A Rewriting Characterization of Higher-Order Feasibility via

 Tuple InterpretationsOngoing joint work with Patrick Baillot, Ugo dal Lago, Cynthia Kop, and Deivid Vale June 28, 2023

Outline

Poly-time in a nutshell

Higher-order Feasibility

BFFs Characterization

Poly-time in a nutshell

- Ordering a list of size n

Poly-time in a nutshell

- Ordering a list of size n
- Computing the strongly connected components in a graph

Poly-time in a nutshell

- Ordering a list of size n
- Computing the strongly connected components in a graph
- Adding/multiplying numbers (matrices)

Polytime in a nutshell

- decomposition of integers
- "a lot" of proof-searching algorithms
- automata learning

Polytime in a nutshell

- "a lot" of proof-searching algorithms
- automata learning

Polytime in a nutshell

- automata learning

- An infinite tape

The

- The head moves 2 or R
- It car change the
(0) Wait, content of a cell have heads!

Hey Oracle! Compute this F at x for me!

Higher-Order what? "Feasibility !!!"

Herc's Constable...

Outline

Poly-time in a nutshell

Higher-order Feasibility

BFFs Characterization

Constable problem

Constable (1973) posed the problem of finding a natural analogue of polynomial time (P) for (type-2) functionals:

$$
(\mathbb{N} \rightarrow \mathbb{N})^{k} \times \mathbb{N}^{\ell} \rightarrow \mathbb{N}
$$

This problem has been studied since the 70 's.

Constable problem

Constable (1973) posed the problem of finding a natural analogue of polynomial time (P) for (type-2) functionals:

$$
(\mathbb{N} \rightarrow \mathbb{N})^{k} \times \mathbb{N}^{\ell} \rightarrow \mathbb{N}
$$

This problem has been studied since the 70's.
Why this problem is interesting?

- most tasks considered feasible are in P

Constable problem

Constable (1973) posed the problem of finding a natural analogue of polynomial time (P) for (type-2) functionals:

$$
(\mathbb{N} \rightarrow \mathbb{N})^{k} \times \mathbb{N}^{\ell} \rightarrow \mathbb{N}
$$

This problem has been studied since the 70 's.

Why this problem is interesting?

- most tasks considered feasible are in P
- most tasks outside of P seems quite infeasible

Constable problem

Constable (1973) posed the problem of finding a natural analogue of polynomial time (P) for (type-2) functionals:

$$
(\mathbb{N} \rightarrow \mathbb{N})^{k} \times \mathbb{N}^{\ell} \rightarrow \mathbb{N}
$$

This problem has been studied since the 70 's.
Why this problem is interesting?

- most tasks considered feasible are in P
- most tasks outside of P seems quite infeasible
- almost all reasonable models of deterministic computation are polynomially related

Constable problem

Constable (1973) posed the problem of finding a natural analogue of polynomial time (P) for (type-2) functionals:

$$
(\mathbb{N} \rightarrow \mathbb{N})^{k} \times \mathbb{N}^{\ell} \rightarrow \mathbb{N}
$$

This problem has been studied since the 70 's.
Why this problem is interesting?

- most tasks considered feasible are in P
- most tasks outside of P seems quite infeasible
- almost all reasonable models of deterministic computation are polynomially related
- both P and $F P$ have good closure properties

Basic Feasible Functionals (EFFs)

Good candidate? Let's bring. . . BFF
Do you wanna be

Basic Feasible Functionals (BFFs)

Good candidate? Let's bring. . . BFFs
$\alpha:(\mathbb{N} \rightarrow \mathbb{N})^{k} \times \mathbb{N}^{\ell} \rightarrow \mathbb{N}$ is in BFF if

Basic Feasible Functionals (BFFs)

> Good candidate? Let's bring. . . BFFs
$\alpha:(\mathbb{N} \rightarrow \mathbb{N})^{k} \times \mathbb{N}^{\ell} \rightarrow \mathbb{N}$ is in BFF if

- there is an OTM M

Basic Feasible Functionals (BFFs)

> Good candidate? Let's bring. . . BFFs
$\alpha:(\mathbb{N} \rightarrow \mathbb{N})^{k} \times \mathbb{N}^{\ell} \rightarrow \mathbb{N}$ is in BFF if

- there is an OTM M
- a second order polynomial P

Basic Feasible Functionals (BFFs)

Good candidate? Let's bring. . . BFFs

$\alpha:(\mathbb{N} \rightarrow \mathbb{N})^{k} \times \mathbb{N}^{\ell} \rightarrow \mathbb{N}$ is in BFF if

- there is an OTM M
- a second order polynomial P
- $\quad M$ computes F

Basic Feasible Functionals (BFFs)

Good candidate? Let's bring. . . BFFs

$\alpha:(\mathbb{N} \rightarrow \mathbb{N})^{k} \times \mathbb{N}^{\ell} \rightarrow \mathbb{N}$ is in BFF if

- there is an OTM M
- a second order polynomial P
- $\quad M$ computes F

$$
\operatorname{TIME}_{M}(\vec{f}, \vec{x}) \leq P(\vec{f}, \vec{x})
$$

Goal

Our goal is to characterize BFFs via higher-order rewriting and tuple interpretations.

Higher-Order Rewriting

- function symbols with arity

Higher-Order Rewriting

- function symbols with arity
- terms are applicative (uncurried)

Higher-Order Rewriting

- function symbols with arity
- terms are applicative (uncurried)
- variables can be of higher-order type

Higher-Order Rewriting

- function symbols with arity
- terms are applicative (uncurried)
- variables can be of higher-order type

Higher-Order Rewriting

- function symbols with arity
- terms are applicative (uncurried)
- variables can be of higher-order type

$$
\mathbb{R}_{\text {map }}:=\left\{\begin{array}{l}
\operatorname{map} F \text { nil } \rightarrow \text { nil } \\
\operatorname{map} F x:: q \rightarrow(F x) \text { map } F q
\end{array}\right.
$$

Tuple Interpretations 101

$$
(\sigma \sigma)=\mathcal{C}_{\sigma} \times \mathcal{S}_{\sigma}
$$

Tuple Interpretations 101

$$
\begin{gathered}
(\sigma)=\mathcal{C}_{\sigma} \times \mathcal{S}_{\sigma} \\
(\text { nat })=\langle\text { cost, number of s's }\rangle \\
\mathcal{J}_{0}=\langle 0,1\rangle \quad \mathcal{J}_{\mathrm{s}}=\langle\lambda x .0, \lambda x . x+1\rangle
\end{gathered}
$$

Tuple Interpretations 101

$$
(\sigma \sigma)=\mathcal{C}_{\sigma} \times \mathcal{S}_{\sigma}
$$

$$
\begin{aligned}
(\text { list }) & =\langle\text { cost, (length, maximum element })\rangle \\
\mathcal{J}_{\text {nil }} & =\langle 0,(0,0)\rangle \\
\mathcal{J}_{\text {cons }} & =\left\langle\boldsymbol{\lambda} \times . \boldsymbol{\lambda} q .0, \boldsymbol{\lambda} \times q \cdot\left(q_{1}+1, \max \left(x, q_{\mathrm{m}}\right)\right)\right\rangle
\end{aligned}
$$

Tuple Interpretations 101

$$
(\sigma)=\mathcal{C}_{\sigma} \times \mathcal{S}_{\sigma}
$$

Let's get back to map.

$$
\begin{aligned}
& \mathbb{R}_{\text {map }}:=\left\{\begin{array}{l}
\operatorname{map} F \text { nil } \rightarrow \text { nil } \\
\operatorname{map} F x:: q \rightarrow(F x) \text { map } F q
\end{array}\right. \\
& \quad \llbracket \operatorname{map}(F, q) \rrbracket_{\text {cost }}=\left(q_{l}+1\right) \cdot(\underbrace{\llbracket F \rrbracket\left(q_{\mathrm{m}}\right)_{1}}_{\text {behavior of } f!})
\end{aligned}
$$

Tuple Interpretations 101

$$
(\sigma)=\mathcal{C}_{\sigma} \times \mathcal{S}_{\sigma}
$$

Let's get back to map.

$$
\begin{aligned}
& \mathbb{R}_{\text {map }}:=\left\{\begin{array}{l}
\operatorname{map} F \text { nil } \rightarrow \text { nil } \\
\operatorname{map} F x:: q \rightarrow(F x) \text { map } F q
\end{array}\right. \\
& \llbracket \operatorname{map}(F, q) \rrbracket_{\text {cost }}=\left(q_{1}+1\right) \cdot(\underbrace{\llbracket F \rrbracket\left(q_{\mathrm{m}}\right)_{1}}_{\text {behavior of } f!}) \\
& \llbracket \operatorname{map}(F, q) \rrbracket_{\text {length }}=q_{I}
\end{aligned}
$$

Tuple Interpretations 101

$$
(\sigma)=\mathcal{C}_{\sigma} \times \mathcal{S}_{\sigma}
$$

Let's get back to map.

$$
\begin{aligned}
& \mathbb{R}_{\text {map }}:=\left\{\begin{array}{l}
\operatorname{map} F \text { nil } \rightarrow \text { nil } \\
\operatorname{map} F x:: q \rightarrow(F x) \operatorname{map} F q
\end{array}\right. \\
& \llbracket \operatorname{map}(F, q) \rrbracket_{\text {cost }}=\left(q_{I}+1\right) \cdot(\underbrace{\llbracket F \rrbracket\left(q_{\mathrm{m}}\right)_{1}}_{\text {behavior of } f!}) \\
& \llbracket \operatorname{map}(F, q) \rrbracket_{\text {length }}=q_{I} \\
& \llbracket \operatorname{map}(F, q) \rrbracket_{\max }=\underbrace{\llbracket F \rrbracket\left(q_{\mathrm{c}}, q_{\mathrm{m}}\right)_{2}}_{\text {behavior of } f}
\end{aligned}
$$

Outline

Poly-time in a nutshell

Higher-order Feasibility

BFFs Characterization

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:
(Soundness) Show that if a TRS \mathbb{R} satisfying certain conditions computes a type-2 functional $\alpha:(\mathbb{N} \longrightarrow \mathbb{N})^{k} \times \mathbb{N}^{\ell} \longrightarrow \mathbb{N}$

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:
(Soundness) Show that if a TRS \mathbb{R} satisfying certain conditions computes a type-2 functional $\alpha:(\mathbb{N} \longrightarrow \mathbb{N})^{k} \times \mathbb{N}^{\ell} \longrightarrow \mathbb{N}$ then α is in BFF

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:
(Soundness) Show that if a TRS \mathbb{R} satisfying certain conditions computes a type-2 functional $\alpha:(\mathbb{N} \longrightarrow \mathbb{N})^{k} \times \mathbb{N}^{\ell} \longrightarrow \mathbb{N}$ then α is in BFF
(Completeness) Show that if a functional $\alpha:(\mathbb{N} \longrightarrow \mathbb{N})^{k} \times \mathbb{N}^{\ell} \longrightarrow \mathbb{N}$ is in BFF

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:
(Soundness) Show that if a TRS \mathbb{R} satisfying certain conditions computes a type-2 functional $\alpha:(\mathbb{N} \longrightarrow \mathbb{N})^{k} \times \mathbb{N}^{\ell} \longrightarrow \mathbb{N}$ then α is in BFF
(Completeness) Show that if a functional $\alpha:(\mathbb{N} \longrightarrow \mathbb{N})^{k} \times \mathbb{N}^{\ell} \longrightarrow \mathbb{N}$ is in BFF
then there exists a TRS \mathbb{R} satisfying the same certain conditions that computes α.

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

- show that every TRS satisfying certain conditions represent a BFF

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

- show that every TRS satisfying certain conditions represent a BFF
- we limit constructor symbols to additive interpretations

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

- show that every TRS satisfying certain conditions represent a BFF
- we limit constructor symbols to additive interpretations
- all defined symbols have polynomial bounded interpretations

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

- show that every TRS satisfying certain conditions represent a BFF
- we limit constructor symbols to additive interpretations
- all defined symbols have polynomial bounded interpretations
- we add an infinite number of extra function symbols f to represent the calls to ORACLES

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

- show that every TRS satisfying certain conditions represent a BFF
- we limit constructor symbols to additive interpretations
- all defined symbols have polynomial bounded interpretations
- we add an infinite number of extra function symbols f to represent the calls to ORACLES
- the cost int. of each oracle call is 1 and the size is polynomially bounded

How to characterize BFFs by Rewriting?

In order to capture BFFs we need to:

- show that every TRS satisfying certain conditions represent a BFF
- show that every BFF can be embedded as a TRS

Higher-Order Rewriting with Oracles

Higher-Order Rewriting with Oracles

Definition

A set of rules \mathbb{R} over Σ defines a function $f: \mathbb{N} \longrightarrow \mathbb{N}$ by way of the symbol f if the following conditions are satisfied:

Higher-Order Rewriting with Oracles

Definition

A set of rules \mathbb{R} over Σ defines a function $f: \mathbb{N} \longrightarrow \mathbb{N}$ by way of the symbol f if the following conditions are satisfied:

- the only defined symbol used in \mathbb{R} is f;

Higher-Order Rewriting with Oracles

Definition

A set of rules \mathbb{R} over Σ defines a function $f: \mathbb{N} \longrightarrow \mathbb{N}$ by way of the symbol f if the following conditions are satisfied:

- the only defined symbol used in \mathbb{R} is f;
- there is a bijection $\mathbb{N} \longrightarrow \mathcal{N}$, with $\mathcal{N} \subseteq T\left(\Sigma^{\text {con }}\right)$, that is, each $n \in \mathbb{N}$ has a unique data representation $\ulcorner\mathrm{n}$;

Higher-Order Rewriting with Oracles

Definition

A set of rules \mathbb{R} over Σ defines a function $f: \mathbb{N} \longrightarrow \mathbb{N}$ by way of the symbol f if the following conditions are satisfied:

- the only defined symbol used in \mathbb{R} is f;
- there is a bijection $\mathbb{N} \longrightarrow \mathcal{N}$, with $\mathcal{N} \subseteq T\left(\Sigma^{\text {con }}\right)$, that is, each $n \in \mathbb{N}$ has a unique data representation $\ulcorner\mathrm{n}$;
- for each $n, m \in \mathbb{N}$ such that $m=f(n)$, there exists exactly one rule $\mathrm{f}\ulcorner\mathrm{n}\urcorner \rightarrow\ulcorner\mathrm{m}\urcorner$ in \mathbb{R}.

Higher-Order Rewriting with Oracles

Definition

Let it be given a finite $\operatorname{TRS}(\mathbb{F}, \mathbb{R})$,

Higher-Order Rewriting with Oracles

Definition

Let it be given a finite $\operatorname{TRS}(\mathbb{F}, \mathbb{R})$,

- a distinguished function symbol $F \in \Sigma$ of type (nat \Rightarrow nat $) \Rightarrow$ nat \Rightarrow nat,

Higher-Order Rewriting with Oracles

Definition

Let it be given a finite $\operatorname{TRS}(\mathbb{F}, \mathbb{R})$,

- a distinguished function symbol $F \in \Sigma$ of type (nat \Rightarrow nat $) \Rightarrow$ nat \Rightarrow nat,
- a type-1 function $f: \mathbb{N} \longrightarrow \mathbb{N}$,

Higher-Order Rewriting with Oracles

Definition

Let it be given a finite $\operatorname{TRS}(\mathbb{F}, \mathbb{R})$,

- a distinguished function symbol $F \in \Sigma$ of type

$$
(\text { nat } \Rightarrow \text { nat }) \Rightarrow \text { nat } \Rightarrow \text { nat, }
$$

- a type-1 function $f: \mathbb{N} \longrightarrow \mathbb{N}$,
- fresh symbols G, S_{f} : nat \Rightarrow nat not in Σ

Higher-Order Rewriting with Oracles

Definition

Let it be given a finite $\operatorname{TRS}(\mathbb{F}, \mathbb{R})$,

- a distinguished function symbol $F \in \Sigma$ of type

$$
(\text { nat } \Rightarrow \text { nat }) \Rightarrow \text { nat } \Rightarrow \text { nat, }
$$

- a type-1 function $f: \mathbb{N} \longrightarrow \mathbb{N}$,
- fresh symbols G, S_{f} : nat \Rightarrow nat not in Σ

Higher-Order Rewriting with Oracles

Definition

Let it be given a finite $\operatorname{TRS}(\mathbb{F}, \mathbb{R})$,

- a distinguished function symbol $F \in \Sigma$ of type

$$
(\text { nat } \Rightarrow \text { nat }) \Rightarrow \text { nat } \Rightarrow \text { nat, }
$$

- a type-1 function $f: \mathbb{N} \longrightarrow \mathbb{N}$,
- fresh symbols G, S_{f} : nat \Rightarrow nat not in Σ

We write $\mathbb{R}_{F, f, G}$ for the infinite TRS consisting of the rules in \mathbb{R} together with the rules defining f by way of S_{f} and the rule:

$$
\mathrm{G} x \rightarrow \mathrm{FS}_{f} x
$$

First-Order Rewriting Computability

Definition (Type-1 Computability)

Let (\mathbb{F}, \mathbb{R}) be a TRS and $f \in \Sigma$. We say that the symbol $f \mathbb{R}$-computes a type-1 function $f: \mathbb{N} \longrightarrow \mathbb{N}$ whenever

$$
\mathrm{f}\ulcorner\mathrm{n}\urcorner \rightarrow\ulcorner\mathrm{m}\urcorner \text { iff } f(n)=m .
$$

Higher-Order Rewriting Computability

Definition (Type-2 Computability)

We say that in a finite TRS \mathbb{R} the function symbol
$\mathrm{F}:($ nat \Rightarrow nat $) \Rightarrow$ nat \Rightarrow nat computes the type-2 functional
$\alpha: \mathbb{N}^{\mathbb{N}} \longrightarrow \mathbb{N} \longrightarrow \mathbb{N}$ iff

- for every type-1 function f in $\mathbb{N}^{\mathbb{N}}$,

Higher-Order Rewriting Computability

Definition (Type-2 Computability)

We say that in a finite TRS \mathbb{R} the function symbol
$\mathrm{F}:($ nat \Rightarrow nat $) \Rightarrow$ nat \Rightarrow nat computes the type-2 functional
$\alpha: \mathbb{N}^{\mathbb{N}} \longrightarrow \mathbb{N} \longrightarrow \mathbb{N}$ iff

- for every type-1 function f in $\mathbb{N}^{\mathbb{N}}$,
- the TRS $\mathbb{R}_{F, f, G}$ is such that the symbol G computes $\alpha(f)$.

Polynomial tuple interpretations give BFF!

Theorem

Let (\mathbb{F}, \mathbb{R}) be a finite $T R S$ such that the symbol $\mathrm{F} \in \Sigma$ computes the type-2 functional $\alpha: \mathbb{N}^{\mathbb{N}} \longrightarrow \mathbb{N} \longrightarrow \mathbb{N}$.

Polynomial tuple interpretations give BFF!

Theorem

Let (\mathbb{F}, \mathbb{R}) be a finite $T R S$ such that the symbol $\mathrm{F} \in \Sigma$ computes the type-2 functional $\alpha: \mathbb{N}^{\mathbb{N}} \longrightarrow \mathbb{N} \longrightarrow \mathbb{N}$.

If (\mathbb{F}, \mathbb{R}) is compatible with a polynomial interpretation

Polynomial tuple interpretations give BFF!

Theorem

Let (\mathbb{F}, \mathbb{R}) be a finite $T R S$ such that the symbol $\mathrm{F} \in \Sigma$ computes the type-2 functional $\alpha: \mathbb{N}^{\mathbb{N}} \longrightarrow \mathbb{N} \longrightarrow \mathbb{N}$.

If (\mathbb{F}, \mathbb{R}) is compatible with a polynomial interpretation
then α is in BFF .

One tuple for the oracles that know it all!

$$
\mathrm{G} x \rightarrow \mathrm{FS}_{f} x
$$

One tuple for the oracles that know it all!

$$
\begin{gathered}
\mathrm{G} x \rightarrow \mathrm{~F} \mathrm{~S}_{f} x \\
\mathcal{J}_{\mathrm{S}_{f}}=\langle\underbrace{(\boldsymbol{\lambda} x .1)}_{\text {cost of oracle }}, \underbrace{\boldsymbol{\lambda} x \cdot \max _{y \leq x} f(y)}_{\text {size of oracle }}\rangle
\end{gathered}
$$

One tuple for the oracles that know it all!

$$
\begin{gathered}
\mathrm{G} x \rightarrow \mathrm{~F} \mathrm{~S}_{f} x \\
\mathcal{J}_{\mathrm{S}_{f}}=\langle\underbrace{(\boldsymbol{\lambda} x .1)}_{\text {cost of oracle }}, \underbrace{\boldsymbol{\lambda} x \cdot \max _{y \leq x} f(y)}_{\text {size of oracle }}\rangle \\
\begin{aligned}
\mathrm{S}_{f}\ulcorner\mathrm{n}\urcorner \rrbracket & =\left\langle(\boldsymbol{\lambda} x .1), \mathcal{J}_{\mathrm{S}_{f}}^{\mathrm{s}}\right\rangle \cdot\langle 0, n\rangle \\
& =\left\langle 1, \mathcal{J}_{\mathrm{S}_{f}^{\mathrm{s}}}(n)\right\rangle \\
& \succ\langle 0, m\rangle
\end{aligned}
\end{gathered}
$$

One tuple for the G that starts it all!

$$
\mathrm{G} x \rightarrow \mathrm{FS}_{f} x
$$

One tuple for the G that starts it all!

$$
\begin{gathered}
\mathrm{G} x \rightarrow \mathrm{~F} \mathrm{~S}_{f} x \\
\mathcal{J}_{\mathrm{G}_{f}}=\left\langle\left(1, \mathcal{J}_{\mathrm{F}}^{\mathrm{c}}\right), \mathcal{J}_{\mathrm{F}}^{\mathrm{s}}\right\rangle \cdot \llbracket \mathrm{S}_{f} \rrbracket
\end{gathered}
$$

One tuple for the G that starts it all!

$$
\begin{aligned}
& \mathrm{G} x \rightarrow \mathrm{~F}_{\mathrm{f}} x \\
& \mathcal{J}_{\mathrm{G}_{f}}=\left\langle\left(1, \mathcal{J}_{\mathrm{F}}^{\mathrm{c}}\right), \mathcal{J}_{\mathrm{F}}^{\mathrm{s}}\right\rangle \cdot \llbracket \mathrm{S}_{f} \rrbracket \\
& \llbracket G \times \rrbracket=\left\langle 1+\mathcal{J}_{\mathrm{F}}^{c}\left(\left\langle\mathcal{J}_{\mathcal{S}_{f}}^{c}, \mathcal{J}_{\mathrm{S}_{f}}^{\mathrm{s}}\right\rangle, x\right), \mathcal{J}_{\mathrm{F}}^{\mathrm{s}}\left(\mathcal{J}_{\mathrm{s}_{f}}^{\mathrm{s}}, x\right)\right\rangle \\
& \succ\left\langle\mathcal{J}_{\mathrm{F}}^{\mathrm{c}}\left(\left\langle\mathcal{J}_{\mathrm{S}_{f}}^{\mathrm{c}}, \mathcal{J}_{\mathrm{S}_{f}}^{\mathrm{s}}\right\rangle, x\right), \mathcal{J}_{\mathrm{F}}^{\mathrm{s}}\left(\mathcal{J}_{\mathrm{S}_{f}}^{\mathrm{s}}, x\right)\right\rangle \\
& =\llbracket \mathrm{F} \rrbracket \cdot \llbracket \mathrm{~S}_{\mathrm{f}} \rrbracket \cdot \llbracket x \rrbracket \\
& =\llbracket \mathrm{F}_{\mathrm{S}} \times \rrbracket
\end{aligned}
$$

First-Order typed based interpretation

$$
\begin{aligned}
(\mathbb{F}, \mathbb{R})_{f} & :=\left\{\begin{array}{l}
f(0, y) \rightarrow y \\
f(s(x), y) \rightarrow f(x, c(y, y))
\end{array}\right. \\
\llbracket 0 \rrbracket & =1 \quad \llbracket s(x) \rrbracket=4 x+1 \\
\llbracket c(x, y) \rrbracket & =x+y \llbracket \llbracket(x, y) \rrbracket=x+x y^{2}+y
\end{aligned}
$$

The Size Explosion Problem

How many steps to normalize $t=f\left(s^{100}(0), 0\right)$?

The Size Explosion Problem

How many steps to normalize $t=f\left(s^{100}(0), 0\right)$?

$$
\mathrm{f}\left(\mathrm{~s}^{100}(0), 0\right) \rightarrow \mathrm{f}(\mathrm{~s}^{99}(0), \underbrace{\mathrm{c}(0,0)}_{c_{0}})
$$

The Size Explosion Problem

How many steps to normalize $t=f\left(s^{100}(0), 0\right)$?

$$
\begin{aligned}
\mathrm{f}\left(\mathrm{~s}^{100}(0), 0\right) & \rightarrow \mathrm{f}(\mathrm{~s}^{99}(0), \underbrace{c(0,0)}_{c_{0}}) \\
& \rightarrow \mathrm{f}(\mathrm{~s}^{98}(0), \underbrace{c\left(c_{0}, c_{0}\right)}_{c_{1}})
\end{aligned}
$$

The Size Explosion Problem

How many steps to normalize $t=f\left(s^{100}(0), 0\right)$?

$$
\begin{aligned}
\pm\left(s^{100}(0), 0\right) & \rightarrow \pm(s^{99}(0), \underbrace{c(0,0)}_{c_{0}}) \\
& \rightarrow \pm(s^{98}(0), \underbrace{c\left(c_{0}, c_{0}\right)}_{c_{1}}) \\
& \vdots \\
& \rightarrow \pm\left(s^{100-i}(0), c_{i-1}\right)
\end{aligned}
$$

The Size Explosion Problem

How many steps to normalize $t=f\left(s^{100}(0), 0\right)$?

$$
\begin{aligned}
f\left(s^{100}(0), 0\right) & \rightarrow \pm(s^{99}(0), \underbrace{c(0,0)}_{c_{0}}) \\
& \rightarrow \pm(s^{98}(0), \underbrace{c\left(c_{0}, c_{0}\right)}_{c_{1}}) \\
& \vdots \\
& \rightarrow \pm\left(s^{100-i}(0), c_{i-1}\right) \\
& \vdots \\
& \rightarrow \pm\left(0, c_{99}\right)
\end{aligned}
$$

The Size Explosion Problem

How many steps to normalize $t=f\left(s^{100}(0), 0\right)$?

$$
\begin{aligned}
\mathrm{f}\left(\mathrm{~s}^{100}(0), 0\right) & \rightarrow \mathrm{f}(\mathrm{~s}^{99}(0), \underbrace{\mathrm{c}(0,0)}_{c_{0}}) \\
& \rightarrow \mathrm{f}(\mathrm{~s}^{98}(0), \underbrace{c\left(c_{0}, c_{0}\right)}_{c_{1}}) \\
& \vdots \\
& \rightarrow \pm\left(\mathrm{s}^{100-i}(0), c_{i-1}\right) \\
& \vdots \\
& \rightarrow \pm\left(0, c_{99}\right) \\
& \rightarrow \mathrm{c}_{99}
\end{aligned}
$$

The Size Explosion Problem

How many steps to normalize $t=f\left(s^{100}(0), 0\right)$?

$$
\begin{aligned}
\mathrm{f}\left(\mathrm{~s}^{100}(0), 0\right) & \rightarrow \mathrm{f}(\mathrm{~s}^{99}(0), \underbrace{c(0,0)}_{c_{0}}) \\
& \rightarrow \mathrm{f}(\mathrm{~s}^{98}(0), \underbrace{c\left(c_{0}, c_{0}\right)}_{c_{1}}) \\
& \vdots \\
& \rightarrow \pm\left(\mathrm{s}^{100-i}(0), c_{i-1}\right) \\
& \vdots \\
& \rightarrow \mathrm{f}\left(0, c_{99}\right) \\
& \rightarrow \mathrm{c}_{99}
\end{aligned}
$$

Is the cost of $f\left(s^{n}(0), 0\right)$ linear in n ?

The Size Explosion Problem

How many steps to normalize $t=f\left(s^{100}(0), 0\right)$?

$$
\begin{aligned}
\mathrm{f}\left(\mathrm{~s}^{100}(0), 0\right) & \rightarrow \mathrm{f}(\mathrm{~s}^{99}(0), \underbrace{c(0,0)}_{c_{0}}) \\
& \rightarrow \mathrm{f}(\mathrm{~s}^{98}(0), \underbrace{c\left(c_{0}, c_{0}\right)}_{c_{1}}) \\
& \vdots \\
& \rightarrow \pm\left(\mathrm{s}^{100-i}(0), c_{i-1}\right) \\
& \vdots \\
& \rightarrow \mathrm{f}\left(0, c_{99}\right) \\
& \rightarrow \mathrm{c}_{99}
\end{aligned}
$$

Is the cost of $f\left(s^{n}(0), 0\right)$ linear in $n ? \quad c_{n-1}$ is exponential in n !

First-Order type-based interpretation

$$
0:: \text { nat } \quad \text { s::nat } \Rightarrow \text { nat } \quad c:: \text { nat } \times \text { nat } \Rightarrow \text { nat } \quad f:: \text { nat } \times \text { nat } \Rightarrow \text { nat }
$$

First-Order type-based interpretation

$$
\begin{gathered}
0:: \text { nat } \quad \text { s::nat } \Rightarrow \text { nat } \quad c:: \text { nat } \times \text { nat } \Rightarrow \text { nat } \quad f:: \text { nat } \times \text { nat } \Rightarrow \text { nat } \\
\llbracket \text { nat } \rrbracket=\langle\text { cost }, \text { size }\rangle
\end{gathered}
$$

First-Order type-based interpretation

$$
\begin{gathered}
0:: \text { nat } \quad \mathrm{s}:: \text { nat } \Rightarrow \text { nat } \mathrm{c}:: \text { nat } \times \text { nat } \Rightarrow \text { nat } \quad \mathrm{f}: \text { : nat } \times \text { nat } \Rightarrow \text { nat } \\
\llbracket \text { nat } \rrbracket=\langle\text { cost }, \text { size }\rangle \\
\llbracket 0 \rrbracket=\langle 0,1\rangle \quad \llbracket s(x) \rrbracket=\left\langle x_{\mathrm{c}}, x_{\mathrm{s}}+1\right\rangle
\end{gathered}
$$

First-Order type-based interpretation

$$
\begin{gathered}
0:: \text { nat } \quad \mathrm{s}:: \text { nat } \Rightarrow \text { nat } \mathrm{c}:: \text { nat } \times \text { nat } \Rightarrow \text { nat } \quad \mathrm{f}:: \text { nat } \times \text { nat } \Rightarrow \text { nat } \\
\llbracket \text { nat } \rrbracket=\langle\text { cost }, \text { size }\rangle \\
\llbracket 0 \rrbracket= \\
\llbracket c(x, y) \rrbracket=\langle 0,1\rangle \\
\left.\llbracket x_{c}+y_{c}, x_{s}+y_{s}\right\rangle
\end{gathered}
$$

First-Order type-based interpretation

$$
\begin{gathered}
0:: \text { nat } \quad \mathrm{s}:: \text { nat } \Rightarrow \text { nat } \quad \mathrm{c}:: \text { nat } \times \text { nat } \Rightarrow \text { nat } \quad \mathrm{f}: \text { :nat } \times \text { nat } \Rightarrow \text { nat } \\
\llbracket \text { nat } \rrbracket=\langle\text { cost }, \text { size }\rangle \\
\llbracket 0 \rrbracket= \\
\llbracket c(x, y) \rrbracket=\langle 0,1\rangle \\
\llbracket f(x, y) \rrbracket=\left\langle x_{c}+y_{c}, x_{s}+y_{s}\right\rangle \\
\llbracket s(x) \rrbracket=\left\langle x_{c}, x_{s}+1\right\rangle \\
\left.\llbracket x_{s}+2^{x_{s}} \cdot y_{c}, 2^{x_{s}} \cdot y_{s}\right\rangle
\end{gathered}
$$

Lemma (Subterm Lemma)

Let (\mathbb{F}, \mathbb{R}) be a term rewriting system admitting a CPI. Then there is a second-order polynomial interpretation P such that for every type-1 functional $f: \mathbb{N} \longrightarrow \mathbb{N}$, data term $\ulcorner\mathrm{n}\urcorner:$ nat, and context C :

$$
\text { if } \mathrm{F} \mathrm{~S}_{f}\ulcorner\mathrm{n}\urcorner \rightarrow C\left[\mathrm{~S}_{f}\ulcorner\mathrm{~m}\urcorner\right]
$$

Lemma (Subterm Lemma)

Let (\mathbb{F}, \mathbb{R}) be a term rewriting system admitting a CPI. Then there is a second-order polynomial interpretation P such that for every type-1 functional $f: \mathbb{N} \longrightarrow \mathbb{N}$, data term $\ulcorner\mathrm{n}\urcorner:$ nat, and context C :

$$
\begin{aligned}
& \text { if } \mathrm{F} \mathrm{~S}_{f}\ulcorner\mathrm{n}\urcorner \rightarrow C\left[\mathrm{~S}_{f}\ulcorner\mathrm{~m}\urcorner\right] \\
& \text { then }|\ulcorner\mathrm{m}\urcorner| \leq P\left(|f|,\left|\left\ulcorner_{\mathrm{n}}\right\urcorner\right|\right) .
\end{aligned}
$$

Polynomial tuple interpretations give BFF!

To prove this theorem we needed an interesting strategy:

- show that polynomial interpretations induce polynomial bounds to the runtime complexity of terms $G\ulcorner\mathrm{n}\urcorner$

Polynomial tuple interpretations give BFF!

To prove this theorem we needed an interesting strategy:

- show that polynomial interpretations induce polynomial bounds to the runtime complexity of terms $G\ulcorner\mathrm{n}\urcorner$
- fix the size-explosion problem computing with graph rewriting

Polynomial tuple interpretations give BFF!

To prove this theorem we needed an interesting strategy:

- show that polynomial interpretations induce polynomial bounds to the runtime complexity of terms $G\ulcorner\mathrm{n}\urcorner$
- fix the size-explosion problem computing with graph rewriting
- show that OTMs can simulate graph rewriting with polynomial time overhead

Overview

One Tuple for the data c

Overview

One Tuple for the data c additive all

Overview

One Tuple for the data c additive all

One Tuple for the RULErS of \mathbb{R}

Overview

One Tuple for the data c additive all
One Tuple for the RULErS of \mathbb{R} bound by polynomials, you see

Overview

One Tuple for the data c additive all

One Tuple for the RULErS of \mathbb{R}
bound by polynomials, you see
One Tuple for the Oracles that know it all

Overview

One Tuple for the data c additive all
One Tuple for the RULErS of \mathbb{R}
bound by polynomials, you see
One Tuple for the Oracles that know it all their knowledge a shield, embracing everything there are

Overview

One Tuple for the data c additive all

One Tuple for the RULErS of \mathbb{R}
bound by polynomials, you see
One Tuple for the Oracles that know it all their knowledge a shield, embracing everything there are
One Tuple to orient them all

Overview

One Tuple for the data c additive all
One Tuple for the RULErS of \mathbb{R}
bound by polynomials, you see
One Tuple for the Oracles that know it all
their knowledge a shield, embracing everything there are
One Tuple to orient them all one Tuple to forever bind them

Overview

One Tuple for the data c additive all

One Tuple for the RULErS of \mathbb{R}
bound by polynomials, you see
One Tuple for the Oracles that know it all
their knowledge a shield, embracing everything there are
One Tuple to orient them all one Tuple to forever bind them
For now in BFF they are

Overview

One Tuple for the data c additive all

One Tuple for the RULErS of \mathbb{R}
bound by polynomials, you see
One Tuple for the Oracles that know it all their knowledge a shield, embracing everything there are
One Tuple to orient them all one Tuple to forever bind them
For now in BFF they are
These Tuples, we still need to find them!

Overview

One Tuple for the data c additive all

One Tuple for the RULErS of \mathbb{R}
bound by polynomials, you see
One Tuple for the Oracles that know it all their knowledge a shield, embracing everything there are
One Tuple to orient them all one Tuple to forever bind them
For now in BFF they are
These Tuples, we still need to find them!

Overview

One Tuple for the data c additive all

One Tuple for the RULErS of \mathbb{R}
bound by polynomials, you see
One Tuple for the Oracles that know it all their knowledge a shield, embracing everything there are
One Tuple to orient them all
one Tuple to forever bind them
For now in BFF they are
These Tuples, we still need to find them!
Thank you!

