An Operational Characterization of (lazy) Strong Normalization

Luca Paolini and Simona Ronchi Della Rocca

Università di Torino, Dipartimento di Informatica

Elaine Pimentel

Universidade Federal de Minas Gerais (BRAZIL), Departamento de Matemática

Outline

- Two problems
- Lambda Calculus
- β -normal forms
- The Parametric
- Lambda-Calculus
- ullet Some $\lambda\Delta$ -calculi
- \bullet On Δ -Normal Forms
- Lazy evaluation
- \bullet Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- β -strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

■ The problems we want to solve.

Outline

- Two problems
- Lambda Calculus
- β -normal forms
- The Parametric
- Lambda-Calculus
- Some $\lambda\Delta$ -calculi
- \bullet On Δ -Normal Forms
- Lazy evaluation
- \bullet Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- $\beta\text{-strong}$ normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

■ The problems we want to solve.

Some Basic Notions.

Outline

- Two problems
- Lambda Calculus
- β -normal forms
- The Parametric
- Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- On Δ -Normal Forms
- Lazy evaluation
- \bullet Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- $\beta\text{-strong}$ normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

■ The problems we want to solve.

- Some Basic Notions.
- The parametric λ -calculus.

- Two problems
- Lambda Calculus
- β -normal forms
- The Parametric
- Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- \bullet On Δ -Normal Forms
- Lazy evaluation
- $\bullet \Delta$ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- $\beta\text{-strong}$ normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

- The problems we want to solve.
- Some Basic Notions.
- The parametric λ -calculus.
- Lazy evaluation.

- Two problems
- Lambda Calculus
- β -normal forms
- The Parametric
- Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- On Δ -Normal Forms
- Lazy evaluation
- $\bullet \Delta$ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- $\beta\text{-strong}$ normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

- The problems we want to solve.
- Some Basic Notions.
- The parametric λ -calculus.
- Lazy evaluation.
- The $\lambda \Phi$ -calculus.

- Two problems
- Lambda Calculus
- β -normal forms
- The Parametric
- Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- On Δ -Normal Forms
- Lazy evaluation
- \bullet Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- eta-strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

- The problems we want to solve.
- Some Basic Notions.
- The parametric λ -calculus.
- Lazy evaluation.
- The $\lambda \Phi$ -calculus.
- The intersection types assignment system.

- Outline
- Two problems
- Lambda Calculus
- β -normal forms
- The Parametric
- Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- On Δ -Normal Forms
- Lazy evaluation
- \bullet Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- β -strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

- The problems we want to solve.
- Some Basic Notions.
- The parametric λ -calculus.
- Lazy evaluation.
- The $\lambda \Phi$ -calculus.
- The intersection types assignment system.
- A new characterization of (lazy)Strong Normalization.

Outline

Two problems

Lambda Calculus

• β -normal forms

• The Parametric Lambda-Calculus

• Some $\lambda \Delta$ -calculi

• On Δ -Normal Forms

Lazy evaluation

 \bullet Δ -Solvability and Potential Valuability

• A call-by-value

characterization of (lazy)

 β -strong normalization

• Problem 1: $\lambda \Phi$ -Calculus

• The Result 1

Logical Characterization

• The Result 2

Conclusions

The notions of (lazy)-normal form and (lazy)-strong normalization become meaningless in a call-by-value λ-calculus.

Outline

Two problems

Lambda Calculus

• β -normal forms

- The Parametric
- Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- \bullet On Δ -Normal Forms
- Lazy evaluation
- Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- β -strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

The notions of (lazy)-normal form and (lazy)-strong normalization become meaningless in a call-by-value λ-calculus.

In fact, in the Plotkin call-by-value λ-calculus there are two normal forms that can be consistently equated:

 $\lambda x.xxx = (\lambda x.(\lambda z.xxx)(xx))$

Outline

Two problems

- Lambda Calculus
- β -normal forms
- The Parametric
- Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- On Δ -Normal Forms
- Lazy evaluation
- Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- eta-strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

The notions of (lazy)-normal form and (lazy)-strong normalization become meaningless in a call-by-value λ-calculus.

In fact, in the Plotkin call-by-value λ-calculus there are two normal forms that can be consistently equated:

 $\lambda x.xxx = (\lambda x.(\lambda z.xxx)(xx))$

Potential valuability: all non potentially valuable terms can be consistently equated.

Outline

Two problems

- Lambda Calculus
- β -normal forms
- The Parametric
- Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- On Δ -Normal Forms
- Lazy evaluation
- Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- eta-strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

The notions of (lazy)-normal form and (lazy)-strong normalization become meaningless in a call-by-value λ-calculus.

In fact, in the Plotkin call-by-value λ-calculus there are two normal forms that can be consistently equated:

 $\lambda x.xxx = (\lambda x.(\lambda z.xxx)(xx))$

- Potential valuability: all non potentially valuable terms can be consistently equated.
- We explore the relation between (lazy)-potential valuability and (lazy)-β-strong normalization.

Outline

Two problems

- Lambda Calculus
- β -normal forms
- The Parametric
- Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- On Δ -Normal Forms
- Lazy evaluation
- Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- eta-strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

The notions of (lazy)-normal form and (lazy)-strong normalization become meaningless in a call-by-value λ-calculus.

In fact, in the Plotkin call-by-value λ-calculus there are two normal forms that can be consistently equated:

 $\lambda x.xxx = (\lambda x.(\lambda z.xxx)(xx))$

- Potential valuability: all non potentially valuable terms can be consistently equated.
- We explore the relation between (lazy)-potential valuability and (lazy)-β-strong normalization.
- We ask for two call-by-value λ-calculi, such that the set of potentially valuable terms in them coincide with the set of (lazy)-β-strongly normalizing terms.

Lambda Calculus

Outline

• Two problems

Lambda Calculus

• β -normal forms

• The Parametric Lambda-Calculus

• Some $\lambda \Delta$ -calculi

• On Δ -Normal Forms

Lazy evaluation

 \bullet Δ -Solvability and Potential Valuability

• A call-by-value

characterization of (lazy)

 β -strong normalization

• Problem 1: $\lambda \Phi$ -Calculus

• The Result 1

Logical Characterization

• The Result 2

Conclusions

• The set Λ of λ -terms is defined by the following grammar:

 $M ::= x \mid MM \mid \lambda x.M$

Lambda Calculus

Outline

• Two problems

Lambda Calculus

• β -normal forms

• The Parametric Lambda-Calculus

• Some $\lambda \Delta$ -calculi

• On \triangle -Normal Forms

Lazy evaluation

• Δ -Solvability and Potential Valuability

• A call-by-value

characterization of (lazy)

eta-strong normalization

• Problem 1: $\lambda \Phi$ -Calculus

• The Result 1

Logical Characterization

• The Result 2

Conclusions

• The set Λ of λ -terms is defined by the following grammar:

 $M ::= x \mid MM \mid \lambda x.M$

The classical evaluation rule is

 $(\lambda \mathbf{x}.\mathbf{M})\mathbf{N} \rightarrow_{\beta} \mathbf{M}[\mathbf{N}/\mathbf{x}]$

where $(\lambda x.M)N$ is named β -redex.

β -normal forms

Outline

• Two problems

Lambda Calculus

 \circ β -normal forms

• The Parametric Lambda-Calculus

• Some $\lambda \Delta$ -calculi

• On Δ -Normal Forms

Lazy evaluation

 \bullet Δ -Solvability and Potential Valuability

• A call-by-value

characterization of (lazy)

 β -strong normalization

• Problem 1: $\lambda \Phi$ -Calculus

• The Result 1

Logical Characterization

• The Result 2

Conclusions

• A term of the λ -calculus is in β -normal form if and only if it does not contain occurrences of β -redexes.

β -normal forms

Outline

- Two problems
- Lambda Calculus

\circ β -normal forms

- The Parametric Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- On Δ -Normal Forms
- Lazy evaluation
- Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- eta-strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

• A term of the λ -calculus is in β -normal form if and only if it does not contain occurrences of β -redexes.

• The set β -NF can be defined in the following recursive way:

 $\beta\text{-NF} = \text{Var} \cup \{xM_1...M_n \mid M_k \in \beta\text{-NF} (1 \le k \le n)\}$ $\cup \{\lambda \vec{x}.M \mid M \in \beta\text{-NF}\}$

β -normal forms

Outline

- Two problems
- Lambda Calculus

\circ β -normal forms

- The Parametric
 Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- On Δ -Normal Forms
- Lazy evaluation
- Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- eta-strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

• A term of the λ -calculus is in β -normal form if and only if it does not contain occurrences of β -redexes.

• The set β -NF can be defined in the following recursive way:

 $\beta\text{-NF} = \text{Var} \cup \{xM_1...M_n \mid M_k \in \beta\text{-NF} (1 \le k \le n)\}$ $\cup \{\lambda \vec{x}.M \mid M \in \beta\text{-NF}\}$

 A term M is strongly β-normalizing if both M has β-normal form and every reduction sequence starting from M eventually stops.

• Outline

- Two problems
- Lambda Calculus

• β -normal forms

- The Parametric
- Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- On Δ -Normal Forms
- Lazy evaluation
- Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- β -strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

Let $\Delta \subseteq \Lambda$. The Δ -reduction (\rightarrow_{Δ}) is the contextual closure of:

 $(\lambda x.M)N \to M[N/x]$ if and only if $N \in \Delta$.

where $(\lambda x.M)N$ is said Δ -redex.

Outline

- Two problems
- Lambda Calculus

• β -normal forms

- The Parametric
- Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- On Δ -Normal Forms
- Lazy evaluation
- \bullet Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- eta-strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

Let $\Delta \subseteq \Lambda$. The Δ -reduction (\rightarrow_{Δ}) is the contextual closure of:

```
(\lambda x.M)N \to M[N/x] if and only if N \in \Delta.
```

where $(\lambda x.M)N$ is said Δ -redex.

• A set $\Delta \subseteq \Lambda$ is a set of input values, when the following conditions are satisfied:

Outline

- Two problems
- Lambda Calculus

• β -normal forms

- The Parametric
- Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- On Δ -Normal Forms
- Lazy evaluation
- \bullet Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- eta-strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

Let $\Delta \subseteq \Lambda$. The Δ -reduction (\rightarrow_{Δ}) is the contextual closure of:

 $(\lambda x.M)N \to M[N/x]$ if and only if $N \in \Delta$.

where $(\lambda x.M)N$ is said Δ -redex.

• A set $\Delta \subseteq \Lambda$ is a set of input values, when the following conditions are satisfied:

(i) Var $\subseteq \Delta$

```
(Var-closure);
```

Outline

- Two problems
- Lambda Calculus

• β -normal forms

- The Parametric
- Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- On Δ -Normal Forms
- Lazy evaluation
- \bullet Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- eta-strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

Let $\Delta \subseteq \Lambda$. The Δ -reduction (\rightarrow_{Δ}) is the contextual closure of:

 $(\lambda x.M)N \to M[N/x]$ if and only if $N \in \Delta$.

where $(\lambda x.M)N$ is said Δ -redex.

• A set $\Delta \subseteq \Lambda$ is a set of input values, when the following conditions are satisfied:

(i) $\operatorname{Var} \subseteq \Delta$ (Var-closure);

(ii) $P, Q \in \Delta$ implies $P[Q/x] \in \Delta$, for each $x \in Var$

(substitution closure);

Outline

- Two problems
- Lambda Calculus

• β -normal forms

- The Parametric
- Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- \bullet On Δ -Normal Forms
- Lazy evaluation
- \bullet Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- eta-strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

Let $\Delta \subseteq \Lambda$. The Δ -reduction (\rightarrow_{Δ}) is the contextual closure of:

 $(\lambda x.M)N \to M[N/x]$ if and only if $N \in \Delta$.

where $(\lambda x.M)N$ is said Δ -redex.

- A set $\Delta \subseteq \Lambda$ is a set of input values, when the following conditions are satisfied:
 - (i) $\operatorname{Var} \subseteq \Delta$ (Var-closure);
 - (ii) $P, Q \in \Delta$ implies $P[Q/x] \in \Delta$, for each $x \in Var$

(substitution closure);

```
(iii) M \in \Delta and M \to_{\Delta} N imply N \in \Delta (reduction closure).
```

Outline

- Two problems
- Lambda Calculus

• β -normal forms

- The Parametric
- Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- On Δ -Normal Forms
- Lazy evaluation
- \bullet Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- eta-strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

Let $\Delta \subseteq \Lambda$. The Δ -reduction (\rightarrow_{Δ}) is the contextual closure of:

 $(\lambda x.M)N \to M[N/x]$ if and only if $N \in \Delta$.

where $(\lambda x.M)N$ is said Δ -redex.

- A set $\Delta \subseteq \Lambda$ is a set of input values, when the following conditions are satisfied:
 - (i) $\operatorname{Var} \subseteq \Delta$ (Var-closure);
 - (ii) $P, Q \in \Delta$ implies $P[Q/x] \in \Delta$, for each $x \in Var$

(substitution closure);

```
(iii) M \in \Delta and M \to_{\Delta} N imply N \in \Delta (reduction closure).
```

• The $\lambda\Delta$ -calculus is confluent.

Outline

- Two problems
- Lambda Calculus

• β -normal forms

- The Parametric
- Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- On Δ -Normal Forms
- Lazy evaluation
- \bullet Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- eta-strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

Let $\Delta \subseteq \Lambda$. The Δ -reduction (\rightarrow_{Δ}) is the contextual closure of:

 $(\lambda x.M)N \to M[N/x]$ if and only if $N \in \Delta$.

where $(\lambda x.M)N$ is said Δ -redex.

- A set $\Delta \subseteq \Lambda$ is a set of input values, when the following conditions are satisfied:
 - (i) $\operatorname{Var} \subseteq \Delta$ (Var-closure);
 - (ii) $P, Q \in \Delta$ implies $P[Q/x] \in \Delta$, for each $x \in Var$

(substitution closure);

```
(iii) M \in \Delta and M \to_{\Delta} N imply N \in \Delta (reduction closure).
```

- The $\lambda\Delta$ -calculus is confluent.
- Standardization holds under one more condition.

Some $\lambda\Delta$ -calculi

- Outline
- Two problems
- Lambda Calculus
- β -normal forms
- The Parametric
- Lambda-Calculus

• Some $\lambda \Delta$ -calculi

- On Δ -Normal Forms
- Lazy evaluation
- \bullet Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- β -strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

• Λ is a set of input values

Some $\lambda \Delta$ -calculi

- Two problems
- Lambda Calculus
- β -normal forms
- The Parametric
- Lambda-Calculus

• Some $\lambda \Delta$ -calculi

- On Δ -Normal Forms
- Lazy evaluation
- \bullet Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- β -strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

• Λ is a set of input values

 $\blacksquare \rightarrow_{\Lambda}$ and \rightarrow_{β} are the same relation

(the $\lambda\Lambda$ -calculus is the usual λ -calculus)

Some $\lambda \Delta$ -calculi

- Two problems
- Lambda Calculus
- β -normal forms
- The Parametric
- Lambda-Calculus

• Some $\lambda \Delta$ -calculi

- On Δ -Normal Forms
- Lazy evaluation
- Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- β -strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

• Λ is a set of input values

• \rightarrow_{Λ} and \rightarrow_{β} are the same relation (the $\lambda\Lambda$ -calculus is the usual λ -calculus)

• $\Gamma = \text{Var} \cup \{\lambda x.M \mid M \in \Lambda\}$ is a set of input values

Some $\lambda \Delta$ -calculi

- Two problems
- Lambda Calculus
- β -normal forms
- The Parametric
- Lambda-Calculus

• Some $\lambda \Delta$ -calculi

- On Δ -Normal Forms
- Lazy evaluation
- Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- eta-strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

• Λ is a set of input values

- \rightarrow_{Λ} and \rightarrow_{β} are the same relation (the $\lambda\Lambda$ -calculus is the usual λ -calculus)
- $\Gamma = \text{Var} \cup \{\lambda x.M \mid M \in \Lambda\}$ is a set of input values
- \rightarrow_{Γ} and \rightarrow_{β_v} are the same relation (the $\lambda\Gamma$ -calculus is the Plotkin β_v -calculus)

On Δ **-Normal Forms**

- Outline
- Two problems
- Lambda Calculus
- β -normal forms
- The Parametric
- Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- On \triangle -Normal Forms
- Lazy evaluation
- \bullet Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- β -strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

• A term of the $\lambda\Delta$ -calculus is in Δ -normal form if and only if it does not contain occurrences of Δ -redexes.

On Δ **-Normal Forms**

- Outline
- Two problems
- Lambda Calculus
- β -normal forms
- The Parametric
- Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- On \triangle -Normal Forms
- Lazy evaluation
- \bullet Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- β -strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

• A term of the $\lambda\Delta$ -calculus is in Δ -normal form if and only if it does not contain occurrences of Δ -redexes.

• The set Δ -NF of Δ -normal forms is

 $\Delta -\mathsf{NF} = \operatorname{Var} \quad \cup \{ xM_1...M_n \mid M_k \in \Delta -\mathsf{NF} \ (1 \le k \le n) \} \\ \cup \{ \lambda \vec{x}.M \mid M \in \Delta -\mathsf{NF} \} \\ \cup \{ (\lambda x.P)QM_1...M_n \mid P, Q, M_i \in \Delta -\mathsf{NF}, Q \notin \Delta \}$

-	\sim			
	()	1111	lın	
•	\sim	uu		C .

- Two problems
- Lambda Calculus
- β -normal forms
- The Parametric
- Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- On Δ -Normal Forms

Lazy evaluation

- \bullet Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- β -strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

The evaluation of a λ -term is said lazy if no reduction is made under the scope of a λ -abstraction.

Outline

- Two problems
- Lambda Calculus
- β -normal forms
- The Parametric
- Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- On Δ -Normal Forms

Lazy evaluation

- \bullet Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- β -strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

• The evaluation of a λ -term is said lazy if no reduction is made under the scope of a λ -abstraction.

 A term is in Δℓ-normal form (or lazy Δ-normal form) if it has no occurrences of Δ-redexes, but under the scope of a λ-abstraction.

Outline

- Two problems
- Lambda Calculus
- β -normal forms
- The Parametric
- Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- On Δ -Normal Forms

Lazy evaluation

- \bullet Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- β -strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

• The evaluation of a λ -term is said lazy if no reduction is made under the scope of a λ -abstraction.

 A term is in Δℓ-normal form (or lazy Δ-normal form) if it has no occurrences of Δ-redexes, but under the scope of a λ-abstraction.

• Δ -normal forms are $\Delta \ell$ -normal forms.

- Outline
- Two problems
- Lambda Calculus
- β -normal forms
- The Parametric
- Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- \bullet On Δ -Normal Forms
- Lazy evaluation
- Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- eta-strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

The evaluation of a λ-term is said lazy if no reduction is made under the scope of a λ-abstraction.

 A term is in Δℓ-normal form (or lazy Δ-normal form) if it has no occurrences of Δ-redexes, but under the scope of a λ-abstraction.

• Δ -normal forms are $\Delta \ell$ -normal forms.

The lazy β -normal form of a term, if there exists, may not be unique. In fact, $(\lambda xy.x)(II) \rightarrow^*_{\beta\ell} \lambda y.II$ and $(\lambda xy.x)(II) \rightarrow^*_{\beta\ell} \lambda y.I$ where both $\lambda y.II$ and $\lambda y.I$ are lazy β -normal forms.

Δ -Solvability and Potential Valuability

Outline

- Two problems
- Lambda Calculus

• β -normal forms

• The Parametric

Lambda-Calculus

- Some $\lambda \Delta$ -calculi
- On Δ -Normal Forms

Lazy evaluation

• Δ -Solvability and Potential Valuability

• A call-by-value

characterization of (lazy)

 β -strong normalization

• Problem 1: $\lambda \Phi$ -Calculus

• The Result 1

Logical Characterization

• The Result 2

Conclusions

• A term *M* is Δ -solvable if and only if there is a sequence \vec{N} of Δ -values such that:

 \vec{x} sequentializes variables of FV(M)

and $(\lambda \vec{x}.M) \vec{N} \rightarrow^*_{\Delta} I$

Δ -Solvability and Potential Valuability

Outline

- Two problems
- Lambda Calculus
- β -normal forms
- The Parametric

Lambda-Calculus

- Some $\lambda \Delta$ -calculi
- \bullet On Δ -Normal Forms

Lazy evaluation

 \bullet Δ -Solvability and Potential Valuability

• A call-by-value

- characterization of (lazy)
- eta-strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

• A term M is Δ -solvable if and only if there is a sequence \vec{N} of Δ -values such that:

> \vec{x} sequentializes variables of FV(M)and $(\lambda \vec{x}.M) \vec{N} \rightarrow^*_{\Delta} I$

• A term M is valuable iff $M \to^*_{\Delta} N \in \Delta$

Δ -Solvability and Potential Valuability

Outline

- Two problems
- Lambda Calculus
- β -normal forms
- The Parametric

Lambda-Calculus

- Some $\lambda \Delta$ -calculi
- \bullet On Δ -Normal Forms

• Lazy evaluation

```
\bullet \Delta-Solvability and Potential Valuability
```

• A call-by-value

characterization of (lazy)

- β -strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

• A term M is Δ -solvable if and only if there is a sequence \vec{N} of Δ -values such that:

 \vec{x} sequentializes variables of FV(M)and $(\lambda \vec{x}.M) \vec{N} \rightarrow^*_{\Delta} I$

- A term M is valuable iff $M \to^*_\Delta N \in \Delta$
- A term M is potentially △-valuable iff there is a substitution s replacing variables by closed values, such that s(M) is △-valuable

A call-by-value characterization of (lazy) β -str

- Outline
- Two problems
- Lambda Calculus
- β -normal forms
- The Parametric
- Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- On Δ -Normal Forms
- Lazy evaluation
- Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- eta-strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

The two problems we are interested in are the following:

1 Is there a set of input values Δ such that the set of potentially Δ -valuable terms coincides with the set of strongly β -normalizing terms?

- Outline
- Two problems
- Lambda Calculus
- β -normal forms
- The Parametric
- Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- On Δ -Normal Forms
- Lazy evaluation
- Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- eta-strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

The two problems we are interested in are the following:

Is there a set of input values Δ such that the set of potentially Δ -valuable terms coincides with the set of strongly β -normalizing terms?

2 Is there a set of input values Δ such that the set of potentially Δ -valuable terms coincides with the set of strongly $\beta \ell$ -normalizing terms?

 $\blacksquare \Phi$ is a set of input values such that

• Φ is a set of input values such that

(i) if $M \in \Phi$ then either $M \in Var$ or M is closed;

$\blacksquare \Phi$ is a set of input values such that

(i) if $M \in \Phi$ then either $M \in Var$ or M is closed;

(ii) if $M \in \Phi$ then M is a Φ -normal form;

$\blacksquare \Phi$ is a set of input values such that

- (i) if $M \in \Phi$ then either $M \in Var$ or M is closed;
- (ii) if $M \in \Phi$ then M is a Φ -normal form;
- (iii) if $M \in \Phi$ then M is strongly β -normalizing.

$\blacksquare \Phi$ is a set of input values such that

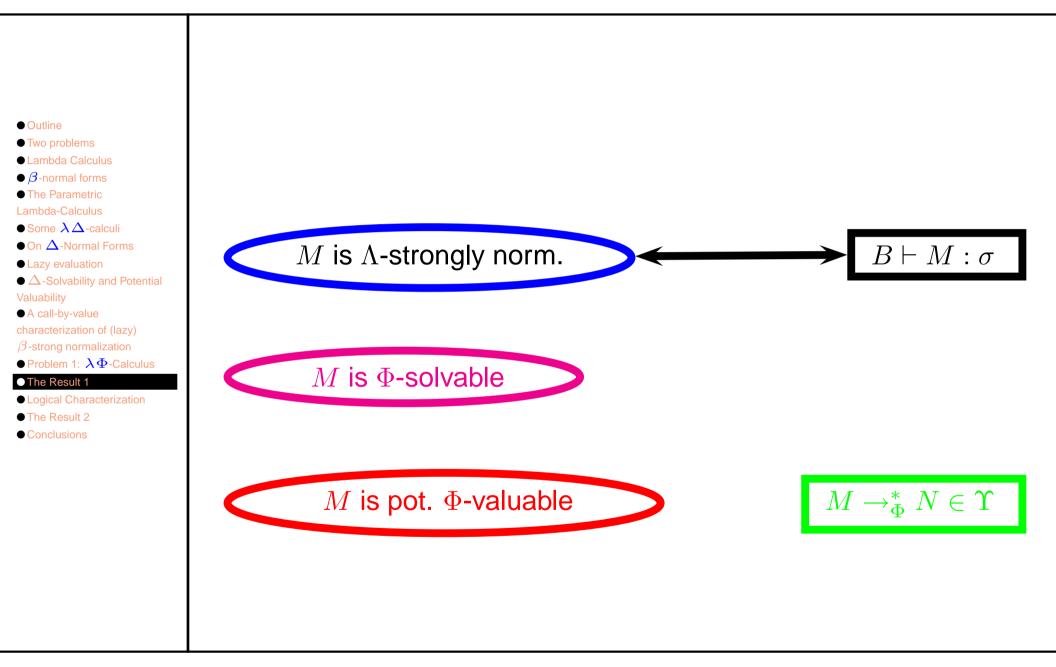
(i) if $M \in \Phi$ then either $M \in Var$ or M is closed;

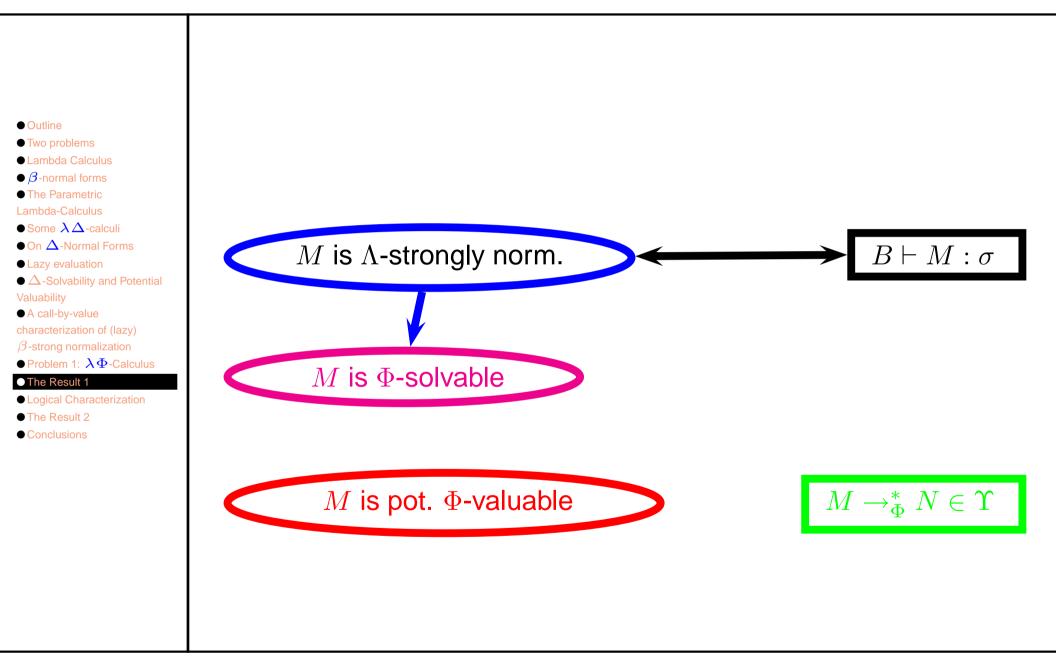
- (ii) if $M \in \Phi$ then M is a Φ -normal form;
- (iii) if $M \in \Phi$ then M is strongly β -normalizing.

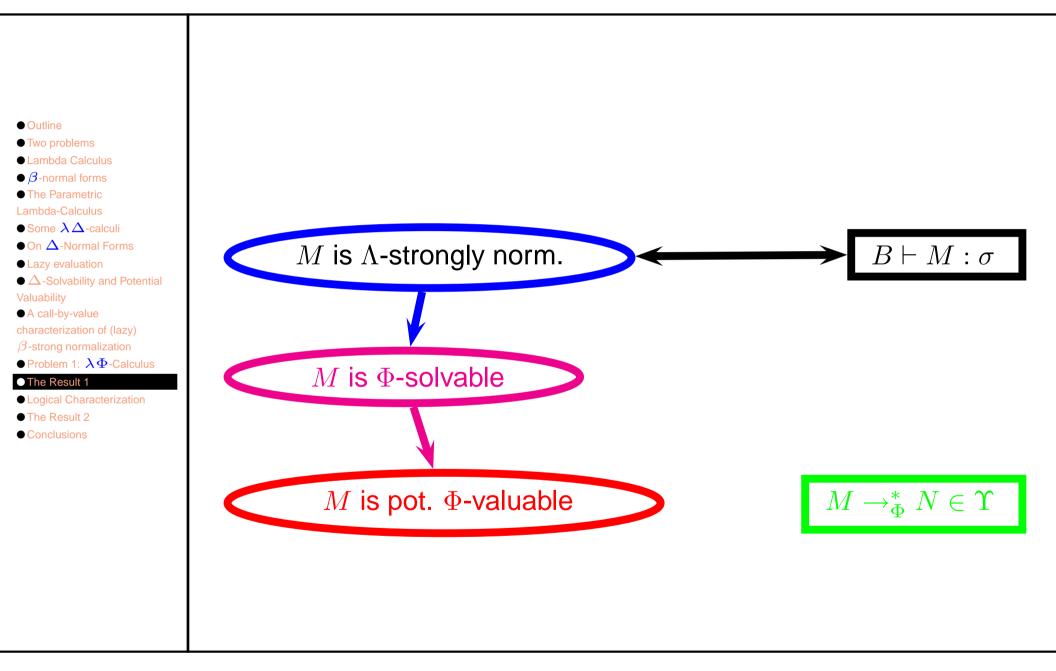
• $\Phi = \operatorname{Var} \cup (\Upsilon)^0$ where $\Upsilon = \bigcup_i \Upsilon_i$ and Υ_i, Φ_i are defined as follows:

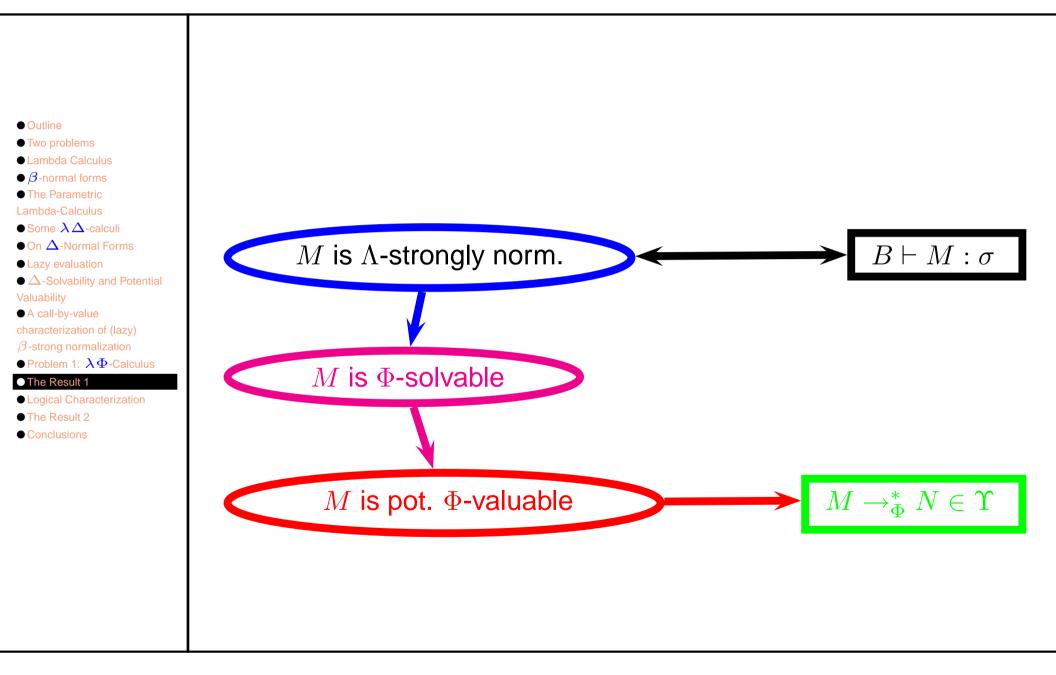
$$\Upsilon_0 = \operatorname{Var} \qquad \qquad \Phi_i = \operatorname{Var} \, \cup \, (\Upsilon_i)^0$$

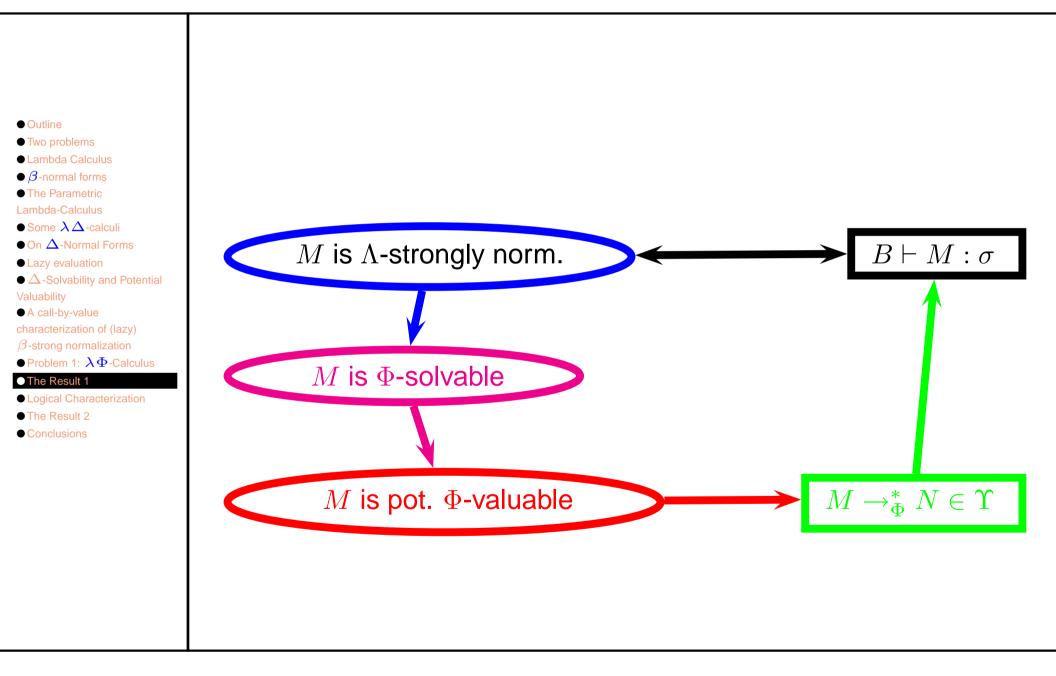
$$\begin{split} \Upsilon_{i+1} = & \operatorname{Var} \cup \left\{ x M_1 \dots M_n \mid M_k \in \Upsilon_i (1 \le k \le n) \right\} \\ & \cup \left\{ \lambda \vec{x} . M \mid M \in \Upsilon_i \right\} \\ & \cup \left\{ \left(\lambda x . P \right) Q M_1 \dots M_n \mid \begin{array}{l} Q \in \Upsilon_i - (\Lambda^0 \cup \operatorname{Var}), \\ M_k \in \Upsilon_i (1 \le k \le n) \\ P[Q/x] M_1 \dots M_n \to_{\Phi_i}^* R \in \Upsilon_i \end{array} \right\} \end{split}$$











Logical Characterization

• Let C_{ν} be a countable set of *type-constants* containing at least the type constant ν . Outline • Two problems Lambda Calculus $\bullet \beta$ -normal forms • The Parametric Lambda-Calculus • Some $\lambda \Delta$ -calculi \bullet On \triangle -Normal Forms Lazy evaluation $\bullet \Delta$ -Solvability and Potential • A call-by-value characterization of (lazy) β -strong normalization • Problem 1: $\lambda \Phi$ -Calculus • The Result 1 Logical Characterization • The Result 2 Conclusions

Logical Characterization

- Let C_{ν} be a countable set of *type-constants* containing at least the type constant ν .
- Intersection Types: $\sigma ::= a | \sigma \to \sigma | \sigma \cap \sigma$.

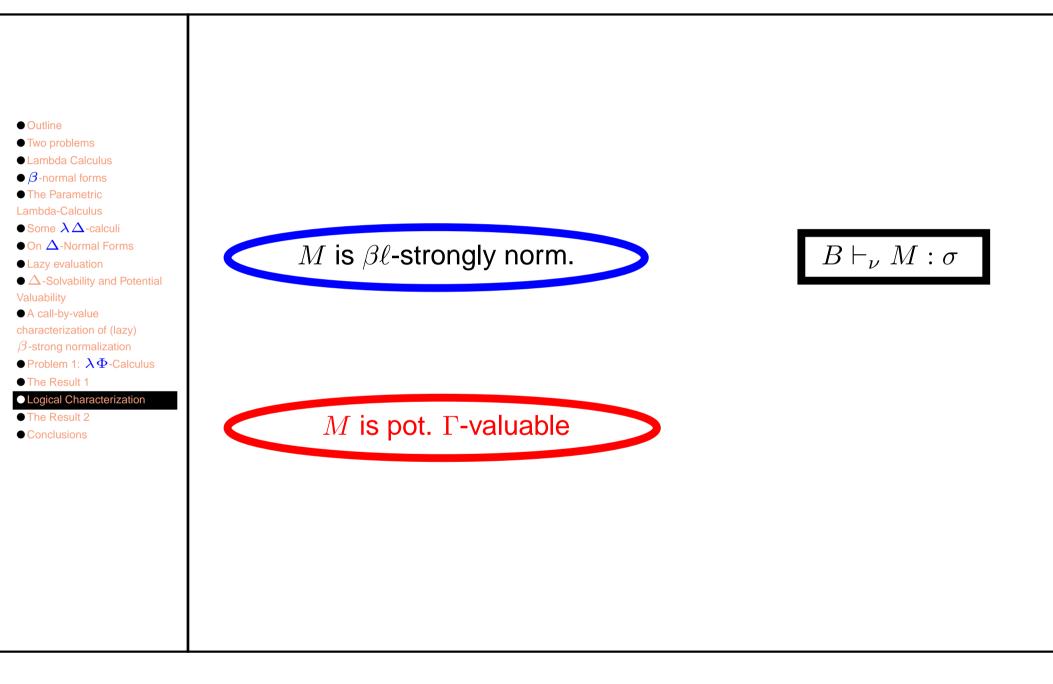
- Outline
- Two problems
- Lambda Calculus
- β -normal forms
- The Parametric
- Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- \bullet On Δ -Normal Forms
- Lazy evaluation
- \bullet Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- β -strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

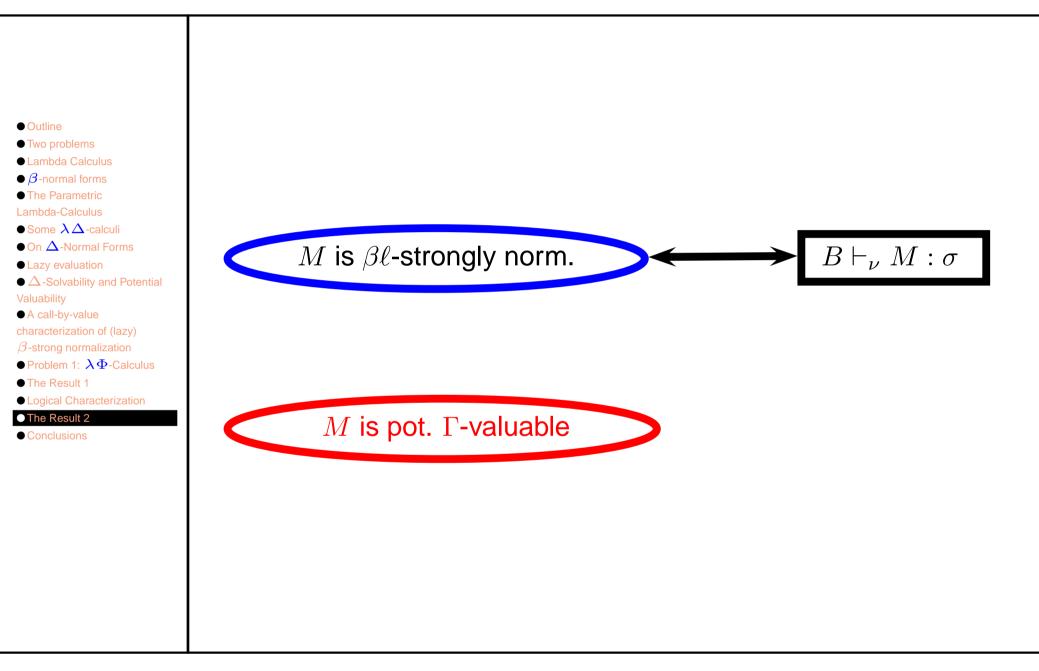
Logical Characterization

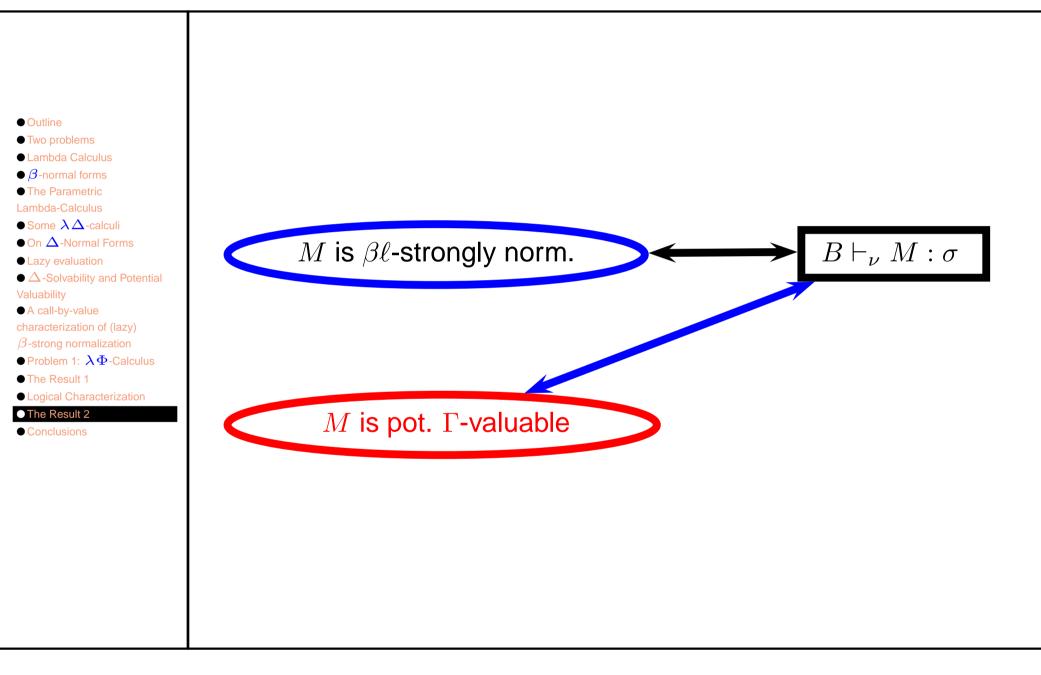
- Let C_{ν} be a countable set of *type-constants* containing at least the type constant ν .
- Intersection Types: $\sigma ::= a | \sigma \to \sigma | \sigma \cap \sigma$.
- The type assignment system is the following:

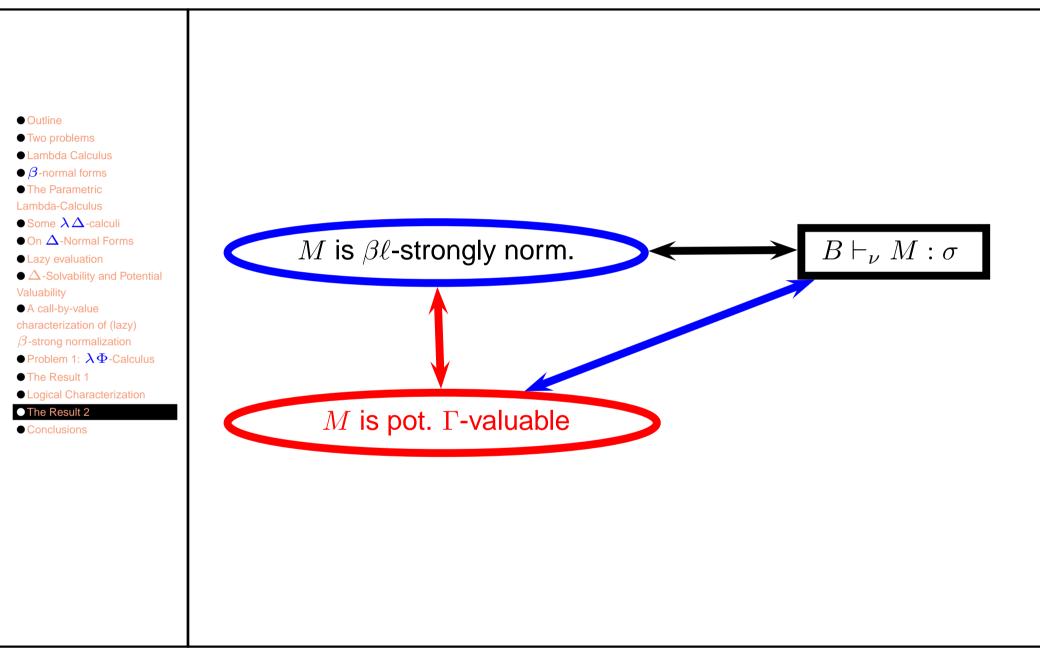
 $\frac{\overline{B[\sigma/x]} \vdash_{\nu} x : \sigma}{\overline{B[\sigma/x]} \vdash_{\nu} M : \tau} \stackrel{(\to I)}{(\to I)} \\
\frac{\overline{B} \vdash_{\nu} M : \sigma \to \tau \quad B \vdash_{\nu} N : \sigma}{\overline{B} \vdash_{\nu} M : \tau} \stackrel{(\to E)}{(\to E)} \qquad \frac{\overline{B} \vdash_{\nu} M : \sigma \to \tau}{\overline{B} \vdash_{\nu} M : \sigma \cap \tau} \stackrel{(\cap I)}{(\to E_{l})} \\
\frac{\overline{B} \vdash_{\nu} M : \sigma \cap \tau}{\overline{B} \vdash_{\nu} M : \sigma} \stackrel{(\cap E_{l})}{(\to E_{l})} \qquad \frac{\overline{B} \vdash_{\nu} M : \sigma \cap \tau}{\overline{B} \vdash_{\nu} M : \tau} \stackrel{(\cap E_{r})}{(\to E_{r})}$

- Two problems
- Lambda Calculus
- β -normal forms
- The Parametric
- Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- On Δ -Normal Forms
- Lazy evaluation
- \bullet Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- eta-strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions









• Φ is a minimal set solving Problem 1.

- Outline
- Two problems
- Lambda Calculus
- β -normal forms
- The Parametric
- Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- On Δ -Normal Forms
- Lazy evaluation
- \bullet Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- β -strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

• Φ is a minimal set solving Problem 1.

• However Φ is not the minimum.

- Outline
- Two problems
- Lambda Calculus
- β -normal forms
- The Parametric
- Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- On Δ -Normal Forms
- Lazy evaluation
- \bullet Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- β -strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

- Φ is a minimal set solving Problem 1.
- However Φ is not the minimum.
- \blacksquare Φ is not decidable, but it is semidecidable.

- Outline
- Two problems
- Lambda Calculus
- β -normal forms
- The Parametric
- Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- \bullet On Δ -Normal Forms
- Lazy evaluation
- \bullet Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- β -strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

- Φ is a minimal set solving Problem 1.
- However Φ is not the minimum.
- $\blacksquare \Phi$ is not decidable, but it is semidecidable.
- Γ is a decidable set of input values such that its potentially valuables terms correspond exactly to that of $\beta \ell$ -strongly normalizing terms.

- Outline
- Two problems
- Lambda Calculus
- β -normal forms
- The Parametric
- Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- ullet On Δ -Normal Forms
- Lazy evaluation
- \bullet Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- eta-strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

- Φ is a minimal set solving Problem 1.
- However Φ is not the minimum.
- Φ is not decidable, but it is semidecidable.
- Γ is a decidable set of input values such that its potentially valuables terms correspond exactly to that of $\beta \ell$ -strongly normalizing terms.
- It's an open question if there is a decidable set of input values such that its potentially valuables terms correspond exactly to that of β-strongly normalizing terms.

- Outline
- Two problems
- Lambda Calculus
- β -normal forms
- The Parametric
- Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- On Δ -Normal Forms
- Lazy evaluation
- \bullet Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- eta-strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions

- Φ is a minimal set solving Problem 1.
- However Φ is not the minimum.
- Φ is not decidable, but it is semidecidable.
- Γ is a decidable set of input values such that its potentially valuables terms correspond exactly to that of $\beta \ell$ -strongly normalizing terms.
- It's an open question if there is a decidable set of input values such that its potentially valuables terms correspond exactly to that of β-strongly normalizing terms.
- We conjecture that the answer to this question is negative.

- Two problems
- Lambda Calculus
- β -normal forms
- The Parametric
- Lambda-Calculus
- Some $\lambda \Delta$ -calculi
- \bullet On Δ -Normal Forms
- Lazy evaluation
- Δ -Solvability and Potential Valuability
- A call-by-value
- characterization of (lazy)
- eta-strong normalization
- Problem 1: $\lambda \Phi$ -Calculus
- The Result 1
- Logical Characterization
- The Result 2
- Conclusions