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Poly-time in a nutshell

• Ordering a list of size n

• Computing the strongly
connected components in a
graph

• Adding/multiplying numbers
(matrices)
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Polytime in a nutshell

• decomposition of integers
• “a lot” of proof-searching

algorithms
• automata learning

4/31



Polytime in a nutshell

• decomposition of integers

• “a lot” of proof-searching
algorithms

• automata learning

4/31



Polytime in a nutshell

• decomposition of integers
• “a lot” of proof-searching

algorithms

• automata learning

4/31



5/31



This is rather informal. . .
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Hey Oracle! Compute this F at x for me!
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Higher-Order what?
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Constable problem

Constable (1973) posed the problem of finding a natural analogue of
polynomial time (P) for (type-2) functionals:

(N → N)k × Nℓ → N

This problem has been studied since the 70’s.

Why this problem is interesting?

• most tasks considered feasible are in P

• most tasks outside of P seems quite infeasible
• almost all reasonable models of deterministic computation are

polynomially related
• both P and FP have good closure properties
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Basic Feasible Functionals (BFFs)

Good candidate? Let’s bring. . .BFFs

α : (N → N)k × Nℓ → N is in BFF if

• there is an OTM M

• a second order polynomial P
• M computes F

TIMEM(f⃗ , x⃗) ≤ P(f⃗ , x⃗)

11/31



Basic Feasible Functionals (BFFs)

Good candidate? Let’s bring. . .BFFs

α : (N → N)k × Nℓ → N is in BFF if

• there is an OTM M

• a second order polynomial P
• M computes F

TIMEM(f⃗ , x⃗) ≤ P(f⃗ , x⃗)

11/31



Basic Feasible Functionals (BFFs)

Good candidate? Let’s bring. . .BFFs

α : (N → N)k × Nℓ → N is in BFF if
• there is an OTM M

• a second order polynomial P
• M computes F

TIMEM(f⃗ , x⃗) ≤ P(f⃗ , x⃗)

11/31



Basic Feasible Functionals (BFFs)

Good candidate? Let’s bring. . .BFFs

α : (N → N)k × Nℓ → N is in BFF if
• there is an OTM M

• a second order polynomial P

• M computes F

TIMEM(f⃗ , x⃗) ≤ P(f⃗ , x⃗)

11/31



Basic Feasible Functionals (BFFs)

Good candidate? Let’s bring. . .BFFs

α : (N → N)k × Nℓ → N is in BFF if
• there is an OTM M

• a second order polynomial P
• M computes F

TIMEM(f⃗ , x⃗) ≤ P(f⃗ , x⃗)

11/31



Basic Feasible Functionals (BFFs)

Good candidate? Let’s bring. . .BFFs

α : (N → N)k × Nℓ → N is in BFF if
• there is an OTM M

• a second order polynomial P
• M computes F

TIMEM(f⃗ , x⃗) ≤ P(f⃗ , x⃗)

11/31



Goal

Our goal is to characterize BFFs via higher-order rewriting and tuple
interpretations.
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Higher-Order Rewriting

• function symbols with arity

• terms are applicative (uncurried)
• variables can be of higher-order type

Rmap :=

{
map F nil → nil
map F x :: q → (F x) map F q
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Tuple Interpretations 101

LσM = Cσ × Sσ
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Tuple Interpretations 101

LσM = Cσ × Sσ

LnatM = ⟨cost, number of s’s⟩

J0 =
〈

0 , 1
〉

Js =
〈

λx .0 ,λx .x + 1
〉
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Tuple Interpretations 101

LσM = Cσ × Sσ

LlistM = ⟨cost, (length, maximum element)⟩

Jnil =
〈

0 , (0, 0)
〉

Jcons =
〈

λx .λq.0 ,λxq.(ql + 1,max(x , qm))
〉
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Tuple Interpretations 101

LσM = Cσ × Sσ

Let’s get back to map.

Rmap :=

{
map F nil → nil
map F x :: q → (F x) map F q

Jmap(F , q)Kcost = (ql + 1) · ( JF K(qm)1︸ ︷︷ ︸
behavior of f !

)
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How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

(Soundness) Show that if a TRS R satisfying certain conditions
computes a type-2 functional α : (N −→ N)k × Nℓ −→ N

then α is in BFF

(Completeness) Show that if a functional α : (N −→ N)k ×Nℓ −→ N is
in BFF

then there exists a TRS R satisfying the same certain conditions
that computes α.

16/31



How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

(Soundness) Show that if a TRS R satisfying certain conditions
computes a type-2 functional α : (N −→ N)k × Nℓ −→ N
then α is in BFF

(Completeness) Show that if a functional α : (N −→ N)k ×Nℓ −→ N is
in BFF

then there exists a TRS R satisfying the same certain conditions
that computes α.

16/31



How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

(Soundness) Show that if a TRS R satisfying certain conditions
computes a type-2 functional α : (N −→ N)k × Nℓ −→ N
then α is in BFF

(Completeness) Show that if a functional α : (N −→ N)k ×Nℓ −→ N is
in BFF

then there exists a TRS R satisfying the same certain conditions
that computes α.

16/31



How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

(Soundness) Show that if a TRS R satisfying certain conditions
computes a type-2 functional α : (N −→ N)k × Nℓ −→ N
then α is in BFF

(Completeness) Show that if a functional α : (N −→ N)k ×Nℓ −→ N is
in BFF

then there exists a TRS R satisfying the same certain conditions
that computes α.

16/31



How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

• show that every TRS satisfying certain conditions represent a
BFF

– we limit constructor symbols to additive interpretations
– all defined symbols have polynomial bounded interpretations
– we add an infinite number of extra function symbols f to

represent the calls to ORACLES
– the cost int. of each oracle call is 1 and the size is polynomially

bounded
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How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

• show that every TRS satisfying certain conditions represent a BFF
• show that every BFF can be embedded as a TRS
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Higher-Order Rewriting with Oracles

Definition
A set of rules R over Σ defines a function f : N −→ N by way of the
symbol f if the following conditions are satisfied:

• the only defined symbol used in R is f;
• there is a bijection N −→ N , with N ⊆ T(Σcon), that is, each

n ∈ N has a unique data representation ⌜n⌝;
• for each n,m ∈ N such that m = f (n), there exists exactly one rule

f ⌜n⌝ → ⌜m⌝ in R.
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Higher-Order Rewriting with Oracles

Definition
Let it be given a finite TRS (F,R),

• a distinguished function symbol F ∈ Σ of type
(nat ⇒ nat) ⇒ nat ⇒ nat,

• a type-1 function f : N −→ N,
• fresh symbols G, Sf : nat ⇒ nat not in Σ

We write RF,f ,G for the infinite TRS consisting of the rules in R together
with the rules defining f by way of Sf and the rule:

G x → F Sf x
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First-Order Rewriting Computability

Definition (Type-1 Computability)
Let (F,R) be a TRS and f ∈ Σ. We say that the symbol f R-computes
a type-1 function f : N −→ N whenever

f ⌜n⌝ ↠ ⌜m⌝ iff f (n) = m.
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Higher-Order Rewriting Computability

Definition (Type-2 Computability)
We say that in a finite TRS R the function symbol
F : (nat ⇒ nat) ⇒ nat ⇒ nat computes the type-2 functional
α : NN −→ N −→ N iff
• for every type-1 function f in NN,

• the TRS RF,f ,G is such that the symbol G computes α(f ).
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Polynomial tuple interpretations give BFF!

Theorem
Let (F,R) be a finite TRS such that the symbol F ∈ Σ computes the
type-2 functional α : NN −→ N −→ N.

If (F,R) is compatible with a polynomial interpretation

then α is in BFF.
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One tuple for the oracles that know it all!

G x → F Sf x

JSf =

〈
(λx .1)︸ ︷︷ ︸

cost of oracle

,λx .max
y≤x

f (y)︸ ︷︷ ︸
size of oracle

〉

JSf ⌜n⌝K =
〈
(λx .1),J s

Sf

〉
· ⟨0, n⟩

=
〈
1,J s

Sf (n)
〉

≻ ⟨0,m⟩
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One tuple for the G that starts it all!

G x → F Sf x

JGf = ⟨(1,J c
F ),J s

F ⟩ · JSf K

JG xK =
〈
1 + J c

F (
〈
J c
Sf ,J

s
Sf

〉
, x),J s

F (J s
Sf , x)

〉
≻

〈
J c
F (
〈
J c
Sf ,J

s
Sf

〉
, x),J s

F (J s
Sf , x)

〉
= JFK · JSf K · JxK
= JF Sf xK
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First-Order typed based interpretation

(F,R)f :=

{
f(0, y) → y

f(s(x), y) → f(x , c(y , y))

J0K = 1 Js(x)K = 4x + 1
Jc(x , y)K = x + y Jf(x , y)K = x + xy2 + y

26/31



The Size Explosion Problem

How many steps to normalize t = f (s100(0), 0)?

f(s100(0), 0) → f(s99(0), c(0, 0)︸ ︷︷ ︸
c0

)

→ f(s98(0), c(c0, c0)︸ ︷︷ ︸
c1

)

...
→ f(s100−i (0), ci−1)
...
→ f(0, c99)
→ c99

Is the cost of f (sn(0), 0) linear in n? cn−1 is exponential in n!
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First-Order type-based interpretation

0::nat s::nat ⇒ nat c::nat × nat ⇒ nat f::nat × nat ⇒ nat

JnatK = ⟨ cost , size ⟩

J0K = ⟨0, 1⟩ Js(x)K = ⟨xc, xs + 1⟩
Jc(x , y)K = ⟨xc + yc , xs + ys⟩
Jf (x , y)K = ⟨xc + xs + 2xs · yc, 2xs · ys⟩
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Lemma (Subterm Lemma)
Let (F,R) be a term rewriting system admitting a CPI. Then there is a
second-order polynomial interpretation P such that for every type-1
functional f : N −→ N, data term ⌜n⌝ : nat, and context C :

if F Sf ⌜n⌝ ↠ C [Sf ⌜m⌝]

then |⌜m⌝| ≤ P(|f |, |⌜n⌝|).
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Polynomial tuple interpretations give BFF!

To prove this theorem we needed an interesting strategy:
• show that polynomial interpretations induce polynomial bounds to

the runtime complexity of terms G ⌜n⌝

• fix the size-explosion problem computing with graph rewriting
• show that OTMs can simulate graph rewriting with polynomial time

overhead
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Overview

One Tuple for the data c

additive all
One Tuple for the RULErS of R

bound by polynomials, you see

One Tuple for the Oracles that know it all

their knowledge a shield, embracing everything there are

One Tuple to orient them all

one Tuple to forever bind them

For now in BFF they are

These Tuples, we still need to find them!

Thank you!

31/31



Overview

One Tuple for the data c
additive all

One Tuple for the RULErS of R

bound by polynomials, you see

One Tuple for the Oracles that know it all

their knowledge a shield, embracing everything there are

One Tuple to orient them all

one Tuple to forever bind them

For now in BFF they are

These Tuples, we still need to find them!

Thank you!

31/31



Overview

One Tuple for the data c
additive all

One Tuple for the RULErS of R

bound by polynomials, you see
One Tuple for the Oracles that know it all

their knowledge a shield, embracing everything there are

One Tuple to orient them all

one Tuple to forever bind them

For now in BFF they are

These Tuples, we still need to find them!

Thank you!

31/31



Overview

One Tuple for the data c
additive all

One Tuple for the RULErS of R
bound by polynomials, you see

One Tuple for the Oracles that know it all

their knowledge a shield, embracing everything there are

One Tuple to orient them all

one Tuple to forever bind them

For now in BFF they are

These Tuples, we still need to find them!

Thank you!

31/31



Overview

One Tuple for the data c
additive all

One Tuple for the RULErS of R
bound by polynomials, you see

One Tuple for the Oracles that know it all

their knowledge a shield, embracing everything there are
One Tuple to orient them all

one Tuple to forever bind them

For now in BFF they are

These Tuples, we still need to find them!

Thank you!

31/31



Overview

One Tuple for the data c
additive all

One Tuple for the RULErS of R
bound by polynomials, you see

One Tuple for the Oracles that know it all
their knowledge a shield, embracing everything there are

One Tuple to orient them all

one Tuple to forever bind them

For now in BFF they are

These Tuples, we still need to find them!

Thank you!

31/31



Overview

One Tuple for the data c
additive all

One Tuple for the RULErS of R
bound by polynomials, you see

One Tuple for the Oracles that know it all
their knowledge a shield, embracing everything there are

One Tuple to orient them all

one Tuple to forever bind them
For now in BFF they are

These Tuples, we still need to find them!

Thank you!

31/31



Overview

One Tuple for the data c
additive all

One Tuple for the RULErS of R
bound by polynomials, you see

One Tuple for the Oracles that know it all
their knowledge a shield, embracing everything there are

One Tuple to orient them all
one Tuple to forever bind them

For now in BFF they are

These Tuples, we still need to find them!

Thank you!

31/31



Overview

One Tuple for the data c
additive all

One Tuple for the RULErS of R
bound by polynomials, you see

One Tuple for the Oracles that know it all
their knowledge a shield, embracing everything there are

One Tuple to orient them all
one Tuple to forever bind them

For now in BFF they are

These Tuples, we still need to find them!

Thank you!

31/31



Overview

One Tuple for the data c
additive all

One Tuple for the RULErS of R
bound by polynomials, you see

One Tuple for the Oracles that know it all
their knowledge a shield, embracing everything there are

One Tuple to orient them all
one Tuple to forever bind them

For now in BFF they are
These Tuples, we still need to find them!

Thank you!

31/31



Overview

One Tuple for the data c
additive all

One Tuple for the RULErS of R
bound by polynomials, you see

One Tuple for the Oracles that know it all
their knowledge a shield, embracing everything there are

One Tuple to orient them all
one Tuple to forever bind them

For now in BFF they are
These Tuples, we still need to find them!

Thank you!

31/31



Overview

One Tuple for the data c
additive all

One Tuple for the RULErS of R
bound by polynomials, you see

One Tuple for the Oracles that know it all
their knowledge a shield, embracing everything there are

One Tuple to orient them all
one Tuple to forever bind them

For now in BFF they are
These Tuples, we still need to find them!

Thank you!

31/31


	Poly-time in a nutshell
	Higher-order Feasibility
	BFFs Characterization

