Closed Rewriting

Checking overlaps of Nominal Rewriting rules

Daniella Santaguida Magalhães de Souza
Advisor: Daniele Nantes Sobrinho

Date: 2024/02/08

Overview

1. Concepts and Definitions
2. Main Problem
3. References
4. Appendix

Concepts and Definitions

Nominal syntax

Nominal Signature Σ : set of function symbols $f, g, \wedge, \exists, \ldots$
Meta-level unknowns X : set of variables X, Y, P, Q, \ldots
Object-level variables \mathcal{A} : set of atoms a, b, c, \ldots

Nominal syntax

Nominal Signature Σ : set of function symbols $f, g, \wedge, \exists, \ldots$
Meta-level unknowns x : set of variables X, Y, P, Q, \ldots
Object-level variables \mathbb{A} : set of atoms a, b, c, \ldots

Nominal terms

Nominal terms are generated inductively by the grammar:

$$
t:=a \quad|\quad \pi \cdot X \quad| \quad[a] t \quad \mid \quad f\left(t_{1}, \ldots, t_{n}\right)
$$

Σ, X and \mathscr{A} are pairwise disjoint.

Permutation and Substitution

Permutation π : is a bijection on atoms, with finite domain.
A swapping $(a b)$ is a pair of atoms that maps a to b, b to a and all other atoms c to themselves.

$$
\begin{gathered}
(a b) \cdot a=b \quad(a b)(b c) \cdot a=b \\
(a b)(b c) \cdot b=c \quad(a b)(b c) \cdot c=a
\end{gathered}
$$

Substitution θ : is a mapping from a finite set of variables to terms.

$$
\begin{gathered}
\theta=[X \mapsto P, Y \mapsto \forall[a] Q] \\
(X \wedge Y) \theta=P \wedge \forall[a] Q
\end{gathered}
$$

Constraints

Freshness constraints (denoted by \#): Intuitively, $a \# t$ means that a does not occur free in t (read " a fresh in t ").

$$
a \# b \quad a \# a \quad a \#[a] a
$$

α-equivalence constraints (denoted by \approx_{α}): Intuitively, $s \approx_{\alpha} t$ means that s and t are α-equivalent, that is, they are the same term written with a different choice of bound names.

$$
\lambda x \cdot x \approx_{\alpha} \lambda y \cdot y \quad u \lambda x \cdot x \not \nsim \alpha_{\alpha} \nu \lambda y \cdot y \quad \lambda z \cdot z y \approx_{\alpha} \lambda x \cdot x y
$$

Nominal Commutative Unification

A problem Pr is defined as a set of constraints of the form $a \# X$ and $s \approx_{\alpha, \mathrm{c}} t$.

Definition

A C-solution for a triple $\mathscr{P}=(\Delta, \delta, \operatorname{Pr})$ is a pair $\left(\Delta^{\prime}, \theta\right)$ where the following conditions are satisfied:

1. $\Delta^{\prime} \vdash \Delta \theta$;
2. $\Delta^{\prime} \vdash a \# t \theta$, if $a \# t \in \operatorname{Pr}$;
3. $\Delta^{\prime} \vdash s \theta \approx_{\alpha, \mathrm{C}} t \theta$, if $s \approx_{\alpha, \mathrm{C}} t \in \operatorname{Pr}$;
4. there is a substitution θ^{\prime} such that $\Delta^{\prime}+\delta \theta^{\prime} \approx_{\alpha, \mathrm{C}} \theta$.

If there is no $\left(\Delta^{\prime}, \theta\right)$ then we say that the problem \mathscr{P} is unsolvable. Also $U_{\mathrm{C}}(\mathscr{P})$ denotes the set of all C-solutions of the triple \mathscr{P}.

Nominal Commutative Unification

Definition

A nominal C-unification problem (in context) is a pair of the form $(\nabla \vdash l) \stackrel{\mathcal{C}}{\sim}$? $(\Delta \vdash s)$.
 a C-solution of the triple $\mathscr{P}=\left(\{\nabla, \Delta\}, I d,\left\{l \approx_{\alpha, \mathrm{C}} s\right\}\right)$.
(0 $U_{C}(\nabla \vdash l, \Delta \vdash s)$ denotes the set of all C-solutions of $(\nabla \vdash l) \underset{?}{\stackrel{C}{\approx}}(\Delta \vdash s)$.

C-solutions are found using a sound and complete (not finitary) rule-based algorithm for C-unification [AdCSFN17].

Nominal Commutative Matching

Definition

A nominal C-matching problem is a pair of terms-in-context $(\nabla \vdash l) \stackrel{\text { C }}{\approx}(\Delta \vdash s)$ where $V(\nabla \vdash l) \cap V(\Delta \vdash s)=\emptyset$.

A C-solution to this problem is a substitution θ such that

1. $\Delta \vdash \nabla \theta$;
2. $\Delta \vdash l \theta \approx_{\alpha, \mathrm{C}} s$ and
3. $\operatorname{dom}(\theta) \subseteq V(\nabla \vdash l)$.

Nominal Rewriting modulo C

Nominal rewriting modulo C:

The one-step rewrite modulo C relation $\Delta \vdash s \rightarrow_{\mathrm{R}, \mathrm{C}} t$ is the least relation such that for any $R=(\nabla \vdash l \rightarrow r) \in \mathrm{R}$, position C , term s^{\prime}, permutation π, and substitution θ,

$$
\frac{s \equiv \mathrm{C}\left[s^{\prime}\right] \quad \Delta \vdash\left(\nabla \theta, s^{\prime} \approx_{\alpha, \mathrm{C}} \pi \cdot(l \theta), \mathrm{C}[\pi \cdot(r \theta)] \approx_{\alpha, \mathrm{C}} t\right)}{\Delta \vdash s \rightarrow_{\mathrm{R}, \mathrm{C}} t}
$$

Nominal Rewriting modulo C

Example (Nominal rules for prenex normal form):
Consider $\Sigma=\{\forall, \exists, \neg, \wedge, \vee\}$ the signature for first-order logic.
Let $C=\{\vdash P \vee Q \approx Q \vee P, \vdash P \wedge Q \approx Q \wedge P\}$ be a set of identities.
Let C be the theory over Σ consisting of the following rules:

$$
\begin{aligned}
& R_{1}: a \# P+P \wedge \forall[a] Q \rightarrow \forall[a](P \wedge Q) \\
& R_{2}: a \# P+P \vee \forall[a] Q \rightarrow \forall[a](P \vee Q) \\
& R_{3}: a \# P+P \wedge \exists[a] Q \rightarrow \exists[a](P \wedge Q) \\
& R_{4}: a \# P+P \vee \exists[a] Q \rightarrow \exists[a](P \vee Q) \\
& R_{5}: \quad \vdash \neg(\exists[a] Q) \rightarrow \forall[a] \neg Q \\
& R_{6}: \quad \vdash \neg(\forall[a] Q) \rightarrow \exists[a] \neg Q \\
& R_{7}: \quad \vdash \exists[a](\forall[b] Q) \rightarrow \forall[b](\exists[a] Q)
\end{aligned}
$$

Nominal Rewriting modulo C

$$
a \# P^{\prime} \vdash S^{\prime} \vee\left(P^{\prime} \vee \exists[a] Q^{\prime}\right)
$$

Nominal Rewriting modulo C

```
a#\mp@subsup{P}{}{\prime}}+\mp@subsup{S}{}{\prime}\vee(\mp@subsup{P}{}{\prime}\vee\exists[a]\mp@subsup{Q}{}{\prime}
R,C
a#\mp@subsup{P}{}{\prime}}\vdash\mp@subsup{S}{}{\prime}\vee(\exists[a](\mp@subsup{Q}{}{\prime}\vee\mp@subsup{P}{}{\prime})
```


Nominal Rewriting modulo C

Nominal Rewriting modulo C

Nominal Rewriting modulo C

© If $\Delta \vdash s \rightarrow_{\mathrm{R}, \mathrm{C}}^{*} t$ and $\Delta \vdash s \rightarrow_{\mathrm{R}, \mathrm{C}}^{*} t^{\prime}$, then we say a nominal rewrite system R is C -confluent when there exists a term u such that $\Delta \vdash t \rightarrow_{\mathrm{R}, \mathrm{C}}^{*} u$ and $\Delta \vdash t^{\prime} \rightarrow_{\mathrm{R}, \mathrm{C}}^{*} u$.
(0 R is said to be C -terminating if there is no infinite rewrite modulo C sequence.
© R is C -convergent if it is C -confluent and C -terminating.

Critical Pairs

(Overlaps and critical pairs)

We say $R_{1}=\nabla_{1} \vdash l_{1} \rightarrow r_{1}$ overlaps with $R_{2}=\nabla_{2} \vdash l_{2} \rightarrow r_{2}$, and we call then the pair of terms-in-context $\Gamma \vdash\left\langle r_{1} \theta, \mathrm{C} \theta\left[r_{2} \theta\right]\right\rangle$ a critical pair,

whenever $l_{1} \equiv \mathrm{C}\left[l_{1}^{\prime}\right]$ such that $\left\{\nabla_{1}, \nabla_{2}, l_{1}^{\prime}\right.$? $\left.\approx ? l_{2}\right\}$ has a principal solution (Γ, θ), so that $\Gamma \vdash l_{1}^{\prime} \theta \approx_{\alpha} l_{2} \theta$ and $\Gamma \vdash \nabla_{i} \theta$ for $i=1,2$.

Nominal Equality

An equational theory $\mathrm{E}=(\Sigma, A x)$ is a pair of a signature Σ and a possibly infinite set of equality judgements $A x$ in Σ, called axioms.
(Nominal algebra) equality
(Nominal algebra) equality: $\Delta \vdash_{\mathrm{E}} s=t$ is the least transitive reflexive symmetric relation such that for any $(\nabla \vdash l=r) \in \mathrm{E}$, position C, permutation π, substitution θ, and fresh Γ (so if $a \# X \in \Gamma$ then a is not mentioned in $\Delta, s, t)$,

$$
\frac{\Delta, \Gamma \vdash\left(\nabla \theta, \quad s \approx_{\alpha} \mathrm{C}[\pi \cdot(l \theta)], \quad \mathrm{C}[\pi \cdot(r \theta)] \approx_{\alpha} t\right)}{\Delta \vdash \mathrm{E} s=t}
$$

Mismatch - Nominal Algebra and Nominal Rewriting

In general, nominal rewriting is not complete for equational reasoning. We just saw that nominal algebra includes an extra fresh context Γ, which does not match the rewriting reasoning.

Mismatch - Nominal Algebra and Nominal Rewriting

In general, nominal rewriting is not complete for equational reasoning. We just saw that nominal algebra includes an extra fresh context Γ, which does not match the rewriting reasoning.

Spoiler alert: closed nominal rewriting is complete! [FG10]

Main Problem

Main Problem

Example: Consider $\Sigma=\{\forall, \exists, \neg, \wedge, \vee\}$ the signature for firstorder logic.

Let $\mathrm{C}=\{\vdash P \vee Q \approx Q \vee P, \vdash P \wedge Q \approx Q \wedge P\}$ be a set of identities.
Let C be the theory over Σ consisting of the following rules:

$$
\begin{array}{lll}
R_{1}: & a \# P & \vdash P \wedge \forall[a] Q \rightarrow \forall[a](P \wedge Q) \\
R_{2}: & a \# P & \vdash P \vee \forall[a] Q \rightarrow \forall[a](P \vee Q) \\
R_{3}: & a \# P & \vdash P \wedge \exists[a] Q \rightarrow \exists[a](P \wedge Q) \\
R_{4}: & a \# P & \vdash P \vee \exists[a] Q \rightarrow \exists[a](P \vee Q) \\
R_{5}: & & \vdash \neg(\exists[a] Q) \rightarrow \forall[a] \neg Q \\
R_{6}: & & \vdash \neg(\forall[a] Q) \rightarrow \exists[a] \neg Q \\
R_{7}: & & \vdash \exists[a](\forall[b] Q) \rightarrow \forall[b](\exists[a] Q)
\end{array}
$$

Main Problem

Critical pair: $\quad R_{3}$ versus R_{7}.

$$
\begin{array}{rll}
R_{3}: & a_{3} \# P_{3} & +P_{3} \wedge \exists\left[a_{3}\right] Q_{3} \rightarrow \exists\left[a_{3}\right]\left(P_{3} \wedge Q_{3}\right) \\
R_{7}: & & +\exists\left[a_{7}\right]\left(\forall\left[b_{7}\right] Q_{7}\right) \rightarrow \forall\left[b_{7}\right]\left(\exists\left[a_{7}\right] Q_{7}\right)
\end{array}
$$

We solve the nominal C-unification problem (in-context):

$$
\left(a_{3} \# P_{3}+\exists\left[a_{3}\right] Q_{3}\right) ? \approx ?\left(\emptyset \vdash \exists\left[a_{7}\right]\left(\forall\left[b_{7}\right] Q_{7}\right)\right)
$$

and get the C-solution:

$$
\left(\Delta^{\prime}=\left\{a_{3} \# P_{3}, a_{3} \# Q_{7}\right\}, \theta=\left[Q_{3} \mapsto \forall\left[b_{7}\right]\left(a_{3} a_{7}\right) \cdot Q_{7}\right]\right)
$$

Main Problem

Let $\Delta^{\prime}=\left\{a_{3} \# P_{3}, a_{3} \# Q_{7}\right\}$ and $\pi=\left(a_{3} a_{7}\right)$. We get the following critical pair (diagram below):

$$
\Delta^{\prime} \vdash\left\langle\exists\left[a_{3}\right]\left(P_{3} \wedge \forall\left[b_{7}\right] \pi \cdot Q_{7}\right), P_{3} \wedge \forall\left[b_{7}\right]\left(\exists\left[a_{3}\right] \pi \cdot Q_{7}\right)\right\rangle
$$

Main Problem

$$
\Delta^{\prime}=\left\{a_{3} \# P_{3}, a_{3} \# Q_{7}\right\}
$$

In order to check if this critical pair is joinable, we continue:

Main Problem

$$
\Delta^{\prime}=\left\{a_{3} \# P_{3}, a_{3} \# Q_{7}\right\}
$$

In order to check if this critical pair is joinable, we continue:

Main Problem

Problem: Note that we could only make the reduction in red if we had $b_{7} \# P_{3} \in \Delta^{\prime}$.

Notice that b_{7} is a new name that was chosen to rename the Rule 7. And we could have chosen a b_{7} that is fresh in P_{3}.

It seems that we need to weaken the context with new names fresh for the variables occurring in the rules.

Here we need closedness. [FG10]

Closedness

Intuitively, no free atom occurs in a closed term - closed axioms do not allow abstracted atoms to become free.

If t is a term, we say that t^{n} is a freshened variant of t when t^{n} has the same structure as t, except that the atoms and unknowns have been replaced by 'fresh' atoms and unknowns.

$$
[a][b] X: \quad\left[a^{n}\right]\left[b^{n}\right] X^{n} \quad\left[a^{n}\right]\left[a^{n}\right] X^{n} \quad\left[a^{n}\right]\left[b^{n}\right] X
$$

Closedness

Intuitively, no free atom occurs in a closed term - closed axioms do not allow abstracted atoms to become free.

If t is a term, we say that t^{n} is a freshened variant of t when t^{n} has the same structure as t, except that the atoms and unknowns have been replaced by 'fresh' atoms and unknowns.

$$
[a][b] X: \quad\left[a^{n}\right]\left[b^{n}\right] X^{n} \quad\left[a^{n}\right]\left[a^{n}\right] X^{n} \quad\left[a^{n}\right]\left[b^{n}\right] X
$$

Closed term (in-context)

A term-in-context $\nabla \vdash l$ is closed if there exists a solution for the matching problem

$$
\left(\nabla^{n} \vdash l^{n}\right) ? \approx\left(\nabla, A\left(\nabla^{n}, l^{n}\right) \# V(\nabla, l) \vdash l\right) .
$$

Extending results

Closed Nominal Rewriting modulo C

The one-step closed rewrite modulo C relation $\Delta \vdash s \xrightarrow{R, C}_{c} t$ is the least relation such that for any $R=(\nabla \vdash l \rightarrow r) \in R$ and term-incontext $\Delta \vdash s$, there is some R^{n} a freshened variant of R (so fresh for R, Δ, s, t), position C, term s^{\prime}, permutation π, and substitution θ,

$$
\frac{s \equiv \mathrm{C}\left[s^{\prime}\right] \quad \Delta, A\left(R^{n}\right) \# V(\Delta, s, t)+\left(\nabla^{n} \theta, s^{\prime} \approx_{\alpha, \mathrm{C}} l^{n} \theta, \mathrm{C}\left[r^{n} \theta\right] \approx_{\alpha, \mathrm{C}} t\right)}{\Delta \vdash s \rightarrow_{R, \mathrm{C}}^{c} t}
$$

Problem fixed

Problem fixed

Problem fixed

Conclusion and Future Work

© Closedness is essential to guarantee the confluence of this particular NRS - it simplifies the computation of critical pairs.
© A nominal critical pair modulo C is a new concept that is under investigation:

- we still need to prove a version of the nominal Critical Pair Lemma modulo C.
© We want to apply the current extensions in the development of closed nominal narrowing modulo C :
- we have to prove a version of the nominal Lifting Theorem modulo C.

References

References

Mauricio Ayala-Rincón, Washington de Carvalho Segundo, Maribel Fernández, and Daniele Nantes-Sobrinho.
On solving nominal fixpoint equations.
In Clare Dixon and Marcelo Finger, editors, Frontiers of Combining Systems - 11 th International Symposium, FroCoS 2017, Brasília, Brazil, September 27-29, 2017, Proceedings, volume 10483 of Lecture Notes in Computer Science, pages 209-226. Springer, 2017.

Mauricio Ayala-Rincón, Maribel Fernández, and Daniele Nantes-Sobrinho.
Nominal narrowing.
In Delia Kesner and Brigitte Pientka, editors, 1st International Conference on Formal Structures for Computation and Deduction, FSCD 2016, June 22-26, 2016, Porto, Portugal, volume 52 of LIPIcs, pages 11:1-11:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

Maribel Fernández and Murdoch James Gabbay.
Closed nominal rewriting and efficiently computable nominal algebra equality.
In Karl Crary and Marino Miculan, editors, Proceedings 5 th International Workshop on Logical Frameworks and Meta-languages: Theory and Practice, LFMTP 2010, Edinburgh, UK, 14 th July 2010, volume 34 of EPTCS, pages 37-51, 2010.

THE END

Appendix

Simplification rules for C-unification

We follow the approach by Ayala et. al. [AdCSFN17].

$$
\begin{array}{|lrl}
\text { (\#ab) } & (\Delta, \theta, \operatorname{Pr} \uplus\{a \# b\}) & \Longrightarrow(\Delta, \theta, \operatorname{Pr}) \\
\text { (\#app) } & \left(\Delta, \theta, \operatorname{Pr} \uplus\left\{a \# f\left(t_{1}, \cdots, t_{n}\right)\right\}\right) & \Longrightarrow\left(\Delta, \theta, \operatorname{Pr} \cup\left\{a \# t_{1}, \cdots, a \# t_{n}\right\}\right) \\
\text { (\#a[a]) } & (\Delta, \theta, \operatorname{Pr} \uplus\{a \#[a] t\}) & \Longrightarrow(\Delta, \theta, \operatorname{Pr}) \\
\text { (\#a[b]) } & (\Delta, \theta, \operatorname{Pr} \uplus\{a \#[b] t\}) & \Longrightarrow(\Delta, \theta, \operatorname{Pr} \cup\{a \# t\}) \\
\text { (\#var) } & (\Delta, \theta, \operatorname{Pr} \uplus\{a \# \pi \cdot X\}) & \Longrightarrow\left(\left\{\left(\pi^{-1} \cdot a\right) \# X\right\} \cup \Delta, \theta, \operatorname{Pr}\right)
\end{array}
$$

$$
\begin{aligned}
& \left(\approx_{\alpha, \mathrm{C}} \text { refl }\right) \quad\left(\Delta, \theta, \operatorname{Pr} \uplus\left\{s \approx_{\alpha, C} s\right\}\right) \Longrightarrow(\Delta, \theta, \operatorname{Pr}) \\
& \left(\approx_{\alpha, \mathrm{C}} \text { app }\right) \quad\left(\Delta, \theta, \operatorname{Pr} \uplus\left\{f(\bar{s})_{n} \approx_{\alpha, \mathrm{C}} f(\bar{t}){ }_{n}\right\}\right) \Longrightarrow\left(\Delta, \theta, \operatorname{Pr} \bigcup \bigcup\left\{s_{i} \approx_{\alpha, \mathrm{C}} t_{i}\right\}\right) \\
& \left(\approx_{\alpha, \mathrm{C}} C\right) \quad\left(\Delta, \theta, \operatorname{Pr} \uplus\left\{f^{\mathrm{C}} s \approx_{\alpha, \mathrm{C}} f^{\mathrm{C}} t\right\}\right) \Longrightarrow\left(\Delta, \theta, \operatorname{Pr} \cup\left\{s \approx_{\alpha, \mathrm{C}} v\right\}\right) \text {, where } s=\left(s_{0}, s_{1}\right) \\
& \text { and } t=\left(t_{0}, t_{1}\right), v=\left(t_{i}, t_{(i+1) \text { mod } 2}\right), i=0,1 \\
& \left(\approx_{\alpha, \mathrm{C}}[\mathrm{aa}]\right) \quad\left(\Delta, \theta, \operatorname{Pr} \uplus\left\{[a] s \approx_{\alpha, \mathrm{C}}[a] t\right\}\right) \Longrightarrow\left(\Delta, \theta, \operatorname{Pr} \cup\left\{s \approx_{\alpha, \mathrm{C}} t\right\}\right) \\
& \left(\approx_{\alpha, \mathrm{C}}[\mathrm{ab}]\right) \quad\left(\Delta, \theta, \operatorname{Pr} \uplus\left\{[a] s \approx_{\alpha, \mathrm{C}}[b] t\right\}\right) \Longrightarrow\left(\Delta, \theta, \operatorname{Pr} \cup\left\{s \approx_{\alpha, \mathrm{C}}(a b) \cdot t, a \# t\right\}\right) \\
& \left(\approx_{\alpha, \mathrm{C}} \text { inst }\right) \quad\left(\Delta, \theta, \operatorname{Pr} \uplus\left\{\pi \cdot X \approx_{\alpha, \mathrm{C}} t\right\}\right) \Longrightarrow\left(\Delta, \theta^{\prime}, \operatorname{Pr}\left[X \mapsto \pi^{-1} \cdot t\right] \cup \bigcup_{\substack{Y \in \operatorname{dom}\left(\theta^{\prime}\right), a \# Y \in \Delta}}\left\{a \# Y \theta^{\prime}\right\}\right), \\
& \text { let } \theta^{\prime}:=\theta\left[X \mapsto \pi^{-1} \cdot t\right] \text {, } \\
& \text { if } X \notin \operatorname{Var}(t) \\
& \left(\approx_{\alpha, \mathrm{C} \text { inv })} \quad\left(\Delta, \theta, \operatorname{Pr} \uplus\left\{\pi \cdot X \approx_{\alpha, \mathrm{C}} \pi^{\prime} \cdot X\right\}\right) \Longrightarrow\left(\Delta, \theta, \operatorname{Pr} \cup\left\{\pi \oplus\left(\pi^{\prime}\right)^{-1} \cdot X \approx_{\alpha, \mathrm{C}} X\right\}\right)\right. \\
& \text { if } \pi^{\prime} \neq \mathrm{Id}
\end{aligned}
$$

Nominal Rewriting

Nominal rewriting

The one-step rewrite relation $\Delta \vdash s \xrightarrow{R}[c, R, \theta, \pi]$ is the least relation such that for any $R=(\nabla \vdash l \rightarrow r) \in \mathrm{R}$, position C , term s^{\prime}, permutation π, and substitution θ,

$$
\frac{s \equiv \mathrm{C}\left[s^{\prime}\right] \quad \Delta \vdash\left(\nabla \theta, s^{\prime} \approx_{\alpha} \pi \cdot(l \theta), \mathrm{C}[\pi \cdot(r \theta)] \approx_{\alpha} t\right)}{\Delta \vdash s \xrightarrow{\mathrm{R}}[\mathrm{C}, R, \theta, \pi]}
$$

© To find θ and π above, we need to solve the nominal matching problem $\left(\Delta \vdash s^{\prime}\right) \approx ?(\nabla \vdash l)$.

Nominal Rewriting

© A NRS is said to be confluent when for all Δ, s, t and t^{\prime} such that $\Delta \vdash s \rightarrow^{*} t$ and $\Delta \vdash s \rightarrow^{*} t^{\prime}$, there exists u such that $\Delta \vdash t \rightarrow^{*} u$ and $\Delta \vdash t^{\prime} \rightarrow^{*} u$.

Notice we need the same Δ here. We will find some complications later.

Nominal Rewriting

Since atoms are not affected by substitution actions but can be swapped, we need to consider a technicality called equivariance.
© The equivariant closure of a set $R w$ of rewrite rules is the closure of Rw by the meta-action of permutations, that is, it is the set of all permutative variants of rules in $R w$. We denote eq-closure(Rzw) for the equivariant closure of $R w$.

Nominal Rewriting

Consider the NRS with the single rule $R \equiv a \# X \vdash f(X, b) \rightarrow a$. In order to find the eq-closure($R w$), we need to analyze all the permutative variants of $R \in R w$, they are $R^{(a b)}, R^{(a c)}, R^{(b c)}$ and $R^{(a c)(b d)}$, where c, d are arbitrary new atoms.

$$
\begin{gathered}
R_{1}=R^{(a b)}=b \# X \vdash f(X, a) \rightarrow b \\
R_{2}=R^{(a c)}=c \# X \vdash f(X, b) \rightarrow c \\
R_{3}=R^{(b c)}=a \# X \vdash f(X, c) \rightarrow a \\
R_{4}=R^{(a c)(b d)}=c \# X \vdash f(X, d) \rightarrow c
\end{gathered}
$$

Therefore, eq-closure(Rw) $=\left\{R, R_{1}, R_{2}, R_{3}, R_{4}\right\}$.

Critical Pairs

(Permutative overlaps and critical pairs)

Let $R_{1}=\nabla_{1} \vdash l_{1} \rightarrow r_{1}$ and $R_{2}=\nabla_{2} \vdash l_{2} \rightarrow r_{2}$ be copies of two rewrite rules in eq-closure $(R w)$ such that there is an overlap.

If R_{2} is a copy of R_{1}^{π}, we say that the overlap is permutative.
A permutative overlap at the root position is called root-permutative.

We call an overlap that is not trivial and not root-permutative proper.

The same terminology is used to classify critical pairs.

Critical Pairs

(Peak and local confluence)

Let R be an equivariant rewrite system, and let Δ, s, t_{1} and t_{2} such that $\Delta \vdash s \rightarrow t_{1}$ and $\Delta \vdash s \rightarrow t_{2}$. This pair will be denoted as $\Delta \vdash s \rightarrow t_{1}, t_{2}$ and called a peak.

If there is such a peak, then we call a NRS locally confluent when there exists a term u such that $\Delta \vdash t_{1} \rightarrow^{*} u$ and $\Delta \vdash t_{2} \rightarrow{ }^{*} u$. We say such a peak is joinable.

Notice we need the same Δ here again.
In this way, we can only say that a critical pair is joinable if its terms are under the same context.

Main Problem

Let $\Delta=\left\{a_{3} \# P_{3}\right\}$.

$$
\begin{aligned}
& \left(\Delta, \emptyset,\left\{\left.l_{3}\right|_{2} ? \approx ? l_{7}\right\}\right)= \\
& =\left(\Delta, \emptyset,\left\{\exists\left[a_{3}\right] Q_{3} ? \approx ? \exists\left[a_{7}\right]\left(\forall\left[b_{7}\right] Q_{7}\right)\right\}\right) \\
& \Rightarrow \underset{\left(\approx_{\alpha, \text { capp })}\left(\Delta, \emptyset,\left\{\left[a_{3}\right] Q_{3} ? \approx_{?}\left[a_{7}\right]\left(\forall\left[b_{7}\right] Q_{7}\right)\right\}\right), ~\left(\Delta, a_{n}\right)\right.}{ } \\
& \Rightarrow\left(\approx_{\alpha, C}[a b]\right)\left(\Delta, \emptyset,\left\{Q_{3} ? \approx_{?}\left(a_{3} a_{7}\right) \cdot \forall\left[b_{7}\right] Q_{7}, a_{3} \# \forall\left[b_{7}\right] Q_{7}\right\}\right) \\
& \Rightarrow \text { (\#app) }_{2}^{2}\left(\Delta, \emptyset,\left\{Q_{3} \text { ? } \approx ? \forall\left[b_{7}\right]\left(a_{3} a_{7}\right) \cdot Q_{7}, a_{3} \# Q_{7}\right\}\right) \\
& \Rightarrow\left(\approx _ { a , \text { cinst }) } \left(\Delta, \theta=\left[Q_{3} \mapsto \forall\left[b_{7}\right]\left(a_{3} a_{7}\right) \cdot Q_{7}\right]\right.\right. \text {, } \\
& \left.\left\{\forall\left[b_{7}\right]\left(a_{3} a_{7}\right) \cdot Q_{7} \text { ? } \approx ? \forall\left[b_{7}\right]\left(a_{3} a_{7}\right) \cdot Q_{7}, a_{3} \# Q_{7}\right\}\right) \\
& \Rightarrow\left(\approx_{a, \text { crefl }}\left(\Delta, \theta,\left\{a_{3} \# Q_{7}\right\}\right)\right. \\
& \Rightarrow_{(\# v a r)}\left(\Delta \cup\left\{a_{3} \# Q_{7}\right\}, \theta, \emptyset\right)
\end{aligned}
$$

Nominal rewriting not complete for equational reasoning

Suppose R is a presentation of E. It is not necessarily the case that

$$
\Delta \vdash_{\mathrm{E}} s=t \quad \text { implies } \quad \Delta \vdash_{\mathrm{R}} s \leftrightarrow t .
$$

Take $\mathrm{E}=\{a \# \mathrm{X} \vdash \mathrm{X}=f(\mathrm{X})\}$ and $\mathrm{R}=\{a \# \mathrm{X} \vdash \mathrm{X} \rightarrow f(\mathrm{X})\}$.
Then we have $r_{E} X=f(X)$ by definition, using $\Gamma=a \# X$, but $K_{\mathrm{R}} X \leftrightarrow f(X)$.

Nominal Narrowing [AFN16]

Nominal Narrowing

The one-step narrowing relation $(\Delta \vdash s) \leadsto[c, R, \theta, \pi]\left(\Delta^{\prime} \vdash t\right)$ is the least relation such that for any $R=(\nabla \vdash l \rightarrow r) \in \mathrm{R}$, position C , term s^{\prime}, permutation π, and substitution θ,

$$
\frac{s \equiv \mathrm{C}\left[s^{\prime}\right] \quad \Delta^{\prime} \vdash\left(\nabla \theta, \Delta \theta, s^{\prime} \theta \approx_{\alpha} \pi \cdot(l \theta),(\mathrm{C}[\pi \cdot r]) \theta \approx_{\alpha} t\right)}{(\Delta \vdash s) \leadsto[c, R, \theta, \pi]\left(\Delta^{\prime} \vdash t\right)}
$$

© To find θ and π above, we need to solve the nominal unification problem $\left(\Delta \vdash s^{\prime}\right) ? \approx ?(\nabla \vdash l)$.

Definition closedness

Closed rewriting

The one-step closed rewrite relation $\Delta \vdash s \xrightarrow{R}_{c} t$ is the least relation such that for any $R=(\nabla \vdash l \rightarrow r) \in \mathrm{R}$ and term-in-context $\Delta \vdash s$, there is some R^{n} a freshened variant of R (so fresh for R, Δ, s, t), position C, term s^{\prime}, permutation π, and substitution θ,

$$
\frac{s \equiv \mathrm{C}\left[s^{\prime}\right] \quad \Delta, A\left(R^{n}\right) \# V(\Delta, s, t)+\left(\nabla^{n} \theta, s^{\prime} \approx_{\alpha} l^{n} \theta, C\left[r^{n} \theta\right] \approx_{\alpha} t\right)}{\Delta \vdash s \rightarrow_{R}^{c} t}
$$

