
Anti-unification:
Introduction, Applications, and Recent Results

David M. Cerna
Czech Academy of Sciences,
Institute of Computer Science

February 8th 2024

slide 1/41

DreamCoder: library learning modulo theory

DreamCoder: Bootstrapping Inductive Program Synthesis with
Wake-Sleep Library Learning, 2021, Ellis et al., PLDI

slide 2/41

Babble: library learning modulo theory

Babble: Learning Better Abstractions with E-Graphs and Anti-
Unification, Cao et al., POPL

slide 3/41

What is it?

▶ Unification: is a process by which two symbolic expressions
may be identified through variable replacement.

▶ Anti-unification: A process that derives from a set of symbolic
expressions a new symbolic expression possessing certain
commonalities shared between its members.

f

a g

g

c a

h

a

AU

f

a g

c h

a

=

f

a g

X h

a

▶ Independently introduced by Plotkin and Reynolds in 1970.
▶ “A note on inductive generalization” by G. D. Plotkin
▶ “Transformational systems and the algebraic structure of

atomic formulas” by J.C. Reynolds

slide 4/41

Anti-Unification: Basics

▶ Let Σ be signature, V a countable set of variables, and
T (Σ,V) a term algebra.

▶ (Unification) For s, t ∈ T (Σ,V):
Does there exists a substitution σ s.t. sσ = tσ?

▶ (Anti-Unification) For s, t ∈ T (Σ,V):
Does there exists g ∈ T (Σ,V) and substitutions σs and σt s.t.
gσs = s and gσt = t?

▶ The term g is referred to as a generalization of s and t.

▶ While a substitution σ such that sσ = tσ may not exists,
x ∈ V always generalizes s and t (typically...):

σs = {x 7→ s} , σt = {x 7→ t}

▶ Let’s look at an example.

slide 5/41

Anti-Unification: Basics

f (g(x , a))
?
= f (y)

▶ {x ← a , y ← g(a, a)} is a unifier.
But, {y ← g(x , a)} is more general.

f (g(b, a)) ≜ f (g(a, a))

▶ f (y) is a generalization, {y ← g(b, a)} and {y ← g(a, a)}.
But, f (g(y , a)) is more specific,{y ← b} and {y ← a}

▶ Dual of most general unifier, least general generalization.

▶ Let g1 and g2 be generalizers of t1 and t2, then g1 is less
general then g2, g2 ≺ g1 if there exists µ s.t. g2µ = g1.

▶ g1 is least general if for every comparable term g2, g2 ≺ g1.

slide 6/41

A General Framework

G′ G
P

O

B µ1 Bµ2

Generic Concrete

O T (Σ,V)
M First-order substitutions

B .
= (syntactic equality)

P ⪯ : s ⪯ t if sσ
.
= t for some σ

▶ Goal: from O1,O2 ∈ O (symbolic expressions) derive G ∈ O
possessing certain commonalities shared by O1 and O2.

▶ Specification: define (a) a class of mappingsM from
O → O, (b) a base relation B consistent withM, and (c) a
preference relation P consistent with B.

▶ Result: G is a B-generalization of O1 and O2 and most
P-preferred (“better” than G ′).

slide 7/41

A General Framework

▶ A set G ⊂ O is called P-complete set of B-generalizations of
O1,O2 ∈ O if:
▶ Soundness: Every G ∈ G is a B-generalization of O1 and O2.
▶ Completeness: For each B-generalization G ′ of O1 and O2,

there exists G ∈ G such that P(G ′,G) (G is more preferred).

▶ Furthermore, G is minimal if:
▶ Minimality: No distinct elements of G are P-comparable: if

G1,G2 ∈ G and P(G1,G2), then G1 = G2.

▶ Minimal Complete sets come in four Types:
▶ Unitary (1): G is a singleton,
▶ Finitary (ω): G is finite and contains at least two elements,
▶ Infinitary (∞): G is infinite,
▶ Nullary (0): G does not exist (minimality and completeness

contradict each other).

▶ Types are extendable to generalization problems.

slide 8/41

Complete sets of solutions

▶ Here are some examples for each category of complete sets:
▶ UNITARY:

▶ First-Order terms
▶ High-Order patterns (and friends)

▶ FINITARY:
▶ FO terms, associative and/or commutative symbols
▶ Unranked Terms and Hedges
▶ FO terms, one symbol has a unit element

▶ INFINITARY:
▶ FO terms, idempotent symbols
▶ FO terms, absorbing Yesterday’s talk (A. F. G. Barragán)

▶ NULLARY:
▶ Semirings
▶ FO terms, more than one symbol has a unit element
▶ Simply typed lambda calculus
▶ Cartesian Combinators

slide 9/41

Rule-Based Algorithm

▶ x : t ≜ s is an anti-unification problem (AUP).
▶ A configuration is a triple A;S ;G where

▶ A is a set of AUPs (Active)
▶ S is a set of AUPs (Solved)
▶ G is a set of AUPs (Generalization)

▶ The initial state for an AUP x : t ≜ s is {x : t ≜ s}; ∅; x .
▶ Inference rules transform configurations into configurations.

▶ A configurations is final when no rules may be applied.

slide 10/41

Rule-Based AU: Examples

Dec: Decomposition

{x : f (tm) ≜ f (sm)} ⊎ A; S ; G =⇒
{ym : tm ≜ sm} ∪ A;S ; G{x 7→ f (ym)},
where y1, . . . , ym are fresh variables

Sol: Solve Rule

{x : t ≜ s} ⊎ A; S ; G =⇒ A; {x : t ≜ s} ∪ S ; G ,

head(t) ̸= head(s) and y is a fresh variable.

Mer: Merge Rule

A; {x : t1 ≜ t2, y : s1 ≜ s2} ⊎ S ; G =⇒
A; {x : t1 ≜ t2} ∪ S ; G {y 7→ x} ,
t1 = s1 and t2 = s2.

slide 11/41

Rule-Based AU: Examples

{x : f (g(a, c), h(b, a, b)) ≜ f (a, h(a, a, a))}; ∅; x
=⇒Dec

{x1 : g(a, c) ≜ a, x2 : h(b, a, b) ≜ h(a, a, a)}; ∅; f (x1, x2)
=⇒Sol

{x2 : h(b, a, b) ≜ h(a, a, a)}; {x1 : g(a, c) ≜ a}; f (x1, x2)
=⇒Dec

{x3 : b ≜ a, x4 : a ≜ a, x5 : b ≜ a}; {x1 : g(a, c) ≜ a}; f (x1, h(x3, x4, x5))
=⇒Dec

{x3 : b ≜ a, x5 : b ≜ a}; {x1 : g(a, c) ≜ a}; f (x1, h(x3, a, x5))
=⇒Sol×2

∅; {x1 : g(a, c) ≜ a, x3 : b ≜ a, x5 : b ≜ a}; f (x1, h(x3, a, x5))
=⇒mer

∅; {x1 : g(a, c) ≜ a, x3 : b ≜ a}; f (x1, h(x3, a, x3))
slide 12/41

Applications of Anti-unification

▶ Many applications are covered in the following Survey:

Anti-unification and Generalization: A Survey, D.M. Cerna
and T. Kutsia, IJCAI 2023 doi.org/10.24963/ijcai.2023/736

▶ Anti-unification is often used to build templates.

If objects match the template then they ought to behave
similarly in a given situation.

▶ Investigations have used anti-unification and similar
techniques for inductive synthesis.

slide 13/41

https://doi.org/10.24963/ijcai.2023/736

Apps: Inductive Synthesis

▶ Second-order anti-unification for program Replay.

The Replay of Program Derivations, R.W. Hasker, 1995, Thesis

▶ θ-subsumption for building bottom clauses.

Inverse entailment and Progol, S. Muggleton, 1995, NGCO

▶ Lggs used for recursive functional program synthesis.

IGOR II – an Analytical Inductive Functional Programming System,
M. Hofmann, 2010, PEPM

▶ Anti-unification for templating the recursion step.

Inductive Synthesis of Functional Programs: An Explanation Based
Generalization Approach, E. Kitzelmann U. Schmid, 2006, JMLR

▶ Flash-fill in Microsoft Excel.

Programming by Example using Least General Generalizations, By
M. Raza, S. Gulwani, N. Milic-Frayling, 2014, AAAI

slide 14/41

Applications:Bugs and Optimizations

▶ Extracting fixes from repository history.

Learning Quick Fixes from Code Repositories by R. Sousa , et al.,
2021, SBES

▶ Templating bugs with corresponding fixes.

Getafix: Learning to Fix Bugs Automatically By J. Bader, et al.,
2019, OOPSLA

▶ Templating configuration files to catagorize errors.

Rex: Preventing Bugs and Misconfiguration in Large Services Using
Correlated Change Analysis By Sonu Mehta, et al., 2020, NSDI

▶ Optimization of recursion schemes for efficient parallelizability.

Finding parallel functional pearls: Automatic parallel recursion
scheme detection in Haskell functions via anti-unification By A.
D. Barwell, C. Brown, K. Hammond, 2017, FGCS

slide 15/41

Applications:Theorem Proving

▶ Extraction of substitutions from substitution trees.

Higher-order term indexing using substitution trees By B. Pientka,
2009, ACM TOCL

▶ Grammar compression and inductive theorem proving.

Algorithmic Compression of Finite Tree Languages by Rigid Acyclic
Grammars, By S. Eberhard, G. Ebner, S. Hetzl, 2017, ACM TOCL

▶ Generating SyGuS problems.

Reinforcement Learning and Data-Generation for Syntax-Guided
Synthesis, By J. Parsert and E. Polgreen, 2024, AAAI

slide 16/41

Anti-unification over Lambda Terms

▶ Let B be a set of base types and Types is the set of types
inductively constructed from δ and →.

▶ The set Λ is constructed using the following grammar:

t ::= x | c | λx .t | t1t2

▶ A lambda term is a pattern if free variables only apply to
distinct bound variables.

▶ λx .f (X (x), c) is a pattern, but λx .f (X (X (x)), c) and
λx .f (X (x , x), c) are not.

▶ Anti-unification of an AUP X (x⃗) : t ≜ s often requires
▶ t and s are of the same type ,
▶ t and s are in η-long β-normal form,
▶ and X does not occur in t and s.

slide 17/41

Anti-unification over Lambda Terms

▶ Calculus of Constructions, pattern fragment.

Unification and anti-unification in the calculus of construction By
F. Pfenning, 1991, LICS

▶ Anti-unification in λ2 (P based on β-reduction).

Higher order generalization and its application in program verifica-
tion, Lu et al., 2000, AMAI

▶ Pattern Anti-unification in simply-typed λ-calculus.

Higher-order pattern anti-unification in linear time, A. Baumgartner
et al., 2017, JAR

▶ Top-maximal shallow, simply-typed λ-calculus.

A generic framework for higher-order generalization, D. Cerna and
T. Kutsia, 2019, FSCD

▶ λ-calculus with recursive let expressions.

Towards Fast Nominal Anti-unification of Letrec-Expressions, M.
Schmidt-Schauß, D. Nantes-Sobrinho et al., 2023, CADE

slide 18/41

Rules: Pattern Anti-unification

Dec: Decomposition

{X (x⃗) : h(tm) ≜ h(sm)} ⊎ A; S ; σ =⇒
{Ym(x⃗) : tm ≜ sm} ∪ A; S ; G{X 7→ λx⃗ .h(Ym(x⃗))},
where h is constant or h ∈ x⃗ , and Ym are fresh variables of the
appropriate types.

Abs: Abstraction Rule

{X (x⃗) : λy .t ≜ λz .s} ⊎ A; S ; σ =⇒ {X ′(x⃗ , y) : t ≜
s{z 7→ y}} ∪ A; S ; G {X 7→ λx⃗ , y .X ′(x⃗ , y)} ,
where X ′ is a fresh variable of the appropriate type.

slide 19/41

Extensions: Lambda Terms

Sol: Solve Rule

{X (x⃗) : t ≜ s} ⊎ A; S ; σ =⇒
A; {Y (y⃗) : t ≜ s} ∪ S ; G{X 7→ λx⃗ .Y (y⃗)},
where t and s are of a base type, head(t) ̸= head(s) or
head(t) = head(s) = h ̸∈ x⃗ . The sequence y⃗ is a subsequence of x⃗
consisting of the variables that appear freely in t or in s, and Y is
a fresh variable of the appropriate type.

Mer: Merge Rule

A; {X (x⃗) : t1 ≜ t2,Y (y⃗) : s1 ≜ s2} ⊎ S ; σ =⇒ A; {X (x⃗) : t1 ≜
t2} ∪ S ; G{Y 7→ λy⃗ .X (x⃗π)},
where π : {x⃗} → {y⃗} is a bijection, extended as a substitution with
t1π = s1 and t2π = s2.

slide 20/41

Pattern Anti-unification: Example

{X : λx , y .f (u(g(x), y), u(g(y), x)) ≜ λx ′, y ′.f (h(y ′, g(x ′)), h(x ′, g(y ′)))};
∅;X =⇒Abs×2

{X ′(x , y) : f (u(g(x), y), u(g(y), x)) ≜ f (h(y , g(x)), h(x , g(y)))}; ∅;
λx , y .X ′(x , y) =⇒Dec

{Y1(x , y) : u(g(x), y) ≜ h(y , g(x)),Y2(x , y) : u(g(y), x) ≜ h(x , g(y))}; ∅;
λx , y .f (Y1(x , y),Y2(x , y)) =⇒Sol

{Y2(x , y) : u(g(y), x) ≜ h(x , g(y))}; {Y1(x , y) : u(g(x), y) ≜ h(y , g(x))};
λx , y .f (Y1(x , y),Y2(x , y)) =⇒Sol

∅; {Y1(x , y) : u(g(x), y) ≜ h(y , g(x)),Y2(x , y) : u(g(y), x) ≜ h(x , g(y))};
λx , y .f (Y1(x , y),Y2(x , y)) =⇒Mer

∅; {Y1(x , y) : u(g(x), y) ≜ h(y , g(x))}; λx , y .f (Y1(x , y),Y1(y , x))

slide 21/41

Friends of Patterns

▶ While useful, patterns are quite inexpressive.

Functions-as-Constructors Higher-Order Unification, T. Libal and
D. Miller, 2016, FSCD

▶ Restricted terms occur as arguments to free variables.
▶ Restricted terms are inductively constructed from bound

variables and constant symbols with arity > 0.
▶ Arguments cannot be subterms of each other.

▶ X (f (x), y) is ok, but not X (f (x), x).

▶ Arguments cannot be proper subterms of each other.
▶ g(X (f (x), y),Y (f (x), z)) is ok, but not g(X (f (x), y),Y (x)).

▶ Unitary, but is Finitary without variable restrictions.

▶ Anti-unification is Unitary without most restrictions.

slide 22/41

Friends of Patterns

▶ Rules construct Top-maximal Shallow Generalizations.
▶ λx .f (X (x)) is preferred to λx .X (f (x)) when possible.
▶ λx .f (X (X (x))) or λx .f (X (Y (x))) not allowed.

▶ Only the Solve rule changes:

Sol: Solve

{X (x⃗) : t ≜ s} ⊎ A; S ; r =⇒ A; {Y (y1, . . . , yn) :
(Ct y1 · · · yn) ≜ (Cs y1 · · · yn)} ∪ S ; r{X 7→ λx⃗ .Y (q1, . . . , qn)},

where t and s are of a basic type, head(t) ̸= head(s),
q1, . . . , qn are distinct subterms of t or s,Ct and Cs are terms
such that (Ct q1 · · · qn) = t and (Cs q1 · · · qn) = s, Ct and Cs

do not contain any x ∈ x⃗ , and Y , y1, . . . , yn are distinct fresh
variables of the appropriate type.

▶ Pattern if the q1, . . . , qn ∈ x⃗ , and Ct = λx⃗ .t and Cs = λx⃗ .s.

slide 23/41

Anti-Unification beyond Patterns

▶ Not every choice of Cs and Ct will result in a Unitary variant.

▶ Inconsistent choices for Cs and Ct can result in the
computation of non-lggs.

▶ In particular how the qi s are chosen matters:
▶ qi s must match a selection condition.
▶ qi s must occur in both terms.
▶ qi s must not be positionally ordered within the terms.

▶ These conditions allowed us to define 4 Unitary variants.

slide 24/41

Anti-Unification beyond Patterns

▶ Projection Anti-Unification:
▶ q1 = t, q2 = s, Ct = λz1, z2.z1, Cs = λz1, z2.z2.

▶ Common Subterms Anti-Unification:
▶ qi s position maximal common subterms.
▶ Ct = λy1, . . . , yn. t[p1 7→ y1] · · · [pm 7→ yn]
▶ Cs = λy1, . . . , yn. s[l1 7→ y1] · · · [lm 7→ yn]

▶ Restricted Function-as-constructor Anti-Unification:
▶ qi s position maximal common subterms minus those which

break the Local variable condition.
▶ Ct and Cs are the same.

▶ Function-as-constructor Anti-Unification:
▶ qi s position maximal common subterms minus those which

break the Local/Global variable conditions.
▶ Ct and Cs are the same.

▶ Other variants are definable (based on the selection condition).

slide 25/41

Anti-Unification beyond Patterns: Example

{X : λx .f (h1(g(g(x)), a, b), h2(g(g(x)))) ≜

λy .f (h3(g(g(y)), g(y), a), h4(g(g(y))))}; ∅; X
=⇒Abs

{X ′(x) : f (h1(g(g(x)), a, b), h2(g(g(x)))) ≜

f (h3(g(g(x)), g(x), a), h4(g(g(x))))}; ∅; λx .X ′(x)

=⇒Dec

{Z1(x) : h1(g(g(x)), a, b) ≜ h3(g(g(x)), g(x), a),

Z2(x) : h2(g(g(x))) ≜ h4(g(g(x))}; ∅;
λx .f (Z1(x),Z2(x))

=⇒Sol-RFC

slide 26/41

Anti-Unification beyond Patterns: Example

{Z2(x) : h2(g(g(x))) ≜ h4(g(g(x))};
{Y1(y1) : h1(g(y1), a, b) ≜ h3(g(y1), y1, a)};

λx .f (Y1(g(x)),Z2(x))

=⇒Sol-RFC

∅; {Y1(y1) : h1(g(y1), a, b) ≜ h3(g(y1), y1, a),

Y2(y2) : h2(y2) ≜ h4(y2)};
λx .f (Y1(g(x)),Y2(g(g(x)))).

▶ Extending this idea to higher-type theories such as the
calculus of constructions (COC) has yet to be considered?

▶ Beneficial for proof generalization.
▶ What happens when the terms are no longer shallow?

slide 27/41

Deep Lambda Terms: Nullarity

▶ λx .λy .f (x) ≜ λx .λy .f (y) has no solution set.
▶ λx .λy .f (Z (x , y)) < λx .λy .f (Z (Z (x , y),Z (x , y))) < · · ·

slide 28/41

Deep Lambda Terms: Nullarity

▶ Its pattern generalization is gp = λx .λy .f (Z (x , y)).

▶ A generalization more specific gp is pattern-derived

Definition
Let g be pattern-derived. Then g is tight if for all W ∈ FV(g):

1) g{W 7→ λbk .bi} ̸∈ G(s, t), if W has type γk → γi and for
1 ≤ i ≤ k and γi ∈ B, and

2) For (σ1, σ2) ∈ GS(s, t, g), g{W 7→ t1}, g{W 7→ t2} ̸∈ G(s, t) where
t1 = Wσ1, t2 = Wσ2.

slide 29/41

Deep Lambda Terms: Nullarity

Definition
Let g = λx .λy .f (Z (sm)) be a tight generalization of s ≜ t where

1) Z has type δm → α for 1 ≤ i ≤ m, and si has type δi .

2) (σ1, σ2) ∈ GS(s, t, g) such that Zσ1 = r1 and Zσ2 = r2,

3) r1 and r2 are of type δm → α, and

4) Y such that Y ̸∈ FV(g) and has type α→ α→ α.

Then the g -pseudo-pattern, denoted G (g ,Z ,Y , σ1, σ2), is

g{Z 7→ λbm.Y (r1(bm), r2(bm)))} = λx .λy .f (Y (r1(qm), r2(qm))))

where for all 1 ≤ i ≤ m, qi = si{Z 7→ λbm.Y (r1(bm), r2(bm)))}.
▶ Essentially, we regularized the structure of the generalizations.

slide 30/41

Deep Lambda Terms: Nullarity

Theorem
For anti-unification of simply-typed lambda terms is nullary.

Proof.
Let us assume that C ⊆ G(s, t) is minimal and complete. We
know C contains a pattern-derived generalization g . Observe that
g can be transformed into an tight generalization g ′ that is also
pattern-derived. We can derive a pseudo-pattern generalization g ′′

of g ′. Finally, g∗ = g ′′{Y 7→ λw1.λw2.Y (Y (w1,w2),Y (w1,w2))}
is strictly more specific than g ′′. This implies that g <L g∗,
entailing that C is not minimal.

▶ Result extendable to non-shallow fragments.

One or nothing: Anti-unification over the simply-typed lambda cal-
culus, D. Cerna and M. Buran, 2022, Arxiv (under-review).

slide 31/41

Equational Anti-unification

▶ Anti-unification over commutative theories.

Unification, weak unification, upper bound, lower bound, and gen-
eralization problem, F. Baader, 1991, RTA

▶ Grammar for a complete set of E-generalizations:

E-generalization using grammars, J. Burghardt, 2005, AI

▶ Minimal complete set of AC-generalizations.

A modular order-sorted equational generalization algorithm, M.
Alpuente et al., 2014, Inf. Comput.

▶ Minimal complete set of I-generalizations.

Idempotent anti-unification, D. Cerna and T. Kutsia, 2020, ACM
TOCL

▶ Nullarity of U2-generalization.

Unital anti-unification: Type and algorithms, M. D. Cerna and T.
Kutsia, 2020, FSCD

slide 32/41

E-generalization: Important, but Explosive

▶ Many equational theories are not well behaved:

Problem Theory Type

f (a, b) ≜ f (b, a) f (x , x) = x , ∞
g(εf ,f (a,h(εf)))≜g(f (h(εf),a),εf) f (εf , x) = f (x , εf) = εf ∞

0 ≜ 1 Semirings 0

a ≜ b f(a)=a, f(b)=b 0

▶ Even when there are least general generalizations,

▶ are the majority of them useful? f (f (f (· · · f (x) · · ·)))
▶ Though, not all theories behave badly....

slide 33/41

Equantional Anti-unification: A and C

▶ AC-Anti-unification is finitary.
▶ Though the minimal complete set may have an exponential

number generalizations.

▶ Assuming that f is associative:

X : f (a, a, b, b) ≜ f (a, b, b) (Flattened for Readability)

▶ Note that there are many ways to decompose the problem:

X1 : a ≜ a X2 : f (a, b, b) ≜ f (b, b) (1)

X1 : a ≜ f (a, b) X2 : f (a, b, b) ≜ b (2)

X1 : f (a, a, b) ≜ a X2 : b ≜ f (b, b) (3)

X1 : f (a, a) ≜ a X2 : f (b, b) ≜ f (b, b) (4)

slide 34/41

Equantional Anti-unification: A and C

▶ If we continue this decomposition the lggs are:

g1 = f (X1, b, b) g2 = f (a,X2, b)

▶ g1 and g2 are ≺A-incomparable, and form the minimal
complete set for the terms f (a, a, b, b) and f (a, b, b).

▶ To compute the minimal complete set modulo associativity we
extend the syntactic algorithm by the following rules:

slide 35/41

Equantional Anti-unification: A Rules

Dec-A-L: Associative Decomposition Left

{X : f (t1, . . . , tk , tk+1 . . . , tn) ≜ f (s1, s2 . . . , sm)} ⊎ A; S ; σ =⇒
{Y1 : f (t1, . . . , tk) ≜ s1, Y2 : f (tk+1 . . . , tn) ≜
f (s2 . . . , sm)} ∪ A; S ; G{X 7→ f (Y1,Y2)},
where f is associative, n,m ≥ 2, 1 ≤ k ≤ n − 1, and Y1 and Y2 are
fresh variables.

Dec-A-R: Associative Decomposition Right

{X : f (t1, t2 . . . , tn) ≜ f (s1, . . . , sk , sk+1 . . . , sm)} ⊎ A; S ; σ =⇒
{Y1 : t1 ≜ f (s1, . . . , sk), Y2 : f (t2 . . . , tn) ≜
f (sk+1 . . . , sm)} ∪ A; S ; G{X 7→ f (Y1,Y2)},
where f is associative, n,m ≥ 2, 1 ≤ k ≤ m − 1, and Y1 and Y2

are fresh variables

slide 36/41

Equantional Anti-unification: A and C

▶ Similarly one can define Commutative anti-unification.

▶ We assume that f is commutative:

X : f (a, f (a, b)) ≜ f (b, f (b, a))

▶ There are only two ways to decompose:

X1 : a ≜ b X2 : f (a, b) ≜ f (b, a) (5)

X1 : a ≜ f (b, a) X2 : f (a, b) ≜ b (6)

▶ Furthermore, one of the possible decompositions is syntactic.

slide 37/41

Equantional Anti-unification: A and C

▶ Continuing this decomposition we get two lggs:

g1 = f (x , f (a, b)) g2 = f (x , f (x , y))

▶ Observe, g1 and g2 are ≺C -incomparable and form the
minimal complete set.

▶ To computing the minimal complete set modulo
commutatively we extend the syntactic algorithm by the
following rule:

slide 38/41

Equantional Anti-unification: A and C

Dec-C: Commutative Decomposition

{X : f (t1, t2) ≜ f (s1, s2)} ⊎ A; S ; σ =⇒ {Y1 : t1 ≜ si , Y2(x⃗) :
t2 ≜ s(i mod 2)+1} ∪ A; S ; G{X 7→ f (Y1,Y2)},
where f is commutative, i ∈ {1, 2}, and Y1 and Y2 are fresh
variables
▶ We can combine the A and C inference rules and construct an

even more flexible anti-unification algorithm.

▶ This combined anti-unification problem is still Finitary.

▶ f (a, a, b) ≜ f (a, b, b) has solutions f (a, b, x) and f (x , x , y).

slide 39/41

Selection Heuristics

▶ How to deal with the explosion?
▶ Alignment and Rigidity functions
▶ Skeletons
▶ beam search
▶ Syntactic restriction

▶ Recent Direction:
▶ Should the preference and base relations be Crisp?
▶ Are most lggs too distant from the generalized terms to be

generalizations?

▶ Is similarity and quantitative anti-unification a fix?

A Framework for Approximate Generalization in Quantitative The-
ories, T. Kutsia and C. Pau, 2022, FSCD

slide 40/41

Future Work

▶ Investigating the above questions

▶ New applications for anti-unification

▶ Developing methods for combining anti-unification algorithms
for disjoint equational theories

▶ Characterization of classes of equational theories that exhibit
similar behavior and properties

▶ Studying computational complexity and optimizations.

slide 41/41

