Logic and Computation Sessions

XVI Summer Workshop in Mathematics, Universidade de Brasília Quantitative Weak Linearisation

Daniel Ventura
EFFA/INF, Universidade Federal de Goiás
(joint work with Sandra Alves)
February 2024

Quantitative Weak Linearisation

Linearisation: What do we mean by linearisation:
"Linearisation as the process of transforming/relating/simulating non-linear functions in/to/using equivalent linear functions"

Weak: We consider a restricted class of linear terms:
" $A \lambda$-term t is weak-linear if every β-redex in any reduction sequence starting from t are non duplicating".

Quantitative: Non-idempotent intersection types, introduced independently by Gardner and Kfoury. Its relation with linear logic was highlighted in De Carvalho's thesis.

Quantitative Types

The λ-calculus

Proposed by Church in 1932^{1}.

$$
\text { Terms } \quad t:=x|t t| \lambda x . t
$$

Computations (reductions) executed by a unique rule:

$$
(\lambda x . t) s \longrightarrow t\{x \backslash s\}
$$

Some renaming may be needed:

$$
\lambda x . t \longrightarrow \lambda y . t\{x \backslash y\}
$$

${ }^{1}$ A. Church: A set of postulates for the foundation of logic.
Annals of Math 33(2):346-366, 1932.

Intersection Types Systems (ITS)

Terms in an ITS can have more than one type:

$$
x: \alpha \rightarrow \beta \cap \alpha
$$

where \cap is commutative, associative and idempotent:

$$
\tau \cap \tau=\tau
$$

Intersection Types Systems (ITS)

Terms in an ITS can have more than one type:

$$
x: \alpha \rightarrow \beta \cap \alpha
$$

where \cap is commutative, associative and idempotent:

$$
\tau \cap \tau=\tau
$$

$$
\frac{\overline{x:\{\alpha \rightarrow \beta\} \vdash x: \alpha \rightarrow \beta} \overline{x:\{\alpha\} \vdash x: \alpha}}{\frac{x:\{\alpha \rightarrow \beta, \alpha\} \vdash x x: \beta}{\vdash \lambda x \cdot x x:\{\alpha \rightarrow \beta, \alpha\} \rightarrow \beta}}
$$

ITS for Strong Normalising Terms

(types) $\sigma, \tau \quad::=\alpha \mid \mathcal{R} \rightarrow \sigma$ (int-types) $\quad \mathcal{R} \quad::=\left\{\sigma_{k}\right\}_{k \in K}$

$$
\begin{array}{cr}
\frac{\Gamma \vdash t: \tau}{\Gamma \backslash x \vdash \lambda x . t: \Gamma(x) \rightarrow \tau} & \overline{x:\{\tau\} \vdash x: \tau} \\
\frac{\Gamma \vdash t: \mathcal{R} \rightarrow \tau \quad \Delta \vdash u: \mathcal{R}}{\Gamma+\Delta \vdash t u: \tau} & \frac{\Delta \vdash t: \sigma}{\Delta \vdash t:\{ \}} \\
\frac{\left(\Delta_{k} \vdash t: \sigma_{k}\right)_{k \in K}}{+_{k \in K} \Delta_{k} \vdash t:\left\{\sigma_{k}\right\}_{k \in K}} & |K|>0
\end{array}
$$

Quantitative Types

Quantitative information is obtained with a non-idempotent \cap :

$$
\tau \cap \tau \neq \tau
$$

Idempotent	Non-idempotent
$\{x: \sigma \rightarrow \sigma \rightarrow \tau, y: \sigma\} \vdash x y y: \tau$	$\{x: \sigma \rightarrow \sigma \rightarrow \tau, y: \sigma \cap \sigma\} \vdash x y y: \tau$

For $(\lambda x . \lambda y \cdot x y y) u v$ there is a single derivation for v in the idempotent svstem. but two copies in its reduct $u v v$

Reduction decreases the size of derivations in the non-idempotent system

Quantitative Types

Quantitative information is obtained with a non-idempotent \cap :

$$
\tau \cap \tau \neq \tau
$$

Idempotent	Non-idempotent
$\{x: \sigma \rightarrow \sigma \rightarrow \tau, y: \sigma\} \vdash x y y: \tau$	$\{x: \sigma \rightarrow \sigma \rightarrow \tau, y: \sigma \cap \sigma\} \vdash x y y: \tau$

For ($\lambda x \cdot \lambda y \cdot x y y) u v$ there is a single derivation for v in the idempotent system, but two copies in its reduct $u v v$

Reduction decreases the size of derivations in the non-idempotent
system

Quantitative Types

Quantitative information is obtained with a non-idempotent \cap :

$$
\tau \cap \tau \neq \tau
$$

Idempotent	Non-idempotent
$\{x: \sigma \rightarrow \sigma \rightarrow \tau, y: \sigma\} \vdash x y y: \tau$	$\{x: \sigma \rightarrow \sigma \rightarrow \tau, y: \sigma \cap \sigma\} \vdash x y y: \tau$

For $(\lambda x \cdot \lambda y \cdot x y y) u v$ there is a single derivation for v in the idempotent system, but two copies in its reduct $u v v$

Reduction decreases the size of derivations in the non-idempotent system

NITS for Strong Normalising Terms

(types) $\sigma, \tau \quad::=\alpha \mid \mathcal{A} \rightarrow \sigma$ (multi-types) $\mathcal{A} \quad::=\left[\sigma_{k}\right]_{k \in K}$

$$
\begin{array}{cr}
\frac{\Gamma \vdash t: \tau}{\Gamma \backslash x \vdash \lambda x . t: \Gamma(x) \rightarrow \tau} & \\
\frac{\Gamma \vdash t: \mathcal{A} \rightarrow \tau \quad \Delta \vdash \vdash x: \tau}{\Gamma+\Delta \vdash t u: \tau} & \frac{\Delta \vdash t: \sigma}{\Delta \vdash t:[]} \\
\frac{\left(\Delta_{k} \vdash t: \sigma_{k}\right)_{k \in K}}{+_{k \in K} \Delta_{k} \vdash t:\left[\sigma_{k}\right]_{k \in K}}|K|>0
\end{array}
$$

Quantitative Types

- Antonio Bucciarelli, Delia Kesner, Daniel Ventura: Non-idempotent intersection types for the Lambda-Calculus. Log. J. IGPL 25(4): 431-464 (2017)
- Delia Kesner, Daniel Ventura: Quantitative Types for the Linear Substitution Calculus. IFIP TCS 2014: 296-310
- Delia Kesner, Daniel Ventura: A resource aware semantics for a focused intuitionistic calculus. Math. Struct. Comput. Sci. 29(1): 93-126 (2019)
- Delia Kesner, Loïc Peyrot, Daniel Ventura: Node Replication: Theory And Practice. Log. Methods Comput. Sci. 20(1) (2024)

Tight Types and Exact Measures

Minimal typings $=$ all and only information
Tightness was introduced by Accattoli, Graham-Lengrand and Kesner, to effectively capture minimal typings

This technique has been used in the λ-calculus to extract exact measures for several strategies

- call-by-value, call-by-need, linear-head, etc.

Tight types are used to type persistent terms:

We say that $(\lambda x, x)$ is consuming and $(\lambda x . x)$ is persistent

Tight Types and Exact Measures

Minimal typings $=$ all and only information
Tightness was introduced by Accattoli, Graham-Lengrand and Kesner, to effectively capture minimal typings

This technique has been used in the λ-calculus to extract exact measures for several strategies

- call-by-value, call-by-need, linear-head, etc...

Tight types are used to type persistent terms:

We say that $(\lambda x . x)$ is consuming and $(\lambda x . x)$ is persistent

Tight Types and Exact Measures

Minimal typings $=$ all and only information
Tightness was introduced by Accattoli, Graham-Lengrand and Kesner, to effectively capture minimal typings

This technique has been used in the λ-calculus to extract exact measures for several strategies

- call-by-value, call-by-need, linear-head, etc...

Tight types are used to type persistent terms:

$$
(\lambda x \cdot x)(\lambda x \cdot x)
$$

We say that $(\lambda x, x)$ is consuming and $(\lambda x, x)$ is persistent.

Quantitative (Tight) Types

The sets of types (\mathcal{T}) and multi-types are given by the following grammars:

$$
\begin{array}{lrl}
\text { (tight-types) } & \mathrm{t} & ::=\bullet_{\mathcal{M}} \mid \bullet_{\mathcal{N}} \\
\text { (types) } & \sigma, \tau & ::=\mathrm{t} \mid \mathcal{A} \rightarrow \sigma \\
\text { (multi-types) } & \mathcal{A} & ::=\left[\sigma_{k}\right]_{k \in K}
\end{array}
$$

> - Use different typing rules for persistent and consuming terms
> - A derivation $\Gamma \vdash M: \tau$ is tight if both Γ and τ are tight

> Tight constants $\bullet_{\mathcal{M}}$ and $\bullet_{\mathcal{N}}$ are related to normal/neutral forms:

Quantitative (Tight) Types

The sets of types (\mathcal{T}) and multi-types are given by the following grammars:

$$
\begin{array}{lrl}
\text { (tight-types) } & \mathrm{t} & ::=\bullet \mathcal{M} \mid \bullet \mathcal{N} \\
\text { (types) } & \sigma, \tau & ::=\mathrm{t} \mid \mathcal{A} \rightarrow \sigma \\
\text { (multi-types) } & \mathcal{A} & ::=\left[\sigma_{k}\right]_{k \in K}
\end{array}
$$

- Use different typing rules for persistent and consuming terms
- A derivation $\Gamma \vdash M: \tau$ is tight if both Γ and τ are tight

Tight constants $\bullet_{\mathcal{M}}$ and $\bullet_{\mathcal{N}}$ are related to normal/neutral forms:

Quantitative (Tight) Types

The sets of types (\mathcal{T}) and multi-types are given by the following grammars:

$$
\begin{array}{lrl}
\text { (tight-types) } & \mathrm{t} & ::=\bullet \mathcal{M} \mid \bullet \mathcal{N} \\
\text { (types) } & \sigma, \tau & ::=\mathrm{t} \mid \mathcal{A} \rightarrow \sigma \\
\text { (multi-types) } & \mathcal{A} & ::=\left[\sigma_{k}\right]_{k \in K}
\end{array}
$$

- Use different typing rules for persistent and consuming terms
- A derivation $\Gamma \vdash M: \tau$ is tight if both Γ and τ are tight

Tight constants $\bullet_{\mathcal{M}}$ and $\bullet_{\mathcal{N}}$ are related to normal/neutral forms:

$$
\mathcal{M}::=\mathcal{N}|\lambda x . \mathcal{M} \quad \mathcal{N}::=x| \mathcal{N} \mathcal{M}
$$

Quantitative (Tight) Types

$$
x:[\tau] \vdash x: \tau
$$

$$
\begin{array}{cc}
\frac{\Gamma \vdash t: \tau}{\Gamma \backslash x \vdash \lambda x . t: \Gamma(x) \rightarrow \tau} & \frac{\Gamma \vdash t: \mathrm{t} \operatorname{tight}(\Gamma(x))}{\Gamma \backslash x \vdash \lambda x . t: \bullet \mathcal{M}} \\
\frac{\Gamma \vdash t: \mathcal{A} \rightarrow \tau \quad \Delta \vdash u: \mathcal{A}}{\Gamma+\Delta \vdash t u: \tau} & \frac{\Gamma \vdash t: \bullet \mathcal{N} \quad \Delta \vdash u: \mathrm{t}}{\Gamma+\Delta \vdash t u: \bullet \mathcal{N}} \\
\frac{\left(\Delta_{k} \vdash t: \sigma_{k}\right)_{k \in K}}{+_{k \in K} \Delta_{k} \vdash t:\left[\sigma_{k}\right]_{k \in K}}|K|>0 \\
& \frac{\Delta \vdash t: \sigma}{\Delta \vdash t:[]}
\end{array}
$$

Example

Consider $t \equiv(\lambda x . x \mathrm{I} x) \Delta$, with $\mathrm{I} \equiv \lambda z . z$ and $\Delta \equiv \lambda y . y y$. Let
$\mathcal{B}=[[\underbrace{\left.\left.\bullet_{\mathcal{M}}\right] \rightarrow \bullet_{\mathcal{M}}\right] \rightarrow\left[\bullet_{\mathcal{M}}\right] \rightarrow \bullet_{\mathcal{M}}}_{\tau_{1}}, \underbrace{\left[\bullet_{\mathcal{M}}\right] \rightarrow \bullet_{\mathcal{M}}}_{\tau_{2}}]$ and
$\mathcal{A}=[\bullet \mathcal{M}, \underbrace{\mathcal{B} \rightarrow\left[\bullet_{\mathcal{M}}\right] \rightarrow \bullet_{\mathcal{M}}}_{\tau_{3}}]$. Let Φ be:

$$
\begin{aligned}
& \frac{\overline{x:\left[\tau_{1}\right] \vdash x: \tau_{1}} \frac{\overline{x:\left[\tau_{2}\right] \vdash x: \tau_{2}}}{\frac{x:\left[\tau_{2}\right] \vdash x:\left[\tau_{2}\right]}{}}}{\frac{\mathcal{B} \vdash x x:[\bullet \mathcal{M}] \rightarrow \bullet \mathcal{M}}{\vdash \Delta: \tau_{3}}} \\
& \vdash \Delta: \mathcal{A}
\end{aligned}
$$

Example (cont.)

Let then Φ_{I} be:

$$
\frac{x:\left[\left[\bullet_{\mathcal{M}}\right] \rightarrow \bullet \mathcal{M}\right] \vdash x:[\bullet \mathcal{M}] \rightarrow \bullet \mathcal{M}}{\vdash \mathrm{I}: \tau_{1}} \frac{y:[\bullet \mathcal{M}] \vdash y: \bullet \mathcal{M}}{\vdash \mathrm{I}: \tau_{2}}
$$

We have the following tight derivation for t

Example (cont.)

Let then Φ_{I} be:

$$
\frac{x:[[\bullet \mathcal{M}] \rightarrow \bullet \mathcal{M}] \vdash x:[\bullet \mathcal{M}] \rightarrow \bullet \mathcal{M}}{\vdash \mathrm{I}: \tau_{1}} \frac{y:[\bullet \mathcal{M}] \vdash y: \bullet \mathcal{M}}{\vdash \mathrm{I}: \tau_{2}}
$$

We have the following tight derivation for t :

$$
\frac{\frac{x:\left[\tau_{3}\right] \vdash x: \tau_{3} \quad \Phi_{\mathrm{I}}}{x:\left[\tau_{3}\right] \vdash x \mathrm{I}:\left[\bullet_{\mathcal{M}}\right] \rightarrow \bullet \mathcal{M}} \frac{x:\left[\bullet_{\mathcal{M}}\right] \vdash x: \bullet_{\mathcal{M}}}{x:\left[\bullet_{\mathcal{M}}\right] \vdash x:[\bullet \mathcal{M}]}}{\frac{x: \mathcal{A} \vdash x I x: \bullet \mathcal{M}}{\vdash(\lambda x \cdot x I x): \mathcal{A} \rightarrow \bullet \mathcal{M}}} \stackrel{\vdash(\lambda x \cdot x I x) \Delta: \bullet \mathcal{M}}{ }
$$

Example (cont.)

Let then Φ_{I} be:

$$
\frac{x:[[\bullet \mathcal{M}] \rightarrow \bullet \mathcal{M}] \vdash x:[\bullet \mathcal{M}] \rightarrow \bullet \mathcal{M}}{\vdash \mathrm{I}: \tau_{1}} \frac{y:[\bullet \mathcal{M}] \vdash y: \bullet \mathcal{M}}{\vdash \mathrm{I}: \tau_{2}}
$$

We have the following tight derivation for t :

$$
\begin{gathered}
\frac{x:\left[\tau_{3}\right] \vdash x: \tau_{3} \Phi_{\mathrm{I}}}{x:\left[\tau_{3}\right] \vdash x \mathrm{I}:[\bullet \mathcal{M}] \rightarrow \bullet \mathcal{M}} \frac{x:\left[\bullet_{\mathcal{M}}\right] \vdash x: \bullet_{\mathcal{M}}}{\left.x: \bullet_{\mathcal{M}}\right] \vdash x:[\bullet \mathcal{M}]} \\
\frac{x: \mathcal{A} \vdash x I x: \bullet \mathcal{M}}{\vdash(\lambda x . x I x): \mathcal{A} \rightarrow \bullet_{\mathcal{M}}} \\
\vdash(\lambda x \cdot x I x) \Delta: \bullet_{\mathcal{M}}
\end{gathered} \varnothing^{\vdash^{(4,2)}(\lambda x . x I x) \Delta: \bullet_{\mathcal{M}}}
$$

Tight Types

- Beniamino Accattoli, Stéphane Graham-Lengrand, Delia Kesner: Tight typings and split bounds, fully developed. J. Funct. Program. 30: e14 (2020)
- Delia Kesner, Pierre Vial: Consuming and Persistent Types for Classical Logic. LICS 2020: 619-632
- Antonio Bucciarelli, Delia Kesner, Alejandro Ríos, Andrés Viso: The bang calculus revisited. Inf. Comput. 293: 105047 (2023)
- Sandra Alves, Delia Kesner, Daniel Ventura: A Quantitative Understanding of Pattern Matching. TYPES 2019: 3:1-3:36

Linearisation

Kfoury's Linearisation [2000]

"Can the standard λ-calculus be simulated by a calculus with a linearity condition on function evaluation?"

> Kfoury defined a new "linear" calculus Λ^{\prime} "If the formal parameter x of an abstraction ($\lambda x . t$), is not dummy, then the free occurrences of x in the body t of the abstraction are in a one-one correspondence with the arguments to which the function is applied.

β^{\wedge}-reduction:

Kfoury's Linearisation [2000]

"Can the standard λ-calculus be simulated by a calculus with a linearity condition on function evaluation?"

Kfoury defined a new "linear" calculus Λ^{\wedge} :
"If the formal parameter x of an abstraction ($\lambda x . t$), is not dummy, then the free occurrences of x in the body t of the abstraction are in a one-one correspondence with the arguments to which the function is applied.

β^{\wedge}-reduction

Kfoury's Linearisation [2000]

"Can the standard λ-calculus be simulated by a calculus with a linearity condition on function evaluation?"

Kfoury defined a new "linear" calculus Λ^{\wedge} :
"If the formal parameter x of an abstraction ($\lambda x . t$), is not dummy, then the free occurrences of x in the body t of the abstraction are in a one-one correspondence with the arguments to which the function is applied.

$$
t, u \in \Lambda^{\wedge}::=x|\lambda x . t| t . u_{1} \wedge \cdots \wedge u_{n}
$$

β^{\wedge}-reduction:

Kfoury's Linearisation [2000]

"Can the standard λ-calculus be simulated by a calculus with a linearity condition on function evaluation?"

Kfoury defined a new "linear" calculus Λ^{\wedge} :
"If the formal parameter x of an abstraction ($\lambda x . t$), is not dummy, then the free occurrences of x in the body t of the abstraction are in a one-one correspondence with the arguments to which the function is applied.

$$
t, u \in \Lambda^{\wedge}::=x|\lambda x . t| t . u_{1} \wedge \cdots \wedge u_{n}
$$

β^{\wedge}-reduction:

$$
\left((\lambda x \cdot t) \cdot u_{1} \wedge \cdots \wedge u_{n}\right) \rightarrow t\left[u_{1} / x^{(1)}, \ldots, u_{n} / x^{(n)}\right]
$$

Properties and Conjecture

"Well-formed terms of the new calculus are those for which there is a contracted term in the λ-calculus."

$$
\begin{array}{rlrl}
|x| & = & x \\
|\lambda x . t|= & \lambda x .|t| \\
& \text { provided that }|t| \text { is defined } \\
\left|\left(t . u_{1} \wedge \cdots \wedge u_{n}\right)\right|= & |t|\left|u_{1}\right| \\
& \text { provided that }|t|,\left|u_{1}\right|, \ldots,\left|u_{n}\right| \text { are defined } \\
& \text { and }\left|u_{1}\right| \equiv \cdots \equiv\left|u_{n}\right|
\end{array}
$$

Kfoury's conjecture:

"Let t be a standard λ-term. t is β-SN iff there is a well-formed
expanded λ-term u such that $t \equiv|u|$ and every β-reduction from t
can be lifted to a β^{\wedge}-reduction from $u^{\prime \prime}$.

Properties and Conjecture

"Well-formed terms of the new calculus are those for which there is a contracted term in the λ-calculus."

$$
\begin{aligned}
|x| & x \\
|\lambda x . t|= & \lambda x .|t| \\
& \text { provided that }|t| \text { is defined } \\
\left|\left(t . u_{1} \wedge \cdots \wedge u_{n}\right)\right|= & |t|\left|u_{1}\right| \\
& \text { provided that }|t|,\left|u_{1}\right|, \ldots,\left|u_{n}\right| \text { are defined } \\
& \text { and }\left|u_{1}\right| \equiv \cdots \equiv\left|u_{n}\right|
\end{aligned}
$$

Kfoury's conjecture:
"Let t be a standard λ-term. t is β-SN iff there is a well-formed expanded λ-term u such that $t \equiv|u|$ and every β-reduction from t can be lifted to a β^{\wedge}-reduction from $u^{\prime \prime}$.

Linearisation by Expansion - Damas and Florido (2004)

Expansion of terms typable with intersection types

- $\mathcal{E}_{l}(x: \tau) \triangleleft(y,\{x:\{y: \tau\}\})$, if $x \neq y$
- $\mathcal{E}_{l}(t u: \sigma) \triangleleft\left(t_{0} u_{1} \ldots u_{k}, A_{0} \uplus A_{1} \uplus \cdots \uplus A_{k}\right)$
- if for some $k>0$ and $\tau_{1}, \ldots \tau_{k}$,
- and $\mathcal{E}_{l}\left(u: \tau_{i}\right) \triangleleft\left(u_{i}, A_{i}\right),(1 \leq i \leq k)$

Linearisation by Expansion - Damas and Florido (2004)

Expansion of terms typable with intersection types

- $\mathcal{E}_{l}(x: \tau) \triangleleft(y,\{x:\{y: \tau\}\}), \quad$ if $x \neq y$
- $\mathcal{E}_{l}\left(\lambda x . t: \tau_{1} \cap \cdots \cap \tau_{n} \rightarrow \sigma\right) \triangleleft\left(\lambda x_{1} \ldots x_{n} \cdot t^{*}, A\right)$
- if $\mathcal{E}_{l}(t: \sigma) \triangleleft\left(t^{*}, A \cup\left\{x:\left\{x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}\right\}\right\}\right)$
- $\mathcal{E}_{l}(t u: \sigma) \triangleleft\left(t_{0} u_{1} \ldots u_{k}, A_{0} \uplus A_{1} \uplus \cdots \uplus A_{k}\right)$
- if for some $k>0$ and $\tau_{1}, \ldots \tau_{k}$,
- $\mathcal{E}_{l}\left(t: \tau_{1} \cap \cdots \cap \tau_{k} \rightarrow \sigma\right) \triangleleft\left(t_{0}, A_{0}\right)$
- and $\mathcal{E}_{I}\left(u: \tau_{i}\right) \triangleleft\left(u_{i}, A_{i}\right),(1 \leq i \leq k)$

Linearisation by Expansion - Damas and Florido (2004)

Expansion of terms typable with intersection types

- $\mathcal{E}_{l}(x: \tau) \triangleleft(y,\{x:\{y: \tau\}\}), \quad$ if $x \neq y$
- $\mathcal{E}_{l}\left(\lambda x . t: \tau_{1} \cap \cdots \cap \tau_{n} \rightarrow \sigma\right) \triangleleft\left(\lambda x_{1} \ldots x_{n} \cdot t^{*}, A\right)$
- if $\mathcal{E}_{l}(t: \sigma) \triangleleft\left(t^{*}, A \cup\left\{x:\left\{x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}\right\}\right\}\right)$
- $\mathcal{E}_{l}(t u: \sigma) \triangleleft\left(t_{0} u_{1} \ldots u_{k}, A_{0} \uplus A_{1} \uplus \cdots \uplus A_{k}\right)$
- if for some $k>0$ and $\tau_{1}, \ldots \tau_{k}$,
- $\mathcal{E}_{l}\left(t: \tau_{1} \cap \cdots \cap \tau_{k} \rightarrow \sigma\right) \triangleleft\left(t_{0}, A_{0}\right)$
- and $\mathcal{E}_{I}\left(u: \tau_{i}\right) \triangleleft\left(u_{i}, A_{i}\right),(1 \leq i \leq k)$

Expansion and Algebraic Properties of Intersection

Considering different properties of the intersection relation:

\cap	Source	Target	Preserves reductions
ACI	λ	Simple Types	Weak Head Reduction
ACI	λI	Relevant Types	β-reduction
AC	λ	Affine Types	Weak Head Reduction
AC	λI	Linear Types	β-reduction
A	λI	Ordered Types	β-reduction

Sandra Alves, Mário Florido: Structural Rules and Algebraic Properties of Intersection Types. ICTAC 2022.

Weak (Linearisation)

The Weak Linear Lambda Calculus

A term t is weak linear if in any reduction sequence of t, when there is a contraction of a β-redex $(\lambda x . u) v$, then x occurs free in u at most once.

Example:

That is:
$\left(\lambda x_{1} x_{2} \cdot x_{1} x_{2}\right)(\lambda x \cdot x)(\lambda x \cdot x)$ is weak linear, and $(\lambda x \cdot x x)(\lambda x \cdot x)$ is not

The Weak Linear Lambda Calculus

A term t is weak linear if in any reduction sequence of t, when there is a contraction of a β-redex $(\lambda x . u) v$, then x occurs free in u at most once.

Example:

$$
\begin{array}{l|l}
(\lambda x \cdot x x)(\lambda x \cdot x) \longrightarrow_{\beta} & \left(\lambda x_{1} x_{2} \cdot x_{1} x_{2}\right)(\lambda x \cdot x)(\lambda x \cdot x) \longrightarrow_{\beta}^{*} \\
(\lambda x \cdot x)(\lambda x \cdot x) \longrightarrow_{\beta} & (\lambda x \cdot x)(\lambda x \cdot x) \longrightarrow_{\beta} \\
(\lambda x \cdot x) & (\lambda x \cdot x)
\end{array}
$$

That is:
($\left.\lambda x_{1} x_{2} \cdot x_{1} x_{2}\right)(\lambda x \cdot x)(\lambda x \cdot x)$ is weak linear, and $(\lambda x \cdot x x)(\lambda x, x)$ is not

The Weak Linear Lambda Calculus

A term t is weak linear if in any reduction sequence of t, when there is a contraction of a β-redex $(\lambda x . u) v$, then x occurs free in u at most once.

Example:

$$
\begin{array}{l|l}
(\lambda x \cdot x x)(\lambda x \cdot x) \longrightarrow_{\beta} & \left(\lambda x_{1} x_{2} \cdot x_{1} x_{2}\right)(\lambda x \cdot x)(\lambda x \cdot x) \longrightarrow_{\beta}^{*} \\
(\lambda x \cdot x)(\lambda x \cdot x) \longrightarrow_{\beta} & (\lambda x \cdot x)(\lambda x \cdot x) \longrightarrow_{\beta} \\
(\lambda x \cdot x) & (\lambda x \cdot x)
\end{array}
$$

That is:
$\left(\lambda x_{1} x_{2} \cdot x_{1} x_{2}\right)(\lambda x . x)(\lambda x . x)$ is weak linear, and $(\lambda x . x x)(\lambda x . x)$ is not

Weak linear terms have nice properties

Strong normalization:

- non-duplicating reduction
- weak linear reduction cannot have more steps than the size of the term

It is decidable to know if a λ-term is weak linear

Type inference for weak linear terms is both decidable and polynomial

Hence, the good properties of linear terms.

Weak linear terms have nice properties

Strong normalization:

- non-duplicating reduction
- weak linear reduction cannot have more steps than the size of the term

It is decidable to know if a λ-term is weak linear

Type inference for weak linear terms is both decidable and polynomial

Hence, the good properties of linear terms.

Weak linear terms have nice properties

Strong normalization:

- non-duplicating reduction
- weak linear reduction cannot have more steps than the size of the term

It is decidable to know if a λ-term is weak linear

Type inference for weak linear terms is both decidable and polynomial

Hence, the good properties of linear terms...

What happens with linearisation?

One β-redex:

$$
(\lambda \mathbf{x} \cdot x x)(\lambda \mathbf{y} \cdot \mathbf{y})
$$

$$
\left(\lambda \mathbf{x}_{1} \mathbf{x}_{2} \cdot x_{1} x_{2}\right)(\lambda \mathbf{y} \cdot \mathbf{y})(\lambda \mathbf{y} \cdot \mathbf{y})
$$

One redex created by the reduction (virtual):

$$
(\lambda v v(\lambda y . y))(\lambda z . z z) \quad \rightarrow(\lambda z . z z)(\lambda y . y)
$$

$$
(\lambda x \cdot x(\lambda \mathbf{y} \cdot \mathbf{y})(\lambda \mathbf{y} \cdot \mathbf{y}))\left(\lambda \mathbf{z}_{1} \mathbf{z}_{2} \cdot z_{1} z_{2}\right)
$$

Virtual redexes are characterised as (legal) paths in the initial term:
"For any legal path in in a term t ending in an abstraction, there exists a degree I of a redex originated along some reduction of t such that path $(I)=\varphi$." - Asperti and Laneve [1995]

What happens with linearisation?

One β-redex:

$$
\begin{gathered}
(\lambda \mathbf{x} \cdot x x)(\lambda \mathbf{y} \cdot \mathbf{y}) \\
\downarrow \\
\left(\lambda \mathbf{x}_{1} \mathbf{x}_{2} \cdot x_{1} x_{2}\right)(\lambda \mathbf{y} \cdot \mathbf{y})(\lambda \mathbf{y} \cdot \mathbf{y})
\end{gathered}
$$

One redex created by the reduction (virtual):

$$
(\lambda x \cdot x(\lambda \mathbf{y} \cdot \mathbf{y}))(\lambda \mathbf{z} \cdot z z) \quad \rightarrow \quad(\lambda \mathbf{z} \cdot z z)(\lambda \mathbf{y} \cdot \mathbf{y})
$$

$$
(\lambda x \cdot x(\lambda \mathbf{y} \cdot \mathbf{y})(\lambda \mathbf{y} \cdot \mathbf{y}))\left(\lambda z_{1} \mathbf{z}_{2} \cdot z_{1} z_{2}\right)
$$

Virtual redexes are characterised as (legal) paths in the initial term:
"For any legal path 6 in a term t ending in an abstraction, there exists a degree I of a redex originated along some reduction of t such that path $(I)=\varphi$. - Asperti and Laneve [1995]

What happens with linearisation?

One β-redex:

$$
\begin{gathered}
(\lambda \mathbf{x} \cdot x x)(\lambda \mathbf{y} \cdot \mathbf{y}) \\
\downarrow \\
\left(\lambda \mathbf{x}_{1} \mathbf{x}_{2} \cdot x_{1} x_{2}\right)(\lambda \mathbf{y} \cdot \mathbf{y})(\lambda \mathbf{y} \cdot \mathbf{y})
\end{gathered}
$$

One redex created by the reduction (virtual):

$$
(\lambda x \cdot x(\lambda \mathbf{y} \cdot \mathbf{y}))(\lambda \mathbf{z} . z z) \quad \rightarrow \quad(\lambda \mathbf{z} . z z)(\lambda \mathbf{y} \cdot \mathbf{y})
$$

$$
(\lambda x \cdot x(\lambda \mathbf{y} \cdot \mathbf{y})(\lambda \mathbf{y} \cdot \mathbf{y}))\left(\lambda \mathbf{z}_{1} \mathbf{z}_{2} \cdot z_{1} z_{2}\right)
$$

Virtual redexes are characterised as (legal) paths in the initial term:
"For any legal path in in a term + ending in an abstraction, there
exists a degree I of a redex originated along some reduction of t
such that path(I)

What happens with linearisation?

One β-redex:

$$
\begin{gathered}
(\lambda \mathbf{x} \cdot x x)(\lambda \mathbf{y} \cdot \mathbf{y}) \\
\downarrow \\
\left(\lambda \mathbf{x}_{1} \mathbf{x}_{2} \cdot x_{1} x_{2}\right)(\lambda \mathbf{y} \cdot \mathbf{y})(\lambda \mathbf{y} \cdot \mathbf{y})
\end{gathered}
$$

One redex created by the reduction (virtual):

$$
\begin{array}{cll}
(\lambda x \cdot x(\lambda \mathbf{y} \cdot \mathbf{y}))(\lambda \mathbf{z} \cdot z z) & \rightarrow & (\lambda \mathbf{z} \cdot z z)(\lambda \mathbf{y} \cdot \mathbf{y}) \\
\downarrow \\
(\lambda x \cdot x(\lambda \mathbf{y} \cdot \mathbf{y})(\lambda \mathbf{y} \cdot \mathbf{y}))\left(\lambda \mathbf{z}_{1} \mathbf{z}_{2} \cdot z_{1} z_{2}\right) & &
\end{array}
$$

Virtual redexes are characterised as (legal) paths in the initial term:
"For any legal path in in a term + ending in an abstraction, there
exists a degree I of a redex originated along some reduction of t
such that path(I)

What happens with linearisation?

One β-redex:

$$
\begin{gathered}
(\lambda \mathbf{x} \cdot x x)(\lambda \mathbf{y} \cdot \mathbf{y}) \\
\downarrow \\
\left(\lambda \mathbf{x}_{1} \mathbf{x}_{2} \cdot x_{1} x_{2}\right)(\lambda \mathbf{y} \cdot \mathbf{y})(\lambda \mathbf{y} \cdot \mathbf{y})
\end{gathered}
$$

One redex created by the reduction (virtual):

$$
\begin{array}{cll}
(\lambda x \cdot x(\lambda \mathbf{y} \cdot \mathbf{y}))(\lambda \mathbf{z} \cdot z z) & \rightarrow & (\lambda \mathbf{z} \cdot z z)(\lambda \mathbf{y} \cdot \mathbf{y}) \\
\downarrow \\
(\lambda x \cdot x(\lambda \mathbf{y} \cdot \mathbf{y})(\lambda \mathbf{y} \cdot \mathbf{y}))\left(\lambda \mathbf{z}_{1} \mathbf{z}_{2} \cdot z_{1} z_{2}\right) & &
\end{array}
$$

Virtual redexes are characterised as (legal) paths in the initial term:
"For any legal path φ in a term t ending in an abstraction, there exists a degree I of a redex originated along some reduction of t such that path $(I)=\varphi$."

- Asperti and Laneve [1995]

Transformation

$$
\mathcal{T}(t)= \begin{cases}t & \text { if all_linear }(\mathcal{L P}) \\ \mathcal{T}(\mathcal{L}(t)) & \text { otherwise }\end{cases}
$$

all_linear $(\mathcal{L P})$ returns true if all the legal paths in $\mathcal{L P}$ end in a linear abstraction, and false otherwise.

Let $D=\lambda y_{1} y_{2} \cdot y_{1} y_{2}$, then:

$\mathcal{T}(\lambda x . x(\lambda y \cdot y y) v)(\lambda f z . f(f z))$ $-(\lambda \times ッ \cap \cap \square \cdots \cdots \cdots)\left(\lambda f_{1} f_{2} f_{3} z_{1} z_{2} z_{3} z_{4} \cdot f_{1}\left(f_{2} z_{1} z_{2}\right)\left(f_{3} z_{3} z_{4}\right)\right)$
and
$\left(\lambda x x^{\prime}(\lambda y \cdot y y) v\right)(\lambda f z . f(f z)) \rightarrow \beta^{*}(v v)(w v)$
$(\lambda x . x D D D v v v v)\left(\lambda f_{1} f_{2} f_{3} z_{1} z_{2} z_{3} z_{4} \cdot f_{1}\left(f_{2} z_{1} z_{2}\right)\left(f_{3} z_{3} z_{4}\right)\right) \rightarrow_{\beta^{*}}(v v)(v v)$

Transformation

$$
\mathcal{T}(t)= \begin{cases}t & \text { if all_linear }(\mathcal{L P}) \\ \mathcal{T}(\mathcal{L}(t)) & \text { otherwise }\end{cases}
$$

all_linear $(\mathcal{L P})$ returns true if all the legal paths in $\mathcal{L P}$ end in a linear abstraction, and false otherwise.

Let $D=\lambda y_{1} y_{2} \cdot y_{1} y_{2}$, then:
$\mathcal{T}(\lambda x . x(\lambda y . y y) v)(\lambda f z . f(f z))$
$=(\lambda x \cdot x D D D v v v v)\left(\lambda f_{1} f_{2} f_{3} z_{1} z_{2} z_{3} z_{4} \cdot f_{1}\left(f_{2} z_{1} z_{2}\right)\left(f_{3} z_{3} z_{4}\right)\right)$
and
$(\lambda x x(\lambda y . y y) v)(\lambda f z . f(f z)) \rightarrow \beta^{*}(v v)(v v)$
$(\lambda x . x D D D v v v v)\left(\lambda f_{1} f_{2} f_{3} z_{1} z_{2} z_{3} z_{4} \cdot f_{1}\left(f_{2} z_{1} z_{2}\right)\left(f_{3} z_{3} z_{4}\right)\right) \rightarrow_{\beta^{*}}(v v)(v v)$

Transformation

$$
\mathcal{T}(t)= \begin{cases}t & \text { if all_linear }(\mathcal{L P}) \\ \mathcal{T}(\mathcal{L}(t)) & \text { otherwise }\end{cases}
$$

all_linear $(\mathcal{L P})$ returns true if all the legal paths in $\mathcal{L P}$ end in a linear abstraction, and false otherwise.

Let $D=\lambda y_{1} y_{2} \cdot y_{1} y_{2}$, then:
$\mathcal{T}(\lambda x \cdot x(\lambda y \cdot y y) v)(\lambda f z . f(f z))$
$=(\lambda x \cdot x D D D v v v v)\left(\lambda f_{1} f_{2} f_{3} z_{1} z_{2} z_{3} z_{4} \cdot f_{1}\left(f_{2} z_{1} z_{2}\right)\left(f_{3} z_{3} z_{4}\right)\right)$
and
$(\lambda x . x(\lambda y . y y) v)(\lambda f z . f(f z)) \rightarrow_{\beta^{*}}(v v)(v v)$
$\left(\lambda \times \times D D D m m_{1}\right)\left(\lambda f_{1} f_{2} f_{3} z_{1} z_{2} z_{3} z_{4} f_{1}\left(f_{2} z_{1} z_{2}\right)\left(f_{3} z_{3} z_{4}\right)\right) \rightarrow_{\beta^{*}}(v v)(v v)$

Transformation

$$
\mathcal{T}(t)= \begin{cases}t & \text { if all_linear }(\mathcal{L P}) \\ \mathcal{T}(\mathcal{L}(t)) & \text { otherwise }\end{cases}
$$

all_linear $(\mathcal{L P})$ returns true if all the legal paths in $\mathcal{L P}$ end in a linear abstraction, and false otherwise.

Let $D=\lambda y_{1} y_{2} \cdot y_{1} y_{2}$, then:
$\mathcal{T}(\lambda x \cdot x(\lambda y \cdot y y) v)(\lambda f z . f(f z))$
$=(\lambda x \cdot x D D D v v v v)\left(\lambda f_{1} f_{2} f_{3} z_{1} z_{2} z_{3} z_{4} \cdot f_{1}\left(f_{2} z_{1} z_{2}\right)\left(f_{3} z_{3} z_{4}\right)\right)$
and
$(\lambda x . x(\lambda y . y y) v)(\lambda f z . f(f z)) \rightarrow_{\beta^{*}}(v v)(v v)$
$(\lambda x \cdot x D D D v v v v)\left(\lambda f_{1} f_{2} f_{3} z_{1} z_{2} z_{3} z_{4} \cdot f_{1}\left(f_{2} z_{1} z_{2}\right)\left(f_{3} z_{3} z_{4}\right)\right) \rightarrow_{\beta^{*}}(v v)(v v)$

Properties of \mathcal{T} and yet another conjecture

- \mathcal{T} preserves β-normal forms
- If \mathcal{T} terminates then $\mathcal{T}(t)$ is weak linear

But when does \mathcal{T} terminates?

Let $\Delta=\lambda x \cdot x x, D=\lambda x_{1} x_{2} \cdot x_{1} x_{2}$, and $\Omega=\Delta \Delta$. We have:
$\left.\mathcal{T}(\Omega)=\mathcal{T}(D \wedge \wedge)=\mathcal{T}\left(\lambda x_{1} x_{2} x_{1} x_{2} x_{2}\right) D \wedge\right)$
$\left.\left.=\mathcal{T}\left(\lambda x_{1} x_{2} x_{3} \cdot x_{1} x_{2} x_{3}\right) D \Delta \Delta\right)=\mathcal{T}\left(\lambda x_{1} x_{2} x_{3} \cdot x_{1} x_{2} x_{3} x_{3}\right) D D \Delta\right)$ $\left.=\mathcal{T}\left(\lambda x_{1} x_{2} x_{3} x_{4} \cdot x_{1} x_{2} x_{3} x_{4}\right) D D \Delta \Delta\right)=$

Our conjecture:
"T is a total function for strongly normalising terms"

Properties of \mathcal{T} and yet another conjecture

- \mathcal{T} preserves β-normal forms
- If \mathcal{T} terminates then $\mathcal{T}(t)$ is weak linear

But when does \mathcal{T} terminates?

Let $\Delta=\lambda x \cdot x x, D=\lambda x_{1} x_{2} \cdot x_{1} x_{2}$, and $\Omega=\Delta \Delta$. We have:
$\left.\mathcal{T}(\Omega)=\mathcal{T}(D \Delta \Delta)=\mathcal{T}\left(\lambda x_{1} \times 2 \cdot \times_{1} \times 2 \times 2\right) D \Delta\right)$
$\left.\left.=\mathcal{T}\left(\lambda x_{1} x_{2} x_{3} \cdot x_{1} x_{2} x_{3}\right) D \Delta \Delta\right)=\mathcal{T}\left(\lambda x_{1} x_{2} x_{3} \cdot x_{1} x_{2} x_{3} x_{3}\right) D D \Delta\right)$
$\left.=\mathcal{T}\left(\lambda x_{1} x_{2} x_{3} x_{4} \cdot x_{1} x_{2} x_{3} x_{4}\right) D D \Delta \Delta\right)=$
Our conjecture:
"T is a total function for strongly normalising terms"

Properties of \mathcal{T} and yet another conjecture

- \mathcal{T} preserves β-normal forms
- If \mathcal{T} terminates then $\mathcal{T}(t)$ is weak linear

But when does \mathcal{T} terminates?

Let $\Delta=\lambda x \cdot x x, D=\lambda x_{1} x_{2} \cdot x_{1} x_{2}$, and $\Omega=\Delta \Delta$. We have:
$\left.\mathcal{T}(\Omega)=\mathcal{T}(D \Delta \Delta)=\mathcal{T}\left(\lambda x_{1} \times \times_{2} \cdot \times_{1} \times \times_{2}\right) D \Delta\right)$ $\left.\left.=\mathcal{T}\left(\lambda x_{1} x_{2} x_{3} \cdot x_{1} x_{2} x_{3}\right) D \Delta \Delta\right)=\mathcal{T}\left(\lambda x_{1} x_{2} x_{3} \cdot x_{1} x_{2} x_{3} x_{3}\right) D D \Delta\right)$ $\left.=\mathcal{T}\left(\lambda x_{1} x_{2} x_{3} x_{4} \cdot x_{1} x_{2} x_{3} x_{4}\right) D D \Delta \Delta\right)$

Our conjecture:
"T is a total function for strongly normalising terms"

Properties of \mathcal{T} and yet another conjecture

- \mathcal{T} preserves β-normal forms
- If \mathcal{T} terminates then $\mathcal{T}(t)$ is weak linear

But when does \mathcal{T} terminates?

Let $\Delta=\lambda x \cdot x x, D=\lambda x_{1} x_{2} \cdot x_{1} x_{2}$, and $\Omega=\Delta \Delta$. We have:
$\left.\mathcal{T}(\Omega)=\mathcal{T}(D \Delta \Delta)=\mathcal{T}\left(\lambda x_{1} x_{2} \cdot x_{1} x_{2} x_{2}\right) D \Delta\right)$

Our conjecture:
"T is a total function for strongly normalising terms"

Properties of \mathcal{T} and yet another conjecture

- \mathcal{T} preserves β-normal forms
- If \mathcal{T} terminates then $\mathcal{T}(t)$ is weak linear

But when does \mathcal{T} terminates?

Let $\Delta=\lambda x \cdot x x, D=\lambda x_{1} x_{2} \cdot x_{1} x_{2}$, and $\Omega=\Delta \Delta$. We have:
$\left.\mathcal{T}(\Omega)=\mathcal{T}(D \Delta \Delta)=\mathcal{T}\left(\lambda x_{1} x_{2} \cdot x_{1} x_{2} x_{2}\right) D \Delta\right)$

$$
\left.=\mathcal{T}\left(\lambda x_{1} x_{2} x_{3} \cdot x_{1} x_{2} x_{3}\right) D \Delta \Delta\right)
$$

Our conjecture:
"T is a total function for strongly normalising terms"

Properties of \mathcal{T} and yet another conjecture

- \mathcal{T} preserves β-normal forms
- If \mathcal{T} terminates then $\mathcal{T}(t)$ is weak linear

But when does \mathcal{T} terminates?

Let $\Delta=\lambda x . x x, D=\lambda x_{1} x_{2} \cdot x_{1} x_{2}$, and $\Omega=\Delta \Delta$. We have:
$\left.\mathcal{T}(\Omega)=\mathcal{T}(D \Delta \Delta)=\mathcal{T}\left(\lambda x_{1} x_{2} \cdot x_{1} x_{2} x_{2}\right) D \Delta\right)$

$$
\left.\left.=\mathcal{T}\left(\lambda x_{1} x_{2} x_{3} \cdot x_{1} x_{2} x_{3}\right) D \Delta \Delta\right)=\mathcal{T}\left(\lambda x_{1} x_{2} x_{3} \cdot x_{1} x_{2} x_{3} x_{3}\right) D D \Delta\right)
$$

Our conjecture:
"T is a total function for strongly normalising terms"

Properties of \mathcal{T} and yet another conjecture

- \mathcal{T} preserves β-normal forms
- If \mathcal{T} terminates then $\mathcal{T}(t)$ is weak linear

But when does \mathcal{T} terminates?

Let $\Delta=\lambda x \cdot x x, D=\lambda x_{1} x_{2} \cdot x_{1} x_{2}$, and $\Omega=\Delta \Delta$. We have:
$\left.\mathcal{T}(\Omega)=\mathcal{T}(D \Delta \Delta)=\mathcal{T}\left(\lambda x_{1} x_{2} \cdot x_{1} x_{2} x_{2}\right) D \Delta\right)$

$$
\left.\left.=\mathcal{T}\left(\lambda x_{1} x_{2} x_{3} \cdot x_{1} x_{2} x_{3}\right) D \Delta \Delta\right)=\mathcal{T}\left(\lambda x_{1} x_{2} x_{3} \cdot x_{1} x_{2} x_{3} x_{3}\right) D D \Delta\right)
$$

$$
\left.=\mathcal{T}\left(\lambda x_{1} x_{2} x_{3} x_{4} \cdot x_{1} x_{2} x_{3} x_{4}\right) D D \Delta \Delta\right)=\cdots
$$

Our conjecture:
"T is a total function for strongly normalising terms"

Properties of \mathcal{T} and yet another conjecture

- \mathcal{T} preserves β-normal forms
- If \mathcal{T} terminates then $\mathcal{T}(t)$ is weak linear

But when does \mathcal{T} terminates?

Let $\Delta=\lambda x \cdot x x, D=\lambda x_{1} x_{2} \cdot x_{1} x_{2}$, and $\Omega=\Delta \Delta$. We have:

$$
\begin{aligned}
\mathcal{T}(\Omega) & \left.=\mathcal{T}(D \Delta \Delta)=\mathcal{T}\left(\lambda x_{1} x_{2} \cdot x_{1} x_{2} x_{2}\right) D \Delta\right) \\
& \left.\left.=\mathcal{T}\left(\lambda x_{1} x_{2} x_{3} \cdot x_{1} x_{2} x_{3}\right) D \Delta \Delta\right)=\mathcal{T}\left(\lambda x_{1} x_{2} x_{3} \cdot x_{1} x_{2} x_{3} x_{3}\right) D D \Delta\right) \\
& \left.=\mathcal{T}\left(\lambda x_{1} x_{2} x_{3} x_{4} \cdot x_{1} x_{2} x_{3} x_{4}\right) D D \Delta \Delta\right)=\cdots
\end{aligned}
$$

Our conjecture:
"T is a total function for strongly normalising terms"

Virtual redexes and Persistent versus Consuming

Virtual redexes involve abstractions that are consumed by reduction
Consider the term $t \equiv(\lambda x \cdot x x)(\lambda x \cdot x) \rightarrow(\lambda x \cdot x)(\lambda x \cdot x)$
The set of legal naths of t contains two naths of tyne $0-\lambda$:

- one ends in $(\lambda x . x x)$, corresponding to the redex $(\lambda x . x x)(\lambda x . x)$
- one ends in $(\lambda x, x)$, corresponding to the redex $(\lambda x, x)(\lambda x, x)$

But only one copy of $(\lambda x \cdot x)$ is going to be consumed by reduction, whereas the other will persist in the normal form.

Note that, after one step of \mathcal{T} we obtain $\left(\lambda x_{1} x_{1} \cdot x_{1} x_{2}\right)(\lambda x \cdot x)(\lambda x . x)$
And only ane cony of $(\lambda \times v)$ is now the end of a $\mathbb{C}-\lambda$ nath

Virtual redexes and Persistent versus Consuming

Virtual redexes involve abstractions that are consumed by reduction

Consider the term $t \equiv(\lambda x \cdot x x)(\lambda x \cdot x) \rightarrow(\lambda x \cdot x)(\lambda x \cdot x)$
The set of legal paths of t contains two paths of type @ $-\lambda$:

- one ends in $(\lambda x . x x)$, corresponding to the redex $(\lambda x . x x)(\lambda x . x)$
- one ends in $(\lambda x . x)$, corresponding to the redex $(\lambda x . x)(\lambda x . x)$

But only one copy of $(\lambda x . x)$ is going to be consumed by reduction,
whereas the other will persist in the normal form

Note that, after one step of \mathcal{T} we obtain $\left(\lambda x_{1} x_{1}, x_{1} x_{2}\right)(\lambda x . x)(\lambda x . x)$
And anly one cony of $(\lambda \times \sim)$ is now the end of a \boldsymbol{C} - 1 path

Virtual redexes and Persistent versus Consuming

Virtual redexes involve abstractions that are consumed by reduction
Consider the term $t \equiv(\lambda x . x x)(\lambda x . x) \rightarrow(\lambda x . x)(\lambda x . x)$
The set of legal paths of t contains two paths of type @ $-\lambda$:

- one ends in $(\lambda x . x x)$, corresponding to the redex $(\lambda x . x x)(\lambda x . x)$
- one ends in $(\lambda x . x)$, corresponding to the redex $(\lambda x . x)(\lambda x . x)$

But only one copy of $(\lambda x . x)$ is going to be consumed by reduction, whereas the other will persist in the normal form.

Note that, after one step of \mathcal{T} we obtain $\left(\lambda x_{1} x_{1} \cdot x_{1} x_{2}\right)(\lambda x \cdot x)(\lambda x \cdot x)$
And only one cony of $(\lambda \times x)$ is now the end of a $0-\lambda$ nath

Virtual redexes and Persistent versus Consuming

Virtual redexes involve abstractions that are consumed by reduction
Consider the term $t \equiv(\lambda x . x x)(\lambda x . x) \rightarrow(\lambda x . x)(\lambda x . x)$
The set of legal paths of t contains two paths of type @ $-\lambda$:

- one ends in $(\lambda x . x x)$, corresponding to the redex $(\lambda x . x x)(\lambda x . x)$
- one ends in $(\lambda x . x)$, corresponding to the redex $(\lambda x . x)(\lambda x . x)$

But only one copy of $(\lambda x . x)$ is going to be consumed by reduction, whereas the other will persist in the normal form.

Note that, after one step of \mathcal{T} we obtain $\left(\lambda x_{1} x_{1} \cdot x_{1} x_{2}\right)(\lambda x . x)(\lambda x . x)$
And only one copy of $(\lambda x \cdot x)$ is now the end of a @ $-\lambda$ path.

Quantitative Weak Linearisation

Expansion of Consuming Terms

$$
\mathrm{E}(x: \sigma) \triangleleft(y,\{x:[y: \sigma]\}), y \text { fresh }
$$

$$
\mathrm{E}\left(\lambda x . t:\left[\tau_{i}\right]_{i=1 \ldots n} \rightarrow \sigma\right) \quad\left(\lambda x_{1} \ldots x_{n} \cdot t^{*}, A\right)
$$

$$
\text { if for } n>0 \text { and fresh } x_{1}, \ldots, x_{n}
$$

$$
\mathrm{E}(t: \sigma) \triangleleft\left(t^{*}, A ;\left\{x:\left[x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}\right]\right\}\right)
$$

$$
\mathrm{E}(t u: \sigma) \triangleleft\left(t_{0} u_{1} \ldots u_{m},+_{j=0 \ldots m} A_{j}\right)
$$

$$
\text { if for some } m>0 \text { and } \tau_{1}, \ldots, \tau_{m}
$$

$$
\mathrm{E}\left(t:\left[\tau_{j}\right]_{j=1 \ldots m} \rightarrow \sigma\right) \triangleleft\left(t_{0}, A_{0}\right)
$$

$$
\text { and }\left(\mathrm{E}\left(u: \tau_{j}\right) \triangleleft\left(u_{j}, A_{j}\right)\right)_{j=1 \ldots m}
$$

Expansion of Persistent Terms

$$
\mathrm{E}(x: \mathrm{t}) \triangleleft(x,\{x:[x: \mathrm{t}]\})
$$

$\mathrm{E}(t u: \bullet \mathcal{N}) \triangleleft\left(t^{*} u^{*}, A_{1}+A_{2}\right)$,

$\mathrm{E}(t: \bullet \mathcal{N}) \triangleleft\left(t^{*}, A_{1}\right)$ and $\mathrm{E}(u: \mathrm{t}) \triangleleft\left(u^{*}, A_{2}\right)$

Expansion of Persistent Terms

$$
\begin{aligned}
\mathrm{E}(x: \mathrm{t}) \triangleleft & (x,\{x:[x: \mathrm{t}]\}) \\
\mathrm{E}(\lambda x . t: \bullet \mathcal{M}) \triangleleft & \left(\lambda x \cdot t^{*}, A\right), \\
& \text { if for some tight type } \mathrm{t} \text { and } n \geq 0 \\
& \mathrm{E}(t: \mathrm{t}) \triangleleft\left(t^{*}, A ;\left\{x:\left[x: \mathrm{t}_{1}, \ldots, x: \mathrm{t}_{n}\right]\right\}\right) \\
\mathrm{E}(t u: \bullet \mathcal{N}) \triangleleft & \left(t^{*} u^{*}, \mathrm{~A}_{1}+A_{2}\right), \\
& \text { if for some tight type } \mathrm{t} \\
& \mathrm{E}\left(t: \bullet_{N}\right) \triangleleft\left(t^{*}, A_{1}\right) \text { and } \mathrm{E}(u: \mathrm{t}) \triangleleft\left(u^{*}, A_{2}\right)
\end{aligned}
$$

Expansion of Persistent Terms

$$
\begin{aligned}
\mathrm{E}(x: \mathrm{t}) \triangleleft & (x,\{x:[x: \mathrm{t}]\}) \\
\mathrm{E}(\lambda x . t: \bullet \mathcal{M}) \triangleleft & \left(\lambda x . t^{*}, A\right), \\
& \text { if for some tight type } \mathrm{t} \text { and } n \geq 0 \\
& \mathrm{E}(t: \mathrm{t}) \triangleleft\left(t^{*}, A ;\left\{x:\left[x: \mathrm{t}_{1}, \ldots, x: \mathrm{t}_{n}\right]\right\}\right) \\
\mathrm{E}(t u: \bullet \mathcal{N}) \triangleleft & \left(t^{*} u^{*}, A_{1}+A_{2}\right), \\
& \text { if for some tight type } \mathrm{t} \\
& \mathrm{E}(t: \bullet \mathcal{N}) \triangleleft\left(t^{*}, A_{1}\right) \text { and } \mathrm{E}(u: \mathrm{t}) \triangleleft\left(u^{*}, A_{2}\right)
\end{aligned}
$$

Example

Recall $t \equiv(\lambda x . x \mathrm{I} x) \Delta$, with $\mathrm{I} \equiv \lambda z . z$ and $\Delta \equiv \lambda y \cdot y y$, and
$\mathcal{B}=[[\underbrace{\bullet \mathcal{M}] \rightarrow \bullet \mathcal{M}] \rightarrow[\bullet \mathcal{M}] \rightarrow \bullet \mathcal{M}}_{\tau_{1}}, \underbrace{[\bullet \mathcal{M}] \rightarrow \bullet \mathcal{M}}_{\tau_{2}}]$ and
$\mathcal{A}=[\bullet \mathcal{M}, \underbrace{\mathcal{B} \rightarrow\left[\bullet_{\mathcal{M}}\right] \rightarrow \bullet_{\mathcal{M}}}_{\tau_{3}}]$.

Example

Recall $t \equiv(\lambda x \cdot x \mathrm{I} x) \Delta$, with $\mathrm{I} \equiv \lambda z . z$ and $\Delta \equiv \lambda y \cdot y y$, and $\mathcal{B}=[\underbrace{\left.\bullet[\bullet \mathcal{M}] \rightarrow \bullet_{\mathcal{M}}\right] \rightarrow[\bullet \mathcal{M}] \rightarrow \bullet_{\mathcal{M}}}_{\tau_{1}}, \underbrace{\left[\bullet_{\mathcal{M}}\right] \rightarrow \bullet \mathcal{M}}_{\tau_{2}}]$ and
$\mathcal{A}=[\bullet \mathcal{M}, \underbrace{\mathcal{B} \rightarrow\left[\bullet_{\mathcal{M}}\right] \rightarrow \bullet_{\mathcal{M}}}_{\tau_{3}}]$.

$$
\begin{aligned}
& \mathrm{E}\left(\lambda x \cdot x x: \tau_{3}\right) \triangleleft\left(\lambda x_{1} x_{2} \cdot x_{1} x_{2}, \varnothing\right) \\
& \mathrm{E}(x x:[\bullet \mathcal{M}] \rightarrow \bullet \mathcal{M}) \triangleleft\left(x_{1} x_{2},\left\{x:\left[x_{1}: \tau_{1}, x_{2}: \tau_{2}\right]\right\}\right) \\
& \quad \mathrm{E}\left(x: \tau_{1}\right) \triangleleft\left(x_{1},\left\{x:\left[x_{1}: \tau_{1}\right]\right\}\right) \\
& \quad \mathrm{E}\left(x: \tau_{2}\right) \triangleleft\left(x_{2},\left\{x:\left[x_{2}: \tau_{2}\right]\right\}\right)
\end{aligned}
$$

$\mathrm{E}(\lambda x . x x: \bullet \mathcal{M}) \triangleleft(\lambda x . x x, \varnothing)$

Example

Recall $t \equiv(\lambda x . x I x) \Delta$, with $\mathrm{I} \equiv \lambda z . z$ and $\Delta \equiv \lambda y . y y$, and $\mathcal{B}=[[\underbrace{\left.\bullet \mathcal{M}] \rightarrow \bullet_{\mathcal{M}}\right] \rightarrow[\bullet \mathcal{M}] \rightarrow \bullet_{\mathcal{M}}}_{\tau_{1}}, \underbrace{[\bullet \mathcal{M}] \rightarrow \bullet \mathcal{M}}_{\tau_{2}}]$ and
$\mathcal{A}=[\bullet \mathcal{M}, \underbrace{\mathcal{B} \rightarrow\left[\bullet_{\mathcal{M}}\right] \rightarrow \bullet_{\mathcal{M}}}_{\tau_{3}}]$.

$$
\begin{aligned}
& \mathrm{E}\left(\lambda x \cdot x x: \tau_{3}\right) \triangleleft\left(\lambda x_{1} x_{2} \cdot x_{1} x_{2}, \varnothing\right) \\
& \mathrm{E}(x x:[\bullet \mathcal{M}] \rightarrow \bullet \mathcal{M}) \triangleleft\left(x_{1} x_{2},\left\{x:\left[x_{1}: \tau_{1}, x_{2}: \tau_{2}\right]\right\}\right) \\
& \quad \mathrm{E}\left(x: \tau_{1}\right) \triangleleft\left(x_{1},\left\{x:\left[x_{1}: \tau_{1}\right]\right\}\right) \\
& \quad \mathrm{E}\left(x: \tau_{2}\right) \triangleleft\left(x_{2},\left\{x:\left[x_{2}: \tau_{2}\right]\right\}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{E}\left(\lambda x \cdot x x: \bullet_{\mathcal{M}}\right) \triangleleft(\lambda x . x x, \varnothing) \\
& \mathrm{E}\left(x x: \bullet_{\mathcal{N}}\right) \triangleleft\left(x x,\left\{x:\left[x: \bullet_{\mathcal{N}}, x: \bullet_{\mathcal{N}}\right]\right\}\right) \\
& \mathrm{E}\left(x: \bullet_{\mathcal{N}}\right) \triangleleft\left(x,\left\{x:\left[x: \bullet_{\mathcal{N}}\right]\right\}\right) \\
& \mathrm{E}\left(x: \bullet_{\mathcal{N}}\right) \triangleleft\left(x,\left\{x:\left[x: \bullet_{\mathcal{N}}\right]\right\}\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& \mathrm{E}((\lambda x . x \mathrm{I} x) \Delta: \bullet \mathcal{M}) \triangleleft\left(\left(\lambda x_{3} x_{4} \cdot x_{3} \mathrm{II} x_{4}\right)\left(\lambda x_{1} x_{2} \cdot x_{1} x_{2}\right)(\lambda x . x x), \varnothing\right) \\
& \mathrm{E}(\lambda x \cdot x \mathrm{Ix}: \mathcal{A} \rightarrow \bullet \mathcal{M}) \triangleleft\left(\lambda x_{3} x_{4} \cdot x_{3} \mathrm{II} x_{4}, \varnothing\right) \\
& \mathrm{E}(x \mathrm{I} x: \bullet \mathcal{M}) \triangleleft\left(x_{3} \mathrm{II} x_{4},\left\{x:\left[x_{3}: \tau_{3}, x_{4}: \bullet \mathcal{M}\right]\right\}\right) \\
& \mathrm{E}(x \mathrm{I}:[\bullet \mathcal{M}] \rightarrow \bullet \mathcal{M}) \triangleleft\left(x_{3} \mathrm{II},\left\{x:\left[x_{3}: \tau_{3}\right]\right\}\right) \\
& \mathrm{E}\left(x: \tau_{3}\right) \triangleleft\left(x_{3},\left\{x:\left[x_{3}: \tau_{3}\right]\right\}\right) \\
& \mathrm{E}\left(\mathrm{I}: \tau_{1}\right) \triangleleft\left(\lambda x_{5} \cdot x_{5}, \varnothing\right) \\
& \mathrm{E}(x:[\bullet \mathcal{M}] \rightarrow \bullet \mathcal{M}) \triangleleft\left(x_{5},\left\{x:\left[x_{5}:[\bullet \mathcal{M}] \rightarrow \bullet \mathcal{M}\right]\right\}\right) \\
& \mathrm{E}\left(\mathrm{I}: \tau_{2}\right) \triangleleft\left(\lambda x_{6} \cdot x_{6}, \varnothing\right) \\
& \mathrm{E}(x: \bullet \mathcal{M}) \triangleleft\left(x_{6},\left\{x:\left[x_{6}: \bullet \mathcal{M}\right]\right\}\right) \\
& \mathrm{E}(x: \bullet \mathcal{M}) \triangleleft\left(x_{4},\left\{x:\left[x_{4}: \bullet \mathcal{M}\right]\right\}\right) \\
& \mathrm{E}\left(\lambda x . x x: \tau_{3}\right) \triangleleft\left(\lambda x_{1} x_{2} \cdot x_{1} x_{2}, \varnothing\right) \\
& \mathrm{E}\left(\lambda x \cdot x x: \bullet_{\mathcal{M}}\right) \triangleleft(\lambda x \cdot x x, \varnothing)
\end{aligned}
$$

Properties of E

Let $\mathrm{E}\left(t_{1}: \mathrm{t}\right) \triangleleft\left(u_{1}, A_{1}\right)$ be a tight expansion and $t_{1} \rightarrow_{\mathrm{nmx}} t_{2}$:

1. There is a term u_{2} such that $\mathrm{E}\left(t_{2}: \mathrm{t}\right) \triangleleft\left(u_{2}, A_{2}\right)$ is tight, $u_{1} \rightarrow_{n m \times}^{*} u_{2}$ and $A_{2} \subseteq A_{1}$.
2. If $\neg \operatorname{abs}\left(u_{1}\right)$ then for any $u^{\prime} \neq u_{2}$ s.t.

$$
u_{1} \rightarrow_{\mathrm{nmx}}^{*} u_{2}=u_{1} \rightarrow_{\mathrm{nmx}}^{*} u^{\prime} \rightarrow_{\mathrm{nmx}}^{*} u_{2}, \neg \operatorname{abs}\left(u^{\prime}\right) .
$$

where $\rightarrow_{\mathrm{nmx}}$ is a non-deterministic maximal strategy.
Thus E commutes with $\rightarrow_{\mathrm{nmx}}$.

Properties of E

Let $\mathrm{E}\left(t_{1}: \mathrm{t}\right) \triangleleft\left(u_{1}, A_{1}\right)$ be a tight expansion and $t_{1} \rightarrow_{\mathrm{nmx}} t_{2}$:

1. There is a term u_{2} such that $\mathrm{E}\left(t_{2}: \mathrm{t}\right) \triangleleft\left(u_{2}, A_{2}\right)$ is tight, $u_{1} \rightarrow_{n \mathrm{nmx}}^{*} u_{2}$ and $A_{2} \subseteq A_{1}$.
2. If $\neg \operatorname{abs}\left(u_{1}\right)$ then for any $u^{\prime} \neq u_{2}$ s.t.

$$
u_{1} \rightarrow_{\mathrm{nmx}}^{*} u_{2}=u_{1} \rightarrow_{\mathrm{nm} \times}^{*} u^{\prime} \rightarrow_{\mathrm{nm} x}^{*} u_{2}, \neg \operatorname{abs}\left(u^{\prime}\right)
$$

where $\rightarrow_{\mathrm{nmx}}$ is a non-deterministic maximal strategy.
Thus E commutes with $\rightarrow_{n m x}$.

A Typing Characterisation of Weak Terms: System $\mathcal{W} \mathcal{L}$

$$
\begin{gathered}
\frac{\Delta \vdash_{\mathrm{wl}} t: \sigma}{x:[\tau] \vdash_{\mathrm{wl}} x: \tau} \quad \frac{\Delta \vdash_{\mathrm{wl}} t: \sigma}{\Delta \vdash_{\mathrm{wl}} t:[\sigma]} \quad \frac{\Gamma \vdash_{\mathrm{wl}} t:[]}{\frac{\Gamma \vdash_{\mathrm{wl}} t: \tau}{\Gamma \backslash x \vdash_{\mathrm{wl}} \lambda x . t: \Gamma(x) \rightarrow \tau}|\Gamma(x)| \leq 1} \quad \frac{\Gamma \vdash_{\mathrm{wl}} t: \mathrm{t}}{\Gamma \backslash x \vdash_{\mathrm{wl}} \lambda x . t: \bullet \bullet_{\mathcal{M}}} \\
\frac{\Gamma \vdash_{\mathrm{wl}} t: \mathcal{A} \rightarrow \tau \quad \Delta \vdash_{\mathrm{wl}} u: \mathcal{A}}{\Gamma+\Delta \vdash_{\mathrm{wl}} t u: \tau} \quad \frac{\Gamma \vdash_{\mathrm{wl}} t: \bullet_{\mathcal{N}}}{\Gamma+\Delta \vdash_{\mathrm{wl}} t u: \bullet_{\mathcal{N}}}
\end{gathered}
$$

Properties of System $\mathcal{W} \mathcal{L}$

A term is weak-linear iff it is tight-typable in system $\mathcal{W} \mathcal{L}$.

If $\mathrm{E}(t: \sigma) \triangleleft\left(t_{1}, A\right)$, then t_{1} is typable in $\mathcal{W} \mathcal{L}$. Moreover, if the expansion is tight, so is the derivation.

If $\mathrm{E}(t: \sigma) \triangleleft\left(t^{\prime}, A\right)$ is tight, then t^{\prime} is weak-linear.
$\mathcal{W} \mathcal{L}$ gives a typing characterization to weak-linear λ-terms, unlike the typing system in Alves and Florido (2005), which typed all (but not exactly) the weak-linear terms.

Properties of System $\mathcal{W} \mathcal{L}$

A term is weak-linear iff it is tight-typable in system $\mathcal{W} \mathcal{L}$.

If $\mathrm{E}(t: \sigma) \triangleleft\left(t_{1}, A\right)$, then t_{1} is typable in $\mathcal{W} \mathcal{L}$. Moreover, if the expansion is tight, so is the derivation.

If $\mathrm{E}(t: \sigma) \triangleleft\left(t^{\prime}, A\right)$ is tight, then t^{\prime} is weak-linear.
$\mathcal{W} \mathcal{L}$ gives a typing characterization to weak-linear λ-terms, unlike the typing system in Alves and Florido (2005), which typed all (but not exactly) the weak-linear terms.

Properties of System $\mathcal{W} \mathcal{L}$

A term is weak-linear iff it is tight-typable in system $\mathcal{W} \mathcal{L}$.

If $\mathrm{E}(t: \sigma) \triangleleft\left(t_{1}, A\right)$, then t_{1} is typable in $\mathcal{W} \mathcal{L}$. Moreover, if the expansion is tight, so is the derivation.

If $\mathrm{E}(t: \sigma) \triangleleft\left(t^{\prime}, A\right)$ is tight, then t^{\prime} is weak-linear.
$\mathcal{W} \mathcal{L}$ gives a typing characterization to weak-linear λ-terms, unlike the typing system in Alves and Florido (2005), which typed all (but not exactly) the weak-linear terms.

Types and Measures

We have omitted measures from this presentation, although they are present in both systems: $\mathcal{M X}$ and $\mathcal{W} \mathcal{L}$.

- The number of β steps can be obtained from the number of times the abstraction rule for consumed terms is used
- The size of the normal form can be calculated from the number of times persisting rules are applied.

Furthermore.

it is possible to obtain measures of the expanded term from $\mathcal{M} \mathcal{X}$

Types and Measures

We have omitted measures from this presentation, although they are present in both systems: $\mathcal{M X}$ and $\mathcal{W} \mathcal{L}$.

- The number of β steps can be obtained from the number of times the abstraction rule for consumed terms is used.
- The size of the normal form can be calculated from the number of times persisting rules are applied.

Furthermore

.it is possible to obtain measures of the expanded term from $\mathcal{M X}$

Types and Measures

We have omitted measures from this presentation, although they are present in both systems: $\mathcal{M X}$ and $\mathcal{W} \mathcal{L}$.

- The number of β steps can be obtained from the number of times the abstraction rule for consumed terms is used.
- The size of the normal form can be calculated from the number of times persisting rules are applied.

Furthermore...

...it is possible to obtain measures of the expanded term from $\mathcal{M X}$.

Conclusions and Future Work

Conclusions:

- We use a quantitative system that explores the difference between persisting and consuming terms.
- We have presented an expansion relation between strongly normalising λ-terms and weak linear λ-terms preserving β-normal-forms.
- Quantitative types give an exact typing characterisation of the class of weak linear λ-terms.

Future work

- Explore other evalutation strategies.
- What is the exact relation between the approach by Kfoury
and our approach.

Conclusions and Future Work

Conclusions:

- We use a quantitative system that explores the difference between persisting and consuming terms.
- We have presented an expansion relation between strongly normalising λ-terms and weak linear λ-terms preserving β-normal-forms.
- Quantitative types give an exact typing characterisation of the class of weak linear λ-terms.

Future work:

- Explore other evalutation strategies.
- What is the exact relation between the approach by Kfoury and our approach.

Thank you!

