \in# \mathcal{B} \implies b \subseteq \mathcal{V}"
begin
locale design = finite_incidence_system +
  assumes blocks_nempty: "bl \in# \mathcal{B} \implies bl \neq {}"
begin
```

A BASIC HIERARCHY

COMBINATORIAL DESIGN THEORY

INTRO TO COMBINATORIAL DESIGNS

- A design is a finite set of points *V* and a collection of subsets of *V*, called blocks *B*.
- Applications range from experimental and algorithm design, to security and communications.
- What makes a design interesting? Properties:
 - The set of block sizes K
 - The set of replication numbers R
 - The set of t-indices Λ_t
 - The set of intersection numbers *M*
- Language varies: designs, hypergraphs, matrices, geometries, graph decompositions, codes ...

Combinatorial Designs/Hypergraphs had not previously been formalised

THE HIERARCHY

<code>locale t_design = incomplete_design + t_wise_balance + assumes block_size_t: "t \leq k"</code>

locale bibd = t_design V B k 2 Λ
for point_set ("V") and block_collection ("B")
 and u_block_size ("k") and index ("Λ")

EXTENDING THE HIERARCHY

Other Design Classes: Group Divisible Designs (GDDs), Pairwise Balanced Designs (PBDs), design isomorphisms Connections with Graph Theory (Noschinski, 2015)

ANOTHER HIERARCHY – GRAPH THEORY

Further extensions done for finite and non-empty properties, as well as connectivity, subgraphs, trianglefree graphs etc. See Archive of Formal Proofs.

WHY GRAPHS AGAIN?

type_synonym uvert = nat
type_synonym uedge = "nat set"
type_synonym ugraph = "uvert set × uedge set"

record ('v, 'w) graph =
 nodes :: "'v set"
 edges :: "('v × 'w × 'v) set"

Basic Undirected Graphs (Noschinski)

Graphs "For Purpose" (Nordhoff & Lammich) record ('a,'b) pre_digraph =
 verts :: "'a set"
 arcs :: "'b set"
 tail :: "'b ⇒ 'a"
 head :: "'b ⇒ 'a"
 General Digraphs
 (Noschinski)

- Existing libraries had notable limitations or were built for purpose
- Notably there was no general library for undirected graphs (and digraphs introduce unnecessary complication to formal reasoning)

AND ANOTHER HIERARCHY....? - HYPERGRAPHS

Realistically, this is just designs... with another language – so we use direct inheritance!

LOCALE REASONING PATTERNS

MODELLING INTERACTIONS

BASIC PROOF TACTICS

There are two main tactics (currently) for locales: unfold_locales & intro_locales

BASIC PROOF TACTICS

qed

- There are two main tactics (currently) for locales: unfold_locales & intro_locales
- This is a proof using locale constructions

```
Transformation definition
definition complement blocks :: "'a set multiset" ("(\mathcal{B}^{C})") where
"complement blocks \equiv {# bl<sup>c</sup> . bl \in# \mathcal{B} #}"
                                                                                Local interpretation
lemma complement bibd:
  assumes "k < v - 2"
  shows "bibd \mathcal{V} (complement blocks) (v - k) (b + \Lambda - 2*r)"
                                                                                                         Individual proof
proof -
  interpret des: incomplete design \mathcal{V} "(complement blocks)" "(v - k)"
                                                                                                         goals from
    using assms complement incomplete by blast
                                                                                                         unfold_locales
  show ?thesis proof (unfold locales, simp all)
    show "2 < des.v" using assms block size t by linarith
    show "Aps. ps \subseteq \mathcal{V} \implies card ps = 2 \implies
      points index (complement blocks) ps = b + \Lambda - 2 * (\Lambda * (des.v_1) div (k - 1))"
      using complement bibd index by simp
    show "2 < des.v - k" using assms block size t by linarith
  qed
```

LOCALE INTERACTIONS – COMBINING LOCALES

```
locale incidence_system_isomorphism = source: incidence_system \mathcal{V} \mathcal{B} + target: incidence_system \mathcal{V} \mathcal{B}'
  for "\mathcal{V}" and "\mathcal{B}" and "\mathcal{V}'" and "\mathcal{B}'" + fixes bij map ("\pi")
  assumes bij: "bij betw \pi \mathcal{V} \mathcal{V}"
  assumes block img: "image mset ((`) \pi) \mathcal{B} = \mathcal{B}'"
begin
lemma design iso points indices imp:
                                                                                                                         Source and target
   assumes "x ∈ source.point indices t"
   shows "x 	ext{ target.point indices t"
                                                                                                                          references to
proof -
                                                                                                                          distinguish objects
   obtain ps where t: "card ps = t" and ss: "ps \subseteq \mathcal{V}" and x: "\mathcal{B} index ps = x" using assms
                                                                                                                          in proofs
     by (auto simp add: source.point indices def)
   then have x val: "x = \mathcal{B}' index (\pi ` ps)" using design iso points index eq by auto
   have x img: " (\pi \text{ } \text{ps}) \subseteq \mathcal{V}'"
     using ss bij iso points map by fastforce
   then have "card (\pi ` ps) = t" using t ss iso points ss card by auto
   then show ?thesis using target.point indices elem in x img x val by blast
                                                                                                                              Can also work
qed
                                                                                                                              outside of locale
                                                                                                                              context
definition isomorphic designs (infixl "\cong_D" 50) where
"\mathcal{D} \cong_{D} \mathcal{D}' \longleftrightarrow (\exists \pi \text{ . design isomorphism (fst } \mathcal{D}) \text{ (snd } \mathcal{D}) \text{ (fst } \mathcal{D}') \text{ (snd } \mathcal{D}') \pi)"
```

SUBLOCALE CHAINS

Introduced by Ballarin as the "functor pattern".

 \rightarrow direct inheritance ---> sublocale relation

EQUIVALENT STRUCTURES? - REVERSE SUBLOCALES

Reverse sublocales: sublocale in opposite direction of direct inheritance.

```
sublocale fin hypergraph \subseteq finite incidence system \mathcal{V} E
  rewrites "point replication number E v = degree v" and "points index E vs = degree set vs"
  by unfold locales (simp all add: wellformed finite point replication number def degree def
       degree set def points index def)
locale fin hypersystem = hypersystem + finite incidence system \mathcal{V} E
                                                                                                                   e_3
                                                                                                                 V7
     locale hypergraph = hypersystem + inf design \mathcal{V} E
                                                                                                   Block 1
                                                                                                          (C1, D1)
                                                                                                                 (C2, D2)
                                                                                                          (C1, D2)
                                                                                                                 (C2, D3)
                                                                                                   Block 2
                                                                                                   Block 3
                                                                                                          (C1, D3)
                                                                                                                 (C2, D1)
             sublocale inf design \subseteq hypergraph \mathcal{V} \mathcal{B}
                                                                                                          (C1, D1)
                                                                                                                 (C2, D3)
                                                                                                   Block 4
                by unfold locales (simp add: wellformed)
                                                                                                   Block 5
                                                                                                          (C1, D2)
                                                                                                                 (C2, D1)
                                                                                                          (C1, D3)
                                                                                                                 (C2, D2)
                                                                                                   Block 6
```

(C3, D3)

(C3, D1)

(C3, D2)

(C3, D2)

(C3, D3)

(C3, D1)

EQUIVALENT STRUCTURES? - MUTUAL SUBLOCALES

$R = \{(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2), (3, 4), (4, 3)\}$

E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}

assumes sym adj: "sym adj rel"

locale ulgraph = graph_system +
 assumes edge_size: "e \in E \implies card e > 0 \land card e \leq 2"

EQUIVALENT STRUCTURES? - MUTUAL SUBLOCALES

text < Temporary interpretation - mutual sublocale setup >
interpretation ulgraph V edge_set by (rule is_ulgraph)

interpretation ulgraph_rel V adj_relation by (rule is_ulgraph_rel)

+ lemmas on equivalences of definitions

sublocale ulgraph_rel ⊆ ulgraph "V" "edge_set"
 rewrites "ulgraph.adj_relation edge_set = adj_rel"
 using local.is_ulgraph rel_edges_is by simp_all

sublocale ulgraph ⊆ ulgraph_rel "V" "adj_relation"
 rewrites "ulgraph_rel.edge_set adj_relation = E"
 using is_ulgraph_rel edges_rel_is by simp_all

LOCALES IN PROOFS

Locales work for modelling

complex hierarchies....

But are they easy to use to

formalise mathematical results?

BASICS – PROOFS OF PROPERTIES

Locales are designed to be a module system – so working inside the context is EASY.

```
Lemma necess_cond_1_lhs:
assumes "x ∈ V"
shows "size ({# p ∈# (mset_set (V - {x}) ×# {# bl ∈# B . x ∈ bl #}). fst p ∈ snd p#})
= (B rep x) * (k - 1)"
(is "size ({# p ∈# (?M ×# ?B). fst p ∈ snd p#}) = (B rep x) * (k - 1) ")
```


USING SYMMETRIC INSTANCES

```
lemma bipartite_sym: "bipartite_graph V E Y X"
using partition ne edge_betw all_bi_edges_sym
by (unfold_locales) (auto simp add: insert_commute)
```

```
lemma edge size degree sumY: "card E = (\sum y \in Y \cdot degree y)"
                                                                                               property. Can be at a local
proof -
                                                                                               and theory level.
 have "(\sum y \in Y \cdot degree y) = (\sum y \in Y \cdot card(neighbors ss y X))"
    using degree neighbors ssY by (simp)
  also have "... = card (all edges between X Y)"
    using card all edges betw neighbor
    by (metis card all edges between commute partitions finite(1) partitions finite(2))
 finally show ?thesis
    by (simp add: card edges between set)
qed
lemma edge size degree sumX: "card E = (\sum y \in X \cdot degree y)"
proof -
 interpret sym: fin bipartite graph V E Y X
    using fin bipartite sym by simp
 show ?thesis using sym.edge size degree sumY by simp
qed
```

Interpret for symmetric

MULTIPLE INSTANCES OF STRUCTURE

This is inside a GDD locale itself!

NOTATION TRICKS – REASONING OUTSIDE OF CONTEXT

APPLYING NOTATION TRICKS – WORKING OUTSIDE A CONTEXT

PROBABILISTIC PROOFS: COMBINING LOCALES ACROSS DISCIPLINES

```
locale dependency_graph = sgraph "V :: 'a set set" E + prob_space "M :: 'a measure" for V E M +
   assumes vin_events: "V ⊆ events"
   assumes mis: "∧ A. A ∈ V ⇒ mutual_indep_set A (V - ({A} ∪ neighborhood A))"
```

- Locales can be combined no matter their "mathematical" context
- This combines probability with graph theory

PROBABILISTIC PROOFS: "TRANSFERRING" INFORMATION ACROSS LOCALES

- Success story: Undirected Graph Library was easily integrated with formalisation also involving locales from abstract algebra and probability theory
- This formalised the Balog-Szemerédi-Gower's theorem a substantial and relatively recent result in Additive combinatorics (joint work with A. Koutsoukou-Argyraki, M. Baksys).

```
interpret P1: prob_space "uniform_count_measure X"
interpret P2: prob_space "uniform_count_measure X2"
interpret P3: prob space "uniform count measure Y"
```

```
interpret H: fin_bipartite_graph "(?X1 \cup Y)" "{e \in E. e \subseteq (?X1 \cup Y)}" "?X1" "Y"

let ?E_loops = "mk_edge ` {(x, x') | x x'. x \in X2 \land x' \in X2 \land

(H.codegree_normalized x x' Y) \geq ?\delta ^ 3 / 128}"

interpret \Gamma: ulgraph "X2" "?E_loops"
```

```
have neighborhood_unchanged: "∀ x ∈ ?X1. neighbors ss x Y = H.neighbors ss x Y"
using neighbors ss def H.neighbors ss def vert adj def H.vert adj def by auto
then have degree_unchanged: "∀ x ∈ ?X1. degree x = H.degree x"
using H.degree_neighbors_ssX degree_neighbors_ssX by auto
```

PROBABILISTIC PROOFS: A LOCALE FRAMEWORK

To "introduce randomness" we must define a probability space (Ω, \mathcal{F}, P) formally

PROBABILISTIC PROOFS: A LOCALE FRAMEWORK

PROBABILISTIC PROOFS: A VERTEX COLOURING SPACE EXAMPLE

```
locale vertex colour space = fin hypergraph nt +
  fixes n :: nat (*Number of colours *)
  assumes n lt order: "n < order"
  assumes n not zero: "n \neq 0"
sublocale vertex colour space \subseteq vertex prop space \mathcal{V} \in \{0, ., <n\}^*
  rewrites "\Omega U = C^{n}"
proof -
  have "\{0...<n\} \neq \{\}" using n not zero by simp
  then interpret vertex prop space \mathcal{V} \in \{0, ., <n\}
    by (unfold locales) (simp all)
  show "vertex prop space \mathcal{V} \in \{0, .., <n\}" by (unfold locales)
  show "\Omega U = C^{n}"
    using \Omega def all n vertex colourings alt by auto
ged
```

Context contains general lemmas on vertex colourings for any future applications of the probabilistic method to colourings!

PROBABILISTIC PROOFS: FRAMEWORK IN ACTION

Proposition 1.3.1 [Erdős (1963a)] Every n-uniform hypergraph with less than 2^{n-1} edges has property B. Therefore $m(n) \ge 2^{n-1}$.

Proof. Let H = (V, E) be an *n*-uniform hypergraph with less than 2^{n-1} edges. Color V randomly by two colors. For each edge $e \in E$, let A_e be the event that e is monochromatic. Clearly $\Pr[A_e] = 2^{1-n}$. Therefore

$$\Pr\left[\bigvee_{e \in E} A_e\right] \le \sum_{e \in E} \Pr\left[A_e\right] < 1$$

and there is a two-coloring without monochromatic edges.

context fin kuniform hypergraph nt beain **proposition** erdos propertyB: **assumes** "size $E < (2^{k} - 1)$ " assumes "k > 0"shows "has property B" proof -(* (1) Set up the probability space: "Colour V randomly with two colours" *)**interpret** P: vertex colour space $\mathcal{V} \in \mathcal{E}$ 2 by unfold locales (auto simp add: order ge two) (* (2) define the event to avoid - monochromatic edges *) **define** A where "A $\equiv (\lambda \ e, \{f \in C^2, mono \ edge \ f \ e\})$ " (* (3) Calculation 1: Clearly $Pr[Ae] = 2^{(1-n)}$. *) have pe: " \land e. e \in set mset $E \implies P.p$ ob {f $\in C^2$. mono edge f e} = 2 powi (1 - int k)" using P.prob monochromatic edge uniform assms(1) by fastforce (* (3) Calculation 2: Have Pr (of Ae for any e) < Sum over e (Pr (A e)) < 1 *) have " $(\sum e \in set mset E, P, prob(A e)) < 1$ " proof have "int k - 1 = int (k - 1)" using assms by linarith then have "card (set mset E) < 2 powi (int k - 1)" using card size set mset[of E] assms by simp then have " $(\sum e \in (\text{set mset E}), P, \text{prob } (A e)) < 2 \text{ powi} (\text{int } k - 1) * 2 \text{ powi} (1 - \text{int } k)$ " unfolding A def using pe by simp **moreover have** "((2 :: real) powi ((int k) - 1)) * (2 powi (1 - (int k))) = 1" using power int add[of 2 "int k - 1" "1- int k"] by force ultimately show ?thesis using power int add[of 2 "int k - 1" "1- int k"] by simp aed moreover have "A ((set mset E) \subset P.events" unfolding A def P.sets eg by blast (* (4) obtain a colouring avoiding bad events *) ultimately obtain f where "f $\in C^2$ " and "f $\notin \bigcup (A \land (set mset E))$ " using P.Union bound obtain fun[of "set mset E" A] finite set mset P.space eq by auto thus ?thesis using event is proper colouring A def is n colourable def by auto ged

PROBABILISTIC PROOFS: FRAMEWORK IN ACTION

LOCALES: ADVANTAGES VS LIMITATIONS

OVERVIEW: ADVANTAGES & LIMITATIONS

Advantages

- Facilitates a "little theories" approach
- Removes duplication
- Increases flexibility and extensibility.
- Easy hierarchy manipulation
- Significant notational benefits.
- Proofs became much neater.
- Transfer of properties
- More modular proofs & proof techniques

Limitations

- Lack of Automation
- Increasingly complex locale hierarchy, where sublocale relationships must be maintained.
- Using locale specifications outside of a locale context lacks support (Notational etc)
- Can't naturally define definitions involving multiple instances of structures

KEY SUCCESSES SO FAR

This work in combinatorial structure hierarchies

Extensions on this work to create a modular proof framework for the probabilistic method.

The original fundamental work by Ballarin on Algebra (https://dl.acm.org/doi/abs/10.1007/s10817-019-09537-9

Work on formalising Schemes in Simple Type Theory by Bordg, Paulson, & Li (https://arxiv.org/abs/2104.09366)

Work on formalising omega categories (Bordg & Mateo) https://dl.acm.org/doi/abs/10.1145/3573105.3575679

RESULTS PROVED USING LOCALE-CENTRIC STRUCTURE

- Design Properties
 - Necessary conditions/basic constructions (BIBD's, symmetric, derived, residual)
 - Symmetric Intersection Theorem
 - Wilson's construction
 - Bose's inequality
 - Fisher's Inequality (& many variations)
- Szemerédi's Regularity Lemma/Roth's Theorem (alteration from published version)
- Balog-Szemerédi-Gowers theorem
- Lovász Local Lemma
- Bounds on vertex colouring properties of hypergraphs.

(and more...)

CONCLUDING THOUGHTS

CONTACT ME! C.L.EDMONDS@SHEFFIELD.AC.UK

- Locales have a lot of potential to be the new "go-to" in Isabelle for large hierarchies relying flexibility, modularity, and transference of data
 - Not limited to mathematical hierarchies!
- Next steps
 - Increase automation
 - More natural ways to work with locales outside contexts.
 - More specific tactics, tools, and tutorials.
- Relevant Papers:
 - A Modular First Formalisation of Combinatorial Design Theory (with L. Paulson)
 - A Formalisation of the Balog-Szemerédi-Gowers Theorem in Isabelle/HOL (with A. Koutsoukou-Argyraki, M. Baksys, E.)
 - Formal Probabilistic Methods for Combinatorial Structures using the Lovász Local Lemma (with L. Paulson)
 - To come: paper on overall approach!