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Motivation

IT: type system.

That is, it concerns terms and types.

Goal: to give a proof-theoretical justification
for IT.

That is, reformulate Intersection Types IT by
means of a pure logical system.

Basis step: to clarify the difference between
intersection ∩ and intuitionistic conjunction ∧
by imposing constraints on the use of logical
and structural rules of intuitionistic logic.
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Motivation

Given a deduction Π : Γ ⊢IT M : σ, the term
M records where →-introductions and
eliminations are used.

Intersection can be introduced only between
formulas typing the same term.

ISL: never relies on λ-terms to mark the
points where intersection operators of IT can
be introduced.
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Motivation

Proves properties of sets of deductions of NJ.

The deductions of the same set must be
synchronous with respect to the use of
→-introduction and elimination.

Deductions Π1, . . . ,Πn of NJ in the same set
all have the same structure.

Rules of ISL must inductively build the sets of
synchronous derivations of NJ as they were
equivalence classes.
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Logic and Programming

The Curry-Howard isomorphism

Logical formulas ∼ Types
Proofs ∼ Programs
Cut elimination ∼ Evaluation
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Logic and Programming

From Logic to Programming

rigorous foundation for the design of
Programming Languages

UnB 2007 – p. 7/29



Logic and Programming

From Logic to Programming

rigorous foundation for the design of
Programming Languages

tools for automatic synthesis, verification,
transformation of programs
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Logic and Programming

From Programming to Logic

new problems and results in proof theory
(e.g., typability problem)

design of new logical systems inspired from
programming (e.g., light logics)
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Proofs decoration

(R)
φ1, ..., φn ⊢ ψi (1 ≤ i ≤ n)

φ1, ..., φn ⊢ R(ψ1, ..., ψn)
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Proofs decoration

(R)
φ1, ..., φn ⊢ ψi (1 ≤ i ≤ n)

φ1, ..., φn ⊢ R(ψ1, ..., ψn)

x1 : φ1, ..., xn : φn ⊢Mi : ψi (1 ≤ i ≤ n)

x1 : φ1, ..., xn : φn ⊢ R(M1, ...,Mn) : R(ψ1, ..., ψn)
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An unusual case study

From Computations to proofs
Given a type assignment, assigning types to
terms, we asked for a logical foundation of it,
i.e., for a logic such that the type assignment
can be seen as a decoration of it.
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An unusual case study

From Computations to proofs
Given a type assignment, assigning types to
terms, we asked for a logical foundation of it,
i.e., for a logic such that the type assignment
can be seen as a decoration of it.

and back
By decorating such a logic with a different
technique, we built a new typed language, for
expressing the discrete polymorphism, which
was a longstanding open problem.
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{∧ →}-fragment of NJ

Formulae:

σ, ρ, τ ::= a | (σ → σ) | (σ ∧ σ)

where a belongs to a denumerable set of
constants.
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{∧ →}-fragment of NJ

Formulae:

σ, ρ, τ ::= a | (σ → σ) | (σ ∧ σ)

where a belongs to a denumerable set of
constants.

A context is a finite sequence σ1,. . ., σm of
formulae. Contexts are denoted by Γ and ∆.

The implicative and conjunctive fragment of
NJ proves statements Γ ⊢NJ σ, where Γ is a
context and σ a formula.
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{∧ →}-fragment of NJ

(A)
σ ⊢NJ σ

(W )
Γ ⊢NJ σ

Γ, τ ⊢NJ σ

(X)
Γ1, σ1, σ2, Γ2 ⊢NJ σ

Γ1, σ2, σ1, Γ2 ⊢NJ σ
(∧I)

Γ ⊢NJ σ Γ ⊢NJ τ

Γ ⊢NJ σ ∧ τ

(∧El)
Γ ⊢NJ σ ∧ τ

Γ ⊢NJ σ
(∧Er)

Γ ⊢NJ σ ∧ τ

Γ ⊢NJ τ

(→ I)
Γ, σ ⊢NJ τ

Γ ⊢NJ σ → τ
(→ E)

Γ ⊢NJ σ → τ Γ ⊢NJ σ

Γ ⊢NJ τ
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Decorating NJ

(A)
x :σ ⊢∗

NJ
x :σ

(W )
Γ ⊢∗

NJ
M :σ x 6∈ dom(Γ)

Γ, x :τ ⊢∗

NJ
M :σ

(X)
Γ1, x :σ1, y :σ2, Γ2 ⊢∗

NJ
M :σ

Γ1, y :σ2, x :σ1, Γ2 ⊢∗

NJ
M :σ

(∧I)
Γ ⊢∗

NJ
M :σ Γ ⊢∗

NJ
N :τ

Γ ⊢∗

NJ
(M, N) :σ ∧ τ

(∧El)
Γ ⊢∗

NJ
M :σ ∧ τ

Γ ⊢∗

NJ
πl(M) :σ

(∧Er)
Γ ⊢∗

NJ
M :σ ∧ τ

Γ ⊢∗

NJ
πr(M) :τ

(→ I)
Γ, x :σ ⊢∗

NJ
M :τ

Γ ⊢∗

NJ
λx.M :σ → τ

(→ E)
Γ ⊢∗

NJ
M :σ → τ Γ ⊢∗

NJ
N :σ

Γ ⊢∗

NJ
MN :τ
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IT

(A)
x :σ ⊢∗

IT
x :σ

(W )
Γ ⊢∗

IT
M :σ x 6∈ dom(Γ)

Γ, x :τ ⊢∗

IT
M :σ

(X)
Γ1, x :σ1, y :σ2, Γ2 ⊢∗

IT
M :σ

Γ1, y :σ2, x :σ1, Γ2 ⊢∗

IT
M :σ

(∧I)
Γ ⊢∗

IT
M :σ Γ ⊢∗

IT
M :τ

Γ ⊢∗

IT
M :σ ∩ τ

(∩El)
Γ ⊢∗

IT
M :σ ∩ τ

Γ ⊢∗

IT
M :σ

(∩Er)
Γ ⊢∗

IT
M :σ ∩ τ

Γ ⊢∗

IT
M :τ

(→ I)
Γ, x :σ ⊢∗

IT
M :τ

Γ ⊢∗

IT
λx.M :σ → τ

(→ E)
Γ ⊢∗

IT
M :σ → τ Γ ⊢∗

IT
N :σ

Γ ⊢∗

IT
MN :τ
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IT

IT is usually presented in the literature in a different style.

Contexts are sets of pairs {x1 : σ1, . . . , xn : σn}, and the three
rules (A),(W ),(X) are replaced by:

(A)
x : σ ∈ Γ

Γ ⊢NJ x : σ

The two formulations are equivalent.

Since we are interested to explore the structures of the proofs, we
need to express explicitly the structural rules.
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Properties of IT

IT characterizes the strongly normalizable
terms
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Properties of IT

IT characterizes the strongly normalizable
terms

IT is undecidable

IT has the principal typing property:
if a term M can be typed then it has a principal typing
such that all and only their typings can be obtained
from it by means of suitable operations
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The problem

Is there a logical foundation for IT?
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The problem

Is there a logical foundation for IT?
i.e.

is there a logic such that IT can be obtained from
it through a decoration?
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Refining NJ

NJr is a type assignment for λ-terms with pairs.
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Refining NJ

NJr is a type assignment for λ-terms with pairs.

NJr splits the original conjunction ∧ of NJ into two.

∧: synchronous conjunction ∩ that keeps giving type to
M , identical to N .

&: asynchronous conjunction that gives type to the pair
(M,N), since M and N are distinct.

Synchronous conjunction and the intersection have the
same symbol: the two connectives are strongly related.
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NJr

(A)
x : σ ⊢NJr x : σ

(W )
Γ ⊢NJr M : σ x 6∈ dom(Γ)

Γ, x : τ ⊢NJr M : σ
(X)

Γ1, x : σ1, y : σ2, Γ2 ⊢NJr M : σ

Γ1, y : σ2, x : σ1, Γ2 ⊢NJr M : σ

(∩I)
Γ ⊢NJr M : σ Γ ⊢NJr M : τ

Γ ⊢NJr M : σ ∩ τ
(&I)

Γ ⊢NJr M : σ Γ ⊢NJr N : τ

Γ ⊢NJr (M, N) : σ&τ

(∩El)
Γ ⊢NJr M : σ ∩ τ

Γ ⊢NJr M : σ
(∩Er)

Γ ⊢NJr M : σ ∩ τ

Γ ⊢NJr M : τ

(&El)
Γ ⊢NJr M : σ&τ

Γ ⊢NJr πl(M) : σ
(&Er)

Γ ⊢NJr M : σ&τ

Γ ⊢NJr πr(M) : τ

(→ I)
Γ, x : σ ⊢NJr M : τ

Γ ⊢NJr λx.M : σ → τ
(→ E)

Γ ⊢NJr M : σ → τ Γ ⊢NJr N : σ

Γ ⊢NJr MN : τ
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NJr

Intuitively, NJr identifies derivations of NJ
which are synchronous w.r.t. the introduction
and the elimination of the implication.
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NJr

Intuitively, NJr identifies derivations of NJ
which are synchronous w.r.t. the introduction
and the elimination of the implication.

∩ merges sub-deductions where → is
introduced or eliminated in the “same points”,
namely, up to the use of the two kinds of
conjunctions.

IT is a sub-system of NJr where only
synchronous conjunction is used.

ISL gets rid of λ-terms to get the same
properties as IT.
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The logical system ISL

Formulae of ISL are formulas of NJr.
Contexts are finite sequences of such
formulae.
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The logical system ISL

Formulae of ISL are formulas of NJr.
Contexts are finite sequences of such
formulae.

An atom is a pair A : (Γ;α).

Molecule M = [A1, . . . ,An]: a finite multiset
of atoms such that the contexts in all atoms
have the same cardinality.
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ISL

[(αi; αi) | 1 ≤ i ≤ r]
(A) M∪N

M
(P )

[(Γi; βi) | 1 ≤ i ≤ r]

[(Γi, αi; βi) | 1 ≤ i ≤ r]
(W )

[(Γi
1
, βi, αi, Γ

i
2
; σi) | 1 ≤ i ≤ r]

[(Γi
1
, αi, βi, Γ

i
2
; σi) | 1 ≤ i ≤ r]

(X)

[(Γi, αi; βi) | 1 ≤ i ≤ r]

[(Γi; αi → βi) | 1 ≤ i ≤ r]
(→ I)

[(Γi; αi → βi) | 1 ≤ i ≤ r] [(Γi; αi) | 1 ≤ i ≤ r]

[(Γi; βi) | 1 ≤ i ≤ r]
(→ E)

[(Γi; αi) | 1 ≤ i ≤ r] [(Γi; βi) | 1 ≤ i ≤ r]

[(Γi; αi&βi) | 1 ≤ i ≤ r]
(&I)
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ISL

[(Γi; αi&βi) | 1 ≤ i ≤ r]

[(Γi; αi) | 1 ≤ i ≤ r]
(&EL)

[(Γi; αi&βi) | 1 ≤ i ≤ r]

[(Γi; βi) | 1 ≤ i ≤ r]
(&ER)

M∪ [(Γ;α), (Γ; β)]

M∪ [(Γ;α ∩ β)]
(∩I)

M∪ [(Γ;α ∩ β)]

M∪ [(Γ;α)]
(∩EL)

M∪ [(Γ;α ∩ β)]

M∪ [(Γ;β)]
(∩ER)
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Example

[(α, β;α), (α, β; β)]
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Example

[(α, β;α), (α, β; β)]

[(α, β;α)], [(α, β; β)]

[(α;α)], [(β; β)]

[(α, β;α)], [(β, α; β)]
(W )

[(α, β;α)], [(α, β; β)]
(X)

[(α, β;α&β)]
(&I)
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...and back

By decorating ISL, we obtain a typed
programming language for discrete
polymorphism, a longstanding open problem.
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ISL and NJ

Let Mi = [(Γi
1;α

i
1), . . . , (Γ

i
mi

;αi
mi

)] for 1 ≤ i ≤ n. Then

⊢ISL M1 : (M1)
∗ . . .Mn : (Mn)∗

if and only if

Γi
j ⊢NJr Mi : αi

j

That is, a molecule represents a set of synchronous
proofs of NJ.

UnB 2007 – p. 26/29



ISL and NJ

Let Mi = [(Γi
1;α

i
1), . . . , (Γ

i
mi

;αi
mi

)] for 1 ≤ i ≤ n. Then

⊢ISL M1 : (M1)
∗ . . .Mn : (Mn)∗

if and only if

Γi
j ⊢NJr Mi : αi

j

That is, a molecule represents a set of synchronous
proofs of NJ.

ISL is a logic internalizing the difference between
synchronicity and asynchronicity in NJ.
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ISL and IT

Let Mi = [(Γi
1;α

i
1), . . . , (Γ

i
mi

;αi
mi

)] for
1 ≤ i ≤ n and suppose that
⊢ISL M1 : (M1)

∗ . . .Mn : (Mn)
∗ where Mi

doesn’t have any occurrence of π1, π2 or (., .)
and Mi doesn’t have any occurrence of the
connective ∧. Then

Γi
j ⊢IT Mi : αi

j
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ISL and IT

Let Mi = [(Γi
1;α

i
1), . . . , (Γ

i
mi

;αi
mi

)] for
1 ≤ i ≤ n and suppose that
⊢ISL M1 : (M1)

∗ . . .Mn : (Mn)
∗ where Mi

doesn’t have any occurrence of π1, π2 or (., .)
and Mi doesn’t have any occurrence of the
connective ∧. Then

Γi
j ⊢IT Mi : αi

j

Γ ⊢IT M : α implies ⊢∗
ISL M : [(Γ)∗;α]
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ISL and IT

Let Mi = [(Γi
1;α

i
1), . . . , (Γ

i
mi

;αi
mi

)] for
1 ≤ i ≤ n and suppose that
⊢ISL M1 : (M1)

∗ . . .Mn : (Mn)
∗ where Mi

doesn’t have any occurrence of π1, π2 or (., .)
and Mi doesn’t have any occurrence of the
connective ∧. Then

Γi
j ⊢IT Mi : αi

j

Γ ⊢IT M : α implies ⊢∗
ISL M : [(Γ)∗;α]

ISL is strongly normalizable.
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The intersection∩

The implication (→) is the adjoint of the conjunction (&):

[(∅;A&B → C)] ≡ [(∅;A → B → C)].

UnB 2007 – p. 28/29



The intersection∩

The implication (→) is the adjoint of the conjunction (&):

[(∅;A&B → C)] ≡ [(∅;A → B → C)].

Does the intersection ∩ has also an adjoint (→′)?

UnB 2007 – p. 28/29



The intersection∩

The implication (→) is the adjoint of the conjunction (&):

[(∅;A&B → C)] ≡ [(∅;A → B → C)].

Does the intersection ∩ has also an adjoint (→′)?

If the answer is yes, there exists a function f , of two

arguments: f : A ∩ B →′ C that can take one at a time,

independently: f : A →′ B →′ C
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The intersection∩

The implication (→) is the adjoint of the conjunction (&):

[(∅;A&B → C)] ≡ [(∅;A → B → C)].

Does the intersection ∩ has also an adjoint (→′)?
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The implication (→) is the adjoint of the conjunction (&):

[(∅;A&B → C)] ≡ [(∅;A → B → C)].

Does the intersection ∩ has also an adjoint (→′)?

If the answer is yes, there exists a function f , of two

arguments: f : A ∩ B →′ C that can take one at a time,

independently: f : A →′ B →′ C

Impossible since A and B are not at all independent: they

are labelled by the same variable x.

Hence the system ISL gives a nice way of describing

conjunction: it is a connective that has an “asynchronous”

behavior.
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