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Outline

■ The problems we want to solve.

■ Some Basic Notions.

■ The parametric λ-calculus.

■ Lazy evaluation.

■ The λΦ-calculus.

■ The intersection types assignment system.

■ A new characterization of (lazy)Strong Normalization.
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■ The notions of (lazy)-normal form and (lazy)-strong
normalization become meaningless in a call-by-value
λ-calculus.

■ In fact, in the Plotkin call-by-value λ-calculus there are two
normal forms that can be consistently equated:

λx.xxx = (λx.(λz.xxx)(xx))

■ Potential valuability: all non potentially valuable terms can be
consistently equated.

■ We explore the relation between (lazy)-potential valuability
and (lazy)-β-strong normalization.

■ We ask for two call-by-value λ-calculi, such that the set of
potentially valuable terms in them coincide with the set of
(lazy)-β-strongly normalizing terms.
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Lambda Calculus

■ The set Λ of λ-terms is defined by the following grammar:

M ::= x | MM | λx.M

■ The classical evaluation rule is

(λx.M)N →β M[N/x]

where (λx.M)N is named β-redex.
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β-NF = Var ∪ {xM1...Mn | Mk ∈ β-NF (1 ≤ k ≤ n)}

∪ {λ~x.M | M ∈ β-NF}
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β-normal forms

■ A term of the λ-calculus is in β-normal form if and only if
it does not contain occurrences of β-redexes.

■ The set β-NF can be defined in the following recursive way:

β-NF = Var ∪ {xM1...Mn | Mk ∈ β-NF (1 ≤ k ≤ n)}

∪ {λ~x.M | M ∈ β-NF}

■ A term M is strongly β-normalizing if both
M has β-normal form and
every reduction sequence starting from M eventually stops.
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The Parametric Lambda-Calculus

Let ∆ ⊆ Λ.
■ The ∆-reduction (→∆) is the contextual closure of:

(λx.M)N → M [N/x] if and only if N ∈ ∆.

where (λx.M)N is said ∆-redex.
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The Parametric Lambda-Calculus

Let ∆ ⊆ Λ.
■ The ∆-reduction (→∆) is the contextual closure of:

(λx.M)N → M [N/x] if and only if N ∈ ∆.

where (λx.M)N is said ∆-redex.

■ A set ∆ ⊆ Λ is a set of input values, when the following
conditions are satisfied:
(i) Var ⊆ ∆ (Var-closure);
(ii) P, Q ∈ ∆ implies P [Q/x] ∈ ∆, for each x ∈ Var

(substitution closure);
(iii) M ∈ ∆ and M →∆ N imply N ∈ ∆ (reduction closure).

■ The λ∆-calculus is confluent.

■ Standardization holds under one more condition.
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■ Λ is a set of input values

■ →Λ and →β are the same relation
(the λΛ-calculus is the usual λ-calculus)
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■ Γ = Var ∪ {λx.M | M ∈ Λ} is a set of input values
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Some λ∆-calculi

■ Λ is a set of input values

■ →Λ and →β are the same relation
(the λΛ-calculus is the usual λ-calculus)

■ Γ = Var ∪ {λx.M | M ∈ Λ} is a set of input values

■ →Γ and →βv
are the same relation

(the λΓ-calculus is the Plotkin βv-calculus)
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On ∆-Normal Forms

■ A term of the λ∆-calculus is in ∆-normal form if and only if
it does not contain occurrences of ∆-redexes.
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On ∆-Normal Forms

■ A term of the λ∆-calculus is in ∆-normal form if and only if
it does not contain occurrences of ∆-redexes.

■ The set ∆-NF of ∆-normal forms is

∆-NF = Var ∪{xM1...Mn | Mk ∈ ∆-NF (1 ≤ k ≤ n)}

∪{λ~x.M | M ∈ ∆-NF}
∪{(λx.P )QM1...Mn | P, Q, Mi ∈ ∆-NF, Q 6∈ ∆}
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Lazy evaluation

■ The evaluation of a λ-term is said lazy if no reduction is
made under the scope of a λ-abstraction.
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no occurrences of ∆-redexes, but under the scope of a
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Lazy evaluation

■ The evaluation of a λ-term is said lazy if no reduction is
made under the scope of a λ-abstraction.

■ A term is in ∆ℓ-normal form (or lazy ∆-normal form) if it has
no occurrences of ∆-redexes, but under the scope of a
λ-abstraction.

■ ∆-normal forms are ∆ℓ-normal forms.

■ The lazy β-normal form of a term, if there exists, may not be
unique. In fact, (λxy.x)(II) →∗

βℓ λy.II and
(λxy.x)(II) →∗

βℓ λy.I where both λy.II and λy.I are lazy
β-normal forms.
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∆-Solvability and Potential Valuability

■ A term M is ∆-solvable if and only if
there is a sequence ~N of ∆-values such that:

~x sequentializes variables of FV(M)

and (λ~x.M) ~N →∗

∆ I
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∆-Solvability and Potential Valuability

■ A term M is ∆-solvable if and only if
there is a sequence ~N of ∆-values such that:

~x sequentializes variables of FV(M)

and (λ~x.M) ~N →∗

∆ I

■ A term M is valuable iff M →∗

∆ N ∈ ∆

■ A term M is potentially ∆-valuable iff
there is a substitution s replacing variables by closed values,

such that s(M) is ∆-valuable
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A call-by-value characterization of (lazy) β-strong

The two problems we are interested in are the following:

1 Is there a set of input values ∆ such that the set of
potentially ∆-valuable terms coincides with the set of
strongly β-normalizing terms?
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A call-by-value characterization of (lazy) β-strong

The two problems we are interested in are the following:

1 Is there a set of input values ∆ such that the set of
potentially ∆-valuable terms coincides with the set of
strongly β-normalizing terms?

2 Is there a set of input values ∆ such that the set of
potentially ∆-valuable terms coincides with the set of
strongly βℓ-normalizing terms?
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Problem 1: λΦ-Calculus

■ Φ is a set of input values such that

(i) if M ∈ Φ then either M ∈ Var or M is closed;
(ii) if M ∈ Φ then M is a Φ-normal form;
(iii) if M ∈ Φ then M is strongly β-normalizing.

■ Φ = Var ∪ (Υ)0 where Υ = ∪iΥi and Υi, Φi are defined as follows:

Υ0 = Var Φi = Var ∪ (Υi)
0

Υi+1=Var ∪ {xM1...Mn | Mk ∈ Υi(1 ≤ k ≤ n)}

∪ {λ~x.M | M ∈ Υi}

∪











(λx.P )QM1...Mn

∣

∣

∣

∣

∣

∣

∣

Q ∈ Υi − (Λ0 ∪ Var),

Mk ∈ Υi(1 ≤ k ≤ n)

P [Q/x]M1 . . .Mn →∗

Φi
R ∈ Υi
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Logical Characterization

■ Let Cν be a countable set of type-constants containing at
least the type constant ν.
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■ Let Cν be a countable set of type-constants containing at
least the type constant ν.

■ Intersection Types: σ ::= a | σ → σ | σ ∩ σ.
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Logical Characterization

■ Let Cν be a countable set of type-constants containing at
least the type constant ν.

■ Intersection Types: σ ::= a | σ → σ | σ ∩ σ.

■ The type assignment system is the following:

(var)
B[σ/x] ⊢ν x : σ

B[σ/x] ⊢ν M : τ
(→I)

B ⊢ν λx.M : σ → τ

B ⊢ν M : σ → τ B ⊢ν N : σ
(→E)

B ⊢ν MN : τ

B ⊢ν M : σ B ⊢ν M : τ
(∩I)

B ⊢ν M : σ ∩ τ

B ⊢ν M : σ ∩ τ
(∩El)

B ⊢ν M : σ

B ⊢ν M : σ ∩ τ
(∩Er)

B ⊢ν M : τ

(ν)
B ⊢ν λx.M : ν
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Conclusions

■ Φ is a minimal set solving Problem 1.
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Conclusions

■ Φ is a minimal set solving Problem 1.

■ However Φ is not the minimum.

■ Φ is not decidable, but it is semidecidable.

■ Γ is a decidable set of input values such that its potentially
valuables terms correspond exactly to that of βℓ-strongly
normalizing terms.
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Conclusions

■ Φ is a minimal set solving Problem 1.

■ However Φ is not the minimum.

■ Φ is not decidable, but it is semidecidable.

■ Γ is a decidable set of input values such that its potentially
valuables terms correspond exactly to that of βℓ-strongly
normalizing terms.

■ It’s an open question if there is a decidable set of input
values such that its potentially valuables terms correspond
exactly to that of β-strongly normalizing terms.
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Conclusions

■ Φ is a minimal set solving Problem 1.

■ However Φ is not the minimum.

■ Φ is not decidable, but it is semidecidable.

■ Γ is a decidable set of input values such that its potentially
valuables terms correspond exactly to that of βℓ-strongly
normalizing terms.

■ It’s an open question if there is a decidable set of input
values such that its potentially valuables terms correspond
exactly to that of β-strongly normalizing terms.

■ We conjecture that the answer to this question is negative.
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