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Quantitative Weak Linearisation

Linearisation: What do we mean by linearisation:

“Linearisation as the process of transforming/relating/simulating

non-linear functions in/to/using equivalent linear functions”

Weak: We consider a restricted class of linear terms:

“A λ-term t is weak-linear if every β-redex in any reduction

sequence starting from t are non duplicating”.

Quantitative: Non-idempotent intersection types, introduced

independently by Gardner and Kfoury. Its relation with linear logic

was highlighted in De Carvalho’s thesis.
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Quantitative Types



The λ-calculus

Proposed by Church in 19321.

Terms t := x | t t |λx .t

Computations (reductions) executed by a unique rule:

(λx .t) s −→ t{x\s} (β)

Some renaming may be needed:

λx .t −→ λy .t{x\y} (α)

1A. Church: A set of postulates for the foundation of logic.

Annals of Math 33(2):346–366, 1932.

3



Intersection Types Systems (ITS)

Terms in an ITS can have more than one type:

x : α→ β ∩ α

where ∩ is commutative, associative and idempotent:

τ ∩ τ = τ

x : {α→ β} ` x : α→ β x : {α} ` x : α

x : {α→ β, α} ` xx : β

` λx .xx : {α→ β, α}→β
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ITS for Strong Normalising Terms

(types) σ, τ ::= α | R→σ (int-types) R ::= {σk}k∈K

Γ ` t : τ

Γ\\ x ` λx .t : Γ(x)→τ x : {τ} ` x : τ

Γ ` t : R→τ ∆ ` u : R

Γ + ∆ ` t u : τ

∆ ` t : σ

∆ ` t : {}

(∆k ` t : σk)k∈K |K | > 0

+k∈K∆k ` t : {σk}k∈K
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Quantitative Types

Quantitative information is obtained with a non-idempotent ∩:

τ ∩ τ 6= τ

Idempotent Non-idempotent

{x : σ → σ → τ, y : σ} ` xyy : τ {x : σ → σ → τ, y : σ ∩ σ} ` xyy : τ

For (λx .λy .xyy)uv there is a single derivation for v in the

idempotent system, but two copies in its reduct uvv

Reduction decreases the size of derivations in the non-idempotent

system
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NITS for Strong Normalising Terms

(types) σ, τ ::= α | A→σ (multi-types) A ::= [σk ]k∈K

Γ ` t : τ

Γ\\ x ` λx .t : Γ(x)→τ x : [τ ] ` x : τ

Γ ` t : A→τ ∆ ` u : A

Γ + ∆ ` t u : τ

∆ ` t : σ

∆ ` t : [ ]

(∆k ` t : σk)k∈K |K | > 0

+k∈K∆k ` t : [σk ]k∈K
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Quantitative Types

• Antonio Bucciarelli, Delia Kesner, Daniel Ventura:

Non-idempotent intersection types for the Lambda-Calculus.

Log. J. IGPL 25(4): 431-464 (2017)

• Delia Kesner, Daniel Ventura: Quantitative Types for the

Linear Substitution Calculus. IFIP TCS 2014: 296-310

• Delia Kesner, Daniel Ventura: A resource aware semantics for

a focused intuitionistic calculus. Math. Struct. Comput. Sci.

29(1): 93-126 (2019)

• Delia Kesner, Löıc Peyrot, Daniel Ventura: Node Replication:

Theory And Practice. Log. Methods Comput. Sci. 20(1)

(2024)
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Tight Types and Exact Measures

Minimal typings = all and only information

Tightness was introduced by Accattoli, Graham-Lengrand and

Kesner, to effectively capture minimal typings

This technique has been used in the λ-calculus to extract exact

measures for several strategies

• call-by-value, call-by-need, linear-head, etc...

Tight types are used to type persistent terms:

(λx .x)(λx .x)

We say that (λx .x) is consuming and (λx .x) is persistent.
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Quantitative (Tight) Types

The sets of types (T ) and multi-types are given by the following

grammars:

(tight-types) t ::= •M | •N
(types) σ, τ ::= t | A→σ

(multi-types) A ::= [σk ]k∈K

• Use different typing rules for persistent and consuming terms

• A derivation Γ ` M : τ is tight if both Γ and τ are tight

Tight constants •M and •N are related to normal/neutral forms:

M ::= N | λx .M N ::= x | N M
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Quantitative (Tight) Types

x : [τ ] ` x : τ

Γ ` t : τ

Γ\\ x ` λx .t : Γ(x)→τ

Γ ` t : t tight(Γ(x))

Γ\\ x ` λx .t : •M

Γ ` t : A→τ ∆ ` u : A

Γ + ∆ ` t u : τ

Γ ` t : •N ∆ ` u : t

Γ + ∆ ` t u : •N

(∆k ` t : σk)k∈K |K | > 0

+k∈K∆k ` t : [σk ]k∈K

∆ ` t : σ

∆ ` t : [ ]
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Example

Consider t ≡ (λx .xIx)∆, with I ≡ λz .z and ∆ ≡ λy .yy . Let

B = [[[•M]→•M]→ [•M]→•M︸ ︷︷ ︸
τ1

, [•M]→•M︸ ︷︷ ︸
τ2

] and

A = [•M,B→ [•M]→•M︸ ︷︷ ︸
τ3

]. Let Φ be:

x : [•N ] ` x : •N x : [•N ] ` x : •N
x : [•N , •N ] ` xx : •N

` ∆ : •M

x : [τ1] ` x : τ1

x : [τ2] ` x : τ2

x : [τ2] ` x : [τ2]

x : B ` xx : [•M]→•M
` ∆ : τ3

` ∆ : A
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Example (cont.)

Let then ΦI be:

x : [[•M]→•M] ` x : [•M]→•M
` I : τ1

y : [•M] ` y : •M
` I : τ2

` I : B

We have the following tight derivation for t:

x : [τ3] ` x : τ3 ΦI

x : [τ3] ` xI : [•M]→•M
x : [•M] ` x : •M
x : [•M] ` x : [•M]

x : A ` xIx : •M
` (λx .xIx) : A→•M Φ

` (λx .xIx)∆ : •M

`(4,2) (λx .xIx)∆ : •M
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Tight Types

• Beniamino Accattoli, Stéphane Graham-Lengrand, Delia

Kesner: Tight typings and split bounds, fully developed. J.

Funct. Program. 30: e14 (2020)

• Delia Kesner, Pierre Vial: Consuming and Persistent Types for

Classical Logic. LICS 2020: 619-632

• Antonio Bucciarelli, Delia Kesner, Alejandro Ŕıos, Andrés

Viso: The bang calculus revisited. Inf. Comput. 293: 105047

(2023)

• Sandra Alves, Delia Kesner, Daniel Ventura: A Quantitative

Understanding of Pattern Matching. TYPES 2019: 3:1-3:36
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Linearisation



Kfoury’s Linearisation [2000]

“Can the standard λ-calculus be simulated by a calculus with a

linearity condition on function evaluation?”

Kfoury defined a new “linear” calculus Λ∧:

“If the formal parameter x of an abstraction (λx .t), is not dummy,

then the free occurrences of x in the body t of the abstraction are

in a one-one correspondence with the arguments to which the

function is applied.

t, u ∈ Λ∧ ::= x | λx .t | t.u1 ∧ · · · ∧ un

β∧-reduction:

((λx .t).u1 ∧ · · · ∧ un)→ t[u1/x
(1), . . . , un/x

(n)]
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Properties and Conjecture

“Well-formed terms of the new calculus are those for which there is

a contracted term in the λ-calculus.”

|x | = x

|λx .t| = λx .|t|
provided that |t| is defined

|(t.u1 ∧ · · · ∧ un)| = |t||u1|
provided that |t|, |u1|, . . . , |un| are defined

and |u1| ≡ · · · ≡ |un|
Kfoury’s conjecture:

“Let t be a standard λ-term. t is β-SN iff there is a well-formed

expanded λ-term u such that t ≡ |u| and every β-reduction from t

can be lifted to a β∧-reduction from u”.
16
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Linearisation by Expansion - Damas and Florido (2004)

Expansion of terms typable with intersection types

• EI (x : τ) C (y , {x : {y : τ}}), if x 6= y

• EI (λx .t : τ1 ∩ · · · ∩ τn → σ) C (λx1 . . . xn.t
∗,A)

• if EI (t : σ) C (t∗,A ∪ {x : {x1 : τ1, . . . , xn : τn}})

• EI (tu : σ) C (t0u1 . . . uk ,A0 ] A1 ] · · · ] Ak)

• if for some k > 0 and τ1, . . . τk ,

• EI (t : τ1 ∩ · · · ∩ τk → σ) C (t0,A0)

• and EI (u : τi ) C (ui ,Ai ), (1 ≤ i ≤ k)
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Expansion and Algebraic Properties of Intersection

Considering different properties of the intersection relation:

∩ Source Target Preserves reductions

ACI λ Simple Types Weak Head Reduction

ACI λI Relevant Types β-reduction

AC λ Affine Types Weak Head Reduction

AC λI Linear Types β-reduction

A λI Ordered Types β-reduction

Sandra Alves, Mário Florido: Structural Rules and Algebraic

Properties of Intersection Types. ICTAC 2022.
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Weak (Linearisation)



The Weak Linear Lambda Calculus

A term t is weak linear if in any reduction sequence of t, when

there is a contraction of a β-redex (λx .u)v , then x occurs free in u

at most once.

Example:

(λx .xx)(λx .x) −→β

(λx .x)(λx .x) −→β

(λx .x)

(λx1x2.x1x2)(λx .x)(λx .x) −→∗β
(λx .x)(λx .x) −→β

(λx .x)

That is:

(λx1x2.x1x2)(λx .x)(λx .x) is weak linear, and (λx .xx)(λx .x) is not
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Weak linear terms have nice properties

Strong normalization:

• non-duplicating reduction

• weak linear reduction cannot have more steps than the size of

the term

It is decidable to know if a λ-term is weak linear

Type inference for weak linear terms is both decidable and

polynomial

Hence, the good properties of linear terms...
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What happens with linearisation?

One β-redex:

(λx.xx)(λy.y)

↓
(λx1x2.x1x2)(λy.y)(λy.y)

One redex created by the reduction (virtual):

(λx .x(λy.y))(λz.zz) → (λz.zz)(λy.y)

↓
(λx .x(λy.y)(λy.y))(λz1z2.z1z2)

Virtual redexes are characterised as (legal) paths in the initial term:

“For any legal path ϕ in a term t ending in an abstraction, there

exists a degree l of a redex originated along some reduction of t

such that path(l) = ϕ.” - Asperti and Laneve [1995]
21
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L(t)
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L(t)
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Transformation

T (t) =

t if all linear(LP)

T (L(t)) otherwise

all linear(LP) returns true if all the legal paths in LP end in a

linear abstraction, and false otherwise.

Let D = λy1y2.y1y2, then:

T (λx .x(λy .yy)v)(λfz .f (fz))

= (λx .xDDDvvvv)(λf1f2f3z1z2z3z4.f1(f2z1z2)(f3z3z4))

and

(λx .x(λy .yy)v)(λfz .f (fz))→β∗ (vv)(vv)

(λx .xDDDvvvv)(λf1f2f3z1z2z3z4.f1(f2z1z2)(f3z3z4))→β∗ (vv)(vv)
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Properties of T and yet another conjecture

• T preserves β-normal forms

• If T terminates then T (t) is weak linear

But when does T terminates?

Let ∆ = λx .xx , D = λx1x2.x1x2, and Ω = ∆∆. We have:

T (Ω) = T (D∆∆) = T (λx1x2.x1x2x2)D∆)

= T (λx1x2x3.x1x2x3)D∆∆) = T (λx1x2x3.x1x2x3x3)DD∆)

= T (λx1x2x3x4.x1x2x3x4)DD∆∆) = · · ·

Our conjecture:

“T is a total function for strongly normalising terms”
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Virtual redexes and Persistent versus Consuming

Virtual redexes involve abstractions that are consumed by reduction

Consider the term t ≡ (λx .xx)(λx .x)→ (λx .x)(λx .x)

The set of legal paths of t contains two paths of type @− λ:

• one ends in (λx .xx), corresponding to the redex (λx .xx)(λx .x)

• one ends in (λx .x), corresponding to the redex (λx .x)(λx .x)

But only one copy of (λx .x) is going to be consumed by reduction,

whereas the other will persist in the normal form.

Note that, after one step of T we obtain (λx1x1.x1x2)(λx .x)(λx .x)

And only one copy of (λx .x) is now the end of a @− λ path.
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Quantitative Weak Linearisation



Expansion of Consuming Terms

E(x : σ) / (y , {x : [y : σ]}), y fresh

E(λx .t : [τi ]i=1...n → σ) / (λx1 . . . xn.t
∗,A),

if for n > 0 and fresh x1, . . . , xn

E(t : σ) / (t∗,A; {x : [x1 : τ1, . . . , xn : τn]})

E(tu : σ) / (t0u1 . . . um,+j=0...mAj),

if for some m > 0 and τ1, . . . , τm

E(t : [τj ]j=1...m → σ) / (t0,A0)

and (E(u : τj) / (uj ,Aj))j=1...m
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Expansion of Persistent Terms

E(x : t) / (x , {x : [x : t]})

E(λx .t : •M) / (λx .t∗,A),

if for some tight type t and n ≥ 0

E(t : t) / (t∗,A; {x : [x : t1, . . . , x : tn]})

E(tu : •N ) / (t∗u∗,A1 + A2),

if for some tight type t

E(t : •N ) / (t∗,A1) and E(u : t) / (u∗,A2)
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Example

Recall t ≡ (λx .xIx)∆, with I ≡ λz .z and ∆ ≡ λy .yy , and

B = [[[•M]→•M]→ [•M]→•M︸ ︷︷ ︸
τ1

, [•M]→•M︸ ︷︷ ︸
τ2

] and

A = [•M,B→ [•M]→•M︸ ︷︷ ︸
τ3

].

E(λx .xx : τ3) C (λx1x2.x1x2,∅)

E(xx : [•M]→•M) C (x1x2, {x : [x1 : τ1, x2 : τ2]})
E(x : τ1) C (x1, {x : [x1 : τ1]})
E(x : τ2) C (x2, {x : [x2 : τ2]})

E(λx .xx : •M) C (λx .xx ,∅)

E(xx : •N ) C (xx , {x : [x : •N , x : •N ]})
E(x : •N ) C (x , {x : [x : •N ]})
E(x : •N ) C (x , {x : [x : •N ]})
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Example

E((λx .xIx)∆ : •M) C ((λx3x4.x3IIx4)(λx1x2.x1x2)(λx .xx),∅)

E(λx .xIx : A→•M) C (λx3x4.x3IIx4,∅)

E(xIx : •M) C (x3IIx4, {x : [x3 : τ3, x4 : •M]})
E(xI : [•M]→•M) C (x3II, {x : [x3 : τ3]})

E(x : τ3) C (x3, {x : [x3 : τ3]})
E(I : τ1) C (λx5.x5,∅)

E(x : [•M]→•M) C (x5, {x : [x5 : [•M]→•M]})
E(I : τ2) C (λx6.x6,∅)

E(x : •M) C (x6, {x : [x6 : •M]})
E(x : •M) C (x4, {x : [x4 : •M]})

E(λx .xx : τ3) C (λx1x2.x1x2,∅)

E(λx .xx : •M) C (λx .xx ,∅)
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Properties of E

Let E(t1 : t) / (u1,A1) be a tight expansion and t1 →nmx t2:

1. There is a term u2 such that E(t2 : t) / (u2,A2) is tight,

u1 →∗nmx u2 and A2 ⊆ A1.

2. If ¬abs(u1) then for any u′ 6= u2 s.t.

u1 →∗nmx u2 = u1 →∗nmx u
′ →∗nmx u2, ¬abs(u′).

where →nmx is a non-deterministic maximal strategy.

Thus E commutes with →nmx.

t1 nmx
//

E

��

t2

E

��
u1 nmx

// // u2
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A Typing Characterisation of Weak Terms: System WL

x : [τ ] `wl x : τ

∆ `wl t : σ

∆ `wl t : [σ]

∆ `wl t : σ

∆ `wl t : [ ]

Γ `wl t : τ |Γ(x)| ≤ 1

Γ\\ x `wl λx .t : Γ(x)→τ

Γ `wl t : t tight(Γ(x))

Γ\\ x `wl λx .t : •M

Γ `wl t : A→τ ∆ `wl u : A

Γ + ∆ `wl t u : τ

Γ `wl t : •N ∆ `wl u : t

Γ + ∆ `wl t u : •N
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Properties of System WL

A term is weak-linear iff it is tight-typable in system WL.

If E(t : σ) / (t1,A), then t1 is typable in WL. Moreover, if the

expansion is tight, so is the derivation.

If E(t : σ) / (t ′,A) is tight, then t ′ is weak-linear.

WL gives a typing characterization to weak-linear λ-terms, unlike

the typing system in Alves and Florido (2005), which typed all (but

not exactly) the weak-linear terms.
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Types and Measures

We have omitted measures from this presentation, although they

are present in both systems: MX and WL.

• The number of β steps can be obtained from the number of

times the abstraction rule for consumed terms is used.

• The size of the normal form can be calculated from the

number of times persisting rules are applied.

Furthermore...

...it is possible to obtain measures of the expanded term fromMX .
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Conclusions and Future Work

Conclusions:

• We use a quantitative system that explores the difference

between persisting and consuming terms.

• We have presented an expansion relation between strongly

normalising λ-terms and weak linear λ-terms preserving

β-normal-forms.

• Quantitative types give an exact typing characterisation of the

class of weak linear λ-terms.

Future work:

• Explore other evalutation strategies.

• What is the exact relation between the approach by Kfoury

and our approach.
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Thank you!
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