
Intersection Synchronous Logic
Elaine Gouvêa Pimentel

Simona Ronchi della Rocca

Luca Roversi

UFMG/UNITO, 2007

UnB 2007 – p. 1/29

Outline

Motivation

UnB 2007 – p. 2/29

Outline

Motivation

Intuitionistic Logic

UnB 2007 – p. 2/29

Outline

Motivation

Intuitionistic Logic

Intersection Types

UnB 2007 – p. 2/29

Outline

Motivation

Intuitionistic Logic

Intersection Types

The logical system ISL

UnB 2007 – p. 2/29

Outline

Motivation

Intuitionistic Logic

Intersection Types

The logical system ISL

Curry-Howard isomorphism

UnB 2007 – p. 2/29

Outline

Motivation

Intuitionistic Logic

Intersection Types

The logical system ISL

Curry-Howard isomorphism

Strong normalization

UnB 2007 – p. 2/29

Outline

Motivation

Intuitionistic Logic

Intersection Types

The logical system ISL

Curry-Howard isomorphism

Strong normalization

The intersection

UnB 2007 – p. 2/29

Motivation

IT: type system.

UnB 2007 – p. 3/29

Motivation

IT: type system.

That is, it concerns terms and types.

UnB 2007 – p. 3/29

Motivation

IT: type system.

That is, it concerns terms and types.

Goal: to give a proof-theoretical justification
for IT.

UnB 2007 – p. 3/29

Motivation

IT: type system.

That is, it concerns terms and types.

Goal: to give a proof-theoretical justification
for IT.

That is, reformulate Intersection Types IT by
means of a pure logical system.

UnB 2007 – p. 3/29

Motivation

IT: type system.

That is, it concerns terms and types.

Goal: to give a proof-theoretical justification
for IT.

That is, reformulate Intersection Types IT by
means of a pure logical system.

Basis step: to clarify the difference between
intersection ∩ and intuitionistic conjunction ∧
by imposing constraints on the use of logical
and structural rules of intuitionistic logic.

UnB 2007 – p. 3/29

Motivation

Given a deduction Π : Γ ⊢IT M : σ, the term
M records where →-introductions and
eliminations are used.

UnB 2007 – p. 4/29

Motivation

Given a deduction Π : Γ ⊢IT M : σ, the term
M records where →-introductions and
eliminations are used.

Intersection can be introduced only between
formulas typing the same term.

UnB 2007 – p. 4/29

Motivation

Given a deduction Π : Γ ⊢IT M : σ, the term
M records where →-introductions and
eliminations are used.

Intersection can be introduced only between
formulas typing the same term.

ISL: never relies on λ-terms to mark the
points where intersection operators of IT can
be introduced.

UnB 2007 – p. 4/29

Motivation

Proves properties of sets of deductions of
NJ.

UnB 2007 – p. 5/29

Motivation

Proves properties of sets of deductions of NJ.

The deductions of the same set must be
synchronous with respect to the use of
→-introduction and elimination.

UnB 2007 – p. 5/29

Motivation

Proves properties of sets of deductions of NJ.

The deductions of the same set must be
synchronous with respect to the use of
→-introduction and elimination.

Deductions Π1, . . . ,Πn of NJ in the same set
all have the same structure.

UnB 2007 – p. 5/29

Motivation

Proves properties of sets of deductions of NJ.

The deductions of the same set must be
synchronous with respect to the use of
→-introduction and elimination.

Deductions Π1, . . . ,Πn of NJ in the same set
all have the same structure.

Rules of ISL must inductively build the sets of
synchronous derivations of NJ as they were
equivalence classes.

UnB 2007 – p. 5/29

Logic and Programming

The Curry-Howard isomorphism

Logical formulas ∼ Types
Proofs ∼ Programs
Cut elimination ∼ Evaluation

UnB 2007 – p. 6/29

Logic and Programming

From Logic to Programming

rigorous foundation for the design of
Programming Languages

UnB 2007 – p. 7/29

Logic and Programming

From Logic to Programming

rigorous foundation for the design of
Programming Languages

tools for automatic synthesis, verification,
transformation of programs

UnB 2007 – p. 7/29

Logic and Programming

From Programming to Logic

new problems and results in proof theory
(e.g., typability problem)

UnB 2007 – p. 8/29

Logic and Programming

From Programming to Logic

new problems and results in proof theory
(e.g., typability problem)

design of new logical systems inspired from
programming (e.g., light logics)

UnB 2007 – p. 8/29

Proofs decoration

(R)
φ1, ..., φn ⊢ ψi (1 ≤ i ≤ n)

φ1, ..., φn ⊢ R(ψ1, ..., ψn)

UnB 2007 – p. 9/29

Proofs decoration

(R)
φ1, ..., φn ⊢ ψi (1 ≤ i ≤ n)

φ1, ..., φn ⊢ R(ψ1, ..., ψn)

x1 : φ1, ..., xn : φn ⊢Mi : ψi (1 ≤ i ≤ n)

x1 : φ1, ..., xn : φn ⊢ R(M1, ...,Mn) : R(ψ1, ..., ψn)

UnB 2007 – p. 9/29

An unusual case study

From Computations to proofs
Given a type assignment, assigning types to
terms, we asked for a logical foundation of it,
i.e., for a logic such that the type assignment
can be seen as a decoration of it.

UnB 2007 – p. 10/29

An unusual case study

From Computations to proofs
Given a type assignment, assigning types to
terms, we asked for a logical foundation of it,
i.e., for a logic such that the type assignment
can be seen as a decoration of it.

and back
By decorating such a logic with a different
technique, we built a new typed language, for
expressing the discrete polymorphism, which
was a longstanding open problem.

UnB 2007 – p. 10/29

{∧ →}-fragment of NJ

Formulae:

σ, ρ, τ ::= a | (σ → σ) | (σ ∧ σ)

where a belongs to a denumerable set of
constants.

UnB 2007 – p. 11/29

{∧ →}-fragment of NJ

Formulae:

σ, ρ, τ ::= a | (σ → σ) | (σ ∧ σ)

where a belongs to a denumerable set of
constants.

A context is a finite sequence σ1,. . ., σm of
formulae. Contexts are denoted by Γ and ∆.

UnB 2007 – p. 11/29

{∧ →}-fragment of NJ

Formulae:

σ, ρ, τ ::= a | (σ → σ) | (σ ∧ σ)

where a belongs to a denumerable set of
constants.

A context is a finite sequence σ1,. . ., σm of
formulae. Contexts are denoted by Γ and ∆.

The implicative and conjunctive fragment of
NJ proves statements Γ ⊢NJ σ, where Γ is a
context and σ a formula.

UnB 2007 – p. 11/29

{∧ →}-fragment of NJ

(A)
σ ⊢NJ σ

(W)
Γ ⊢NJ σ

Γ, τ ⊢NJ σ

(X)
Γ1, σ1, σ2, Γ2 ⊢NJ σ

Γ1, σ2, σ1, Γ2 ⊢NJ σ
(∧I)

Γ ⊢NJ σ Γ ⊢NJ τ

Γ ⊢NJ σ ∧ τ

(∧El)
Γ ⊢NJ σ ∧ τ

Γ ⊢NJ σ
(∧Er)

Γ ⊢NJ σ ∧ τ

Γ ⊢NJ τ

(→ I)
Γ, σ ⊢NJ τ

Γ ⊢NJ σ → τ
(→ E)

Γ ⊢NJ σ → τ Γ ⊢NJ σ

Γ ⊢NJ τ

UnB 2007 – p. 12/29

Decorating NJ

(A)
x :σ ⊢∗

NJ
x :σ

(W)
Γ ⊢∗

NJ
M :σ x 6∈ dom(Γ)

Γ, x :τ ⊢∗

NJ
M :σ

(X)
Γ1, x :σ1, y :σ2, Γ2 ⊢∗

NJ
M :σ

Γ1, y :σ2, x :σ1, Γ2 ⊢∗

NJ
M :σ

(∧I)
Γ ⊢∗

NJ
M :σ Γ ⊢∗

NJ
N :τ

Γ ⊢∗

NJ
(M, N) :σ ∧ τ

(∧El)
Γ ⊢∗

NJ
M :σ ∧ τ

Γ ⊢∗

NJ
πl(M) :σ

(∧Er)
Γ ⊢∗

NJ
M :σ ∧ τ

Γ ⊢∗

NJ
πr(M) :τ

(→ I)
Γ, x :σ ⊢∗

NJ
M :τ

Γ ⊢∗

NJ
λx.M :σ → τ

(→ E)
Γ ⊢∗

NJ
M :σ → τ Γ ⊢∗

NJ
N :σ

Γ ⊢∗

NJ
MN :τ

UnB 2007 – p. 13/29

Decorating NJ

(A)
x :σ ⊢∗

NJ
x :σ

(W)
Γ ⊢∗

NJ
M :σ x 6∈ dom(Γ)

Γ, x :τ ⊢∗

NJ
M :σ

(X)
Γ1, x :σ1, y :σ2, Γ2 ⊢∗

NJ
M :σ

Γ1, y :σ2, x :σ1, Γ2 ⊢∗

NJ
M :σ

(∧I)
Γ ⊢∗

NJ
M :σ Γ ⊢∗

NJ
M :τ

Γ ⊢∗

NJ
(M, N) :σ ∧ τ

(∧El)
Γ ⊢∗

NJ
M :σ ∧ τ

Γ ⊢∗

NJ
πl(M) :σ

(∧Er)
Γ ⊢∗

NJ
M :σ ∧ τ

Γ ⊢∗

NJ
πr(M) :τ

(→ I)
Γ, x :σ ⊢∗

NJ
M :τ

Γ ⊢∗

NJ
λx.M :σ → τ

(→ E)
Γ ⊢∗

NJ
M :σ → τ Γ ⊢∗

NJ
N :σ

Γ ⊢∗

NJ
MN :τ

UnB 2007 – p. 13/29

Decorating NJ

(A)
x :σ ⊢∗

NJ
x :σ

(W)
Γ ⊢∗

NJ
M :σ x 6∈ dom(Γ)

Γ, x :τ ⊢∗

NJ
M :σ

(X)
Γ1, x :σ1, y :σ2, Γ2 ⊢∗

NJ
M :σ

Γ1, y :σ2, x :σ1, Γ2 ⊢∗

NJ
M :σ

(∧I)
Γ ⊢∗

NJ
M :σ Γ ⊢∗

NJ
M :τ

Γ ⊢∗

NJ
M :σ ∧ τ

(∧El)
Γ ⊢∗

NJ
M :σ ∧ τ

Γ ⊢∗

NJ
πl(M) :σ

(∧Er)
Γ ⊢∗

NJ
M :σ ∧ τ

Γ ⊢∗

NJ
πr(M) :τ

(→ I)
Γ, x :σ ⊢∗

NJ
M :τ

Γ ⊢∗

NJ
λx.M :σ → τ

(→ E)
Γ ⊢∗

NJ
M :σ → τ Γ ⊢∗

NJ
N :σ

Γ ⊢∗

NJ
MN :τ

UnB 2007 – p. 13/29

Decorating NJ

(A)
x :σ ⊢∗

NJ
x :σ

(W)
Γ ⊢∗

NJ
M :σ x 6∈ dom(Γ)

Γ, x :τ ⊢∗

NJ
M :σ

(X)
Γ1, x :σ1, y :σ2, Γ2 ⊢∗

NJ
M :σ

Γ1, y :σ2, x :σ1, Γ2 ⊢∗

NJ
M :σ

(∧I)
Γ ⊢∗

NJ
M :σ Γ ⊢∗

NJ
M :τ

Γ ⊢∗

NJ
M :σ ∧ τ

(∧El)
Γ ⊢∗

NJ
M :σ ∧ τ

Γ ⊢∗

NJ
M :σ

(∧Er)
Γ ⊢∗

NJ
M :σ ∧ τ

Γ ⊢∗

NJ
M :τ

(→ I)
Γ, x :σ ⊢∗

NJ
M :τ

Γ ⊢∗

NJ
λx.M :σ → τ

(→ E)
Γ ⊢∗

NJ
M :σ → τ Γ ⊢∗

NJ
N :σ

Γ ⊢∗

NJ
MN :τ

UnB 2007 – p. 13/29

IT

(A)
x :σ ⊢∗

IT
x :σ

(W)
Γ ⊢∗

IT
M :σ x 6∈ dom(Γ)

Γ, x :τ ⊢∗

IT
M :σ

(X)
Γ1, x :σ1, y :σ2, Γ2 ⊢∗

IT
M :σ

Γ1, y :σ2, x :σ1, Γ2 ⊢∗

IT
M :σ

(∧I)
Γ ⊢∗

IT
M :σ Γ ⊢∗

IT
M :τ

Γ ⊢∗

IT
M :σ ∩ τ

(∩El)
Γ ⊢∗

IT
M :σ ∩ τ

Γ ⊢∗

IT
M :σ

(∩Er)
Γ ⊢∗

IT
M :σ ∩ τ

Γ ⊢∗

IT
M :τ

(→ I)
Γ, x :σ ⊢∗

IT
M :τ

Γ ⊢∗

IT
λx.M :σ → τ

(→ E)
Γ ⊢∗

IT
M :σ → τ Γ ⊢∗

IT
N :σ

Γ ⊢∗

IT
MN :τ

UnB 2007 – p. 14/29

IT

IT is usually presented in the literature in a different style.

UnB 2007 – p. 15/29

IT

IT is usually presented in the literature in a different style.

Contexts are sets of pairs {x1 : σ1, . . . , xn : σn}, and the three
rules (A),(W),(X) are replaced by:

(A)
x : σ ∈ Γ

Γ ⊢NJ x : σ

UnB 2007 – p. 15/29

IT

IT is usually presented in the literature in a different style.

Contexts are sets of pairs {x1 : σ1, . . . , xn : σn}, and the three
rules (A),(W),(X) are replaced by:

(A)
x : σ ∈ Γ

Γ ⊢NJ x : σ

The two formulations are equivalent.

UnB 2007 – p. 15/29

IT

IT is usually presented in the literature in a different style.

Contexts are sets of pairs {x1 : σ1, . . . , xn : σn}, and the three
rules (A),(W),(X) are replaced by:

(A)
x : σ ∈ Γ

Γ ⊢NJ x : σ

The two formulations are equivalent.

Since we are interested to explore the structures of the proofs, we
need to express explicitly the structural rules.

UnB 2007 – p. 15/29

Properties of IT

IT characterizes the strongly normalizable
terms

UnB 2007 – p. 16/29

Properties of IT

IT characterizes the strongly normalizable
terms

IT is undecidable

UnB 2007 – p. 16/29

Properties of IT

IT characterizes the strongly normalizable
terms

IT is undecidable

IT has the principal typing property:
if a term M can be typed then it has a principal typing
such that all and only their typings can be obtained
from it by means of suitable operations

UnB 2007 – p. 16/29

The problem

Is there a logical foundation for IT?

UnB 2007 – p. 17/29

The problem

Is there a logical foundation for IT?
i.e.

UnB 2007 – p. 17/29

The problem

Is there a logical foundation for IT?
i.e.

is there a logic such that IT can be obtained from
it through a decoration?

UnB 2007 – p. 17/29

Refining NJ

NJr is a type assignment for λ-terms with pairs.

UnB 2007 – p. 18/29

Refining NJ

NJr is a type assignment for λ-terms with pairs.

NJr splits the original conjunction ∧ of NJ into two.

UnB 2007 – p. 18/29

Refining NJ

NJr is a type assignment for λ-terms with pairs.

NJr splits the original conjunction ∧ of NJ into two.

∧: synchronous conjunction ∩ that keeps giving type to
M , identical to N .

UnB 2007 – p. 18/29

Refining NJ

NJr is a type assignment for λ-terms with pairs.

NJr splits the original conjunction ∧ of NJ into two.

∧: synchronous conjunction ∩ that keeps giving type to
M , identical to N .

&: asynchronous conjunction that gives type to the pair
(M,N), since M and N are distinct.

UnB 2007 – p. 18/29

Refining NJ

NJr is a type assignment for λ-terms with pairs.

NJr splits the original conjunction ∧ of NJ into two.

∧: synchronous conjunction ∩ that keeps giving type to
M , identical to N .

&: asynchronous conjunction that gives type to the pair
(M,N), since M and N are distinct.

Synchronous conjunction and the intersection have the
same symbol: the two connectives are strongly related.

UnB 2007 – p. 18/29

NJr

(A)
x : σ ⊢NJr x : σ

(W)
Γ ⊢NJr M : σ x 6∈ dom(Γ)

Γ, x : τ ⊢NJr M : σ
(X)

Γ1, x : σ1, y : σ2, Γ2 ⊢NJr M : σ

Γ1, y : σ2, x : σ1, Γ2 ⊢NJr M : σ

(∩I)
Γ ⊢NJr M : σ Γ ⊢NJr M : τ

Γ ⊢NJr M : σ ∩ τ
(&I)

Γ ⊢NJr M : σ Γ ⊢NJr N : τ

Γ ⊢NJr (M, N) : σ&τ

(∩El)
Γ ⊢NJr M : σ ∩ τ

Γ ⊢NJr M : σ
(∩Er)

Γ ⊢NJr M : σ ∩ τ

Γ ⊢NJr M : τ

(&El)
Γ ⊢NJr M : σ&τ

Γ ⊢NJr πl(M) : σ
(&Er)

Γ ⊢NJr M : σ&τ

Γ ⊢NJr πr(M) : τ

(→ I)
Γ, x : σ ⊢NJr M : τ

Γ ⊢NJr λx.M : σ → τ
(→ E)

Γ ⊢NJr M : σ → τ Γ ⊢NJr N : σ

Γ ⊢NJr MN : τ

UnB 2007 – p. 19/29

NJr

Intuitively, NJr identifies derivations of NJ
which are synchronous w.r.t. the introduction
and the elimination of the implication.

UnB 2007 – p. 20/29

NJr

Intuitively, NJr identifies derivations of NJ
which are synchronous w.r.t. the introduction
and the elimination of the implication.

∩ merges sub-deductions where → is
introduced or eliminated in the “same points”,
namely, up to the use of the two kinds of
conjunctions.

UnB 2007 – p. 20/29

NJr

Intuitively, NJr identifies derivations of NJ
which are synchronous w.r.t. the introduction
and the elimination of the implication.

∩ merges sub-deductions where → is
introduced or eliminated in the “same points”,
namely, up to the use of the two kinds of
conjunctions.

IT is a sub-system of NJr where only
synchronous conjunction is used.

UnB 2007 – p. 20/29

NJr

Intuitively, NJr identifies derivations of NJ
which are synchronous w.r.t. the introduction
and the elimination of the implication.

∩ merges sub-deductions where → is
introduced or eliminated in the “same points”,
namely, up to the use of the two kinds of
conjunctions.

IT is a sub-system of NJr where only
synchronous conjunction is used.

ISL gets rid of λ-terms to get the same
properties as IT.

UnB 2007 – p. 20/29

The logical system ISL

Formulae of ISL are formulas of NJr.
Contexts are finite sequences of such
formulae.

UnB 2007 – p. 21/29

The logical system ISL

Formulae of ISL are formulas of NJr.
Contexts are finite sequences of such
formulae.

An atom is a pair A : (Γ;α).

UnB 2007 – p. 21/29

The logical system ISL

Formulae of ISL are formulas of NJr.
Contexts are finite sequences of such
formulae.

An atom is a pair A : (Γ;α).

Molecule M = [A1, . . . ,An]: a finite multiset
of atoms such that the contexts in all atoms
have the same cardinality.

UnB 2007 – p. 21/29

ISL

[(αi; αi) | 1 ≤ i ≤ r]
(A) M∪N

M
(P)

[(Γi; βi) | 1 ≤ i ≤ r]

[(Γi, αi; βi) | 1 ≤ i ≤ r]
(W)

[(Γi
1
, βi, αi, Γ

i
2
; σi) | 1 ≤ i ≤ r]

[(Γi
1
, αi, βi, Γ

i
2
; σi) | 1 ≤ i ≤ r]

(X)

[(Γi, αi; βi) | 1 ≤ i ≤ r]

[(Γi; αi → βi) | 1 ≤ i ≤ r]
(→ I)

[(Γi; αi → βi) | 1 ≤ i ≤ r] [(Γi; αi) | 1 ≤ i ≤ r]

[(Γi; βi) | 1 ≤ i ≤ r]
(→ E)

[(Γi; αi) | 1 ≤ i ≤ r] [(Γi; βi) | 1 ≤ i ≤ r]

[(Γi; αi&βi) | 1 ≤ i ≤ r]
(&I)

UnB 2007 – p. 22/29

ISL

[(Γi; αi&βi) | 1 ≤ i ≤ r]

[(Γi; αi) | 1 ≤ i ≤ r]
(&EL)

[(Γi; αi&βi) | 1 ≤ i ≤ r]

[(Γi; βi) | 1 ≤ i ≤ r]
(&ER)

M∪ [(Γ;α), (Γ; β)]

M∪ [(Γ;α ∩ β)]
(∩I)

M∪ [(Γ;α ∩ β)]

M∪ [(Γ;α)]
(∩EL)

M∪ [(Γ;α ∩ β)]

M∪ [(Γ;β)]
(∩ER)

UnB 2007 – p. 23/29

Example

[(α, β;α), (α, β; β)]

UnB 2007 – p. 24/29

Example

[(α, β;α), (α, β; β)]

[(α, β;α)], [(α, β; β)]

UnB 2007 – p. 24/29

Example

[(α, β;α), (α, β; β)]

[(α, β;α)], [(α, β; β)]

[(α;α)], [(β; β)]

[(α, β;α)], [(β, α; β)]
(W)

[(α, β;α)], [(α, β; β)]
(X)

[(α, β;α&β)]
(&I)

UnB 2007 – p. 24/29

...and back

By decorating ISL, we obtain a typed
programming language for discrete
polymorphism, a longstanding open problem.

UnB 2007 – p. 25/29

ISL and NJ

Let Mi = [(Γi
1;α

i
1), . . . , (Γ

i
mi

;αi
mi

)] for 1 ≤ i ≤ n. Then

⊢ISL M1 : (M1)
∗ . . .Mn : (Mn)∗

if and only if

Γi
j ⊢NJr Mi : αi

j

That is, a molecule represents a set of synchronous
proofs of NJ.

UnB 2007 – p. 26/29

ISL and NJ

Let Mi = [(Γi
1;α

i
1), . . . , (Γ

i
mi

;αi
mi

)] for 1 ≤ i ≤ n. Then

⊢ISL M1 : (M1)
∗ . . .Mn : (Mn)∗

if and only if

Γi
j ⊢NJr Mi : αi

j

That is, a molecule represents a set of synchronous
proofs of NJ.

ISL is a logic internalizing the difference between
synchronicity and asynchronicity in NJ.

UnB 2007 – p. 26/29

ISL and IT

Let Mi = [(Γi
1;α

i
1), . . . , (Γ

i
mi

;αi
mi

)] for
1 ≤ i ≤ n and suppose that
⊢ISL M1 : (M1)

∗ . . .Mn : (Mn)
∗ where Mi

doesn’t have any occurrence of π1, π2 or (., .)
and Mi doesn’t have any occurrence of the
connective ∧. Then

Γi
j ⊢IT Mi : αi

j

UnB 2007 – p. 27/29

ISL and IT

Let Mi = [(Γi
1;α

i
1), . . . , (Γ

i
mi

;αi
mi

)] for
1 ≤ i ≤ n and suppose that
⊢ISL M1 : (M1)

∗ . . .Mn : (Mn)
∗ where Mi

doesn’t have any occurrence of π1, π2 or (., .)
and Mi doesn’t have any occurrence of the
connective ∧. Then

Γi
j ⊢IT Mi : αi

j

Γ ⊢IT M : α implies ⊢∗
ISL M : [(Γ)∗;α]

UnB 2007 – p. 27/29

ISL and IT

Let Mi = [(Γi
1;α

i
1), . . . , (Γ

i
mi

;αi
mi

)] for
1 ≤ i ≤ n and suppose that
⊢ISL M1 : (M1)

∗ . . .Mn : (Mn)
∗ where Mi

doesn’t have any occurrence of π1, π2 or (., .)
and Mi doesn’t have any occurrence of the
connective ∧. Then

Γi
j ⊢IT Mi : αi

j

Γ ⊢IT M : α implies ⊢∗
ISL M : [(Γ)∗;α]

ISL is strongly normalizable.

UnB 2007 – p. 27/29

The intersection∩

The implication (→) is the adjoint of the conjunction (&):

[(∅;A&B → C)] ≡ [(∅;A → B → C)].

UnB 2007 – p. 28/29

The intersection∩

The implication (→) is the adjoint of the conjunction (&):

[(∅;A&B → C)] ≡ [(∅;A → B → C)].

Does the intersection ∩ has also an adjoint (→′)?

UnB 2007 – p. 28/29

The intersection∩

The implication (→) is the adjoint of the conjunction (&):

[(∅;A&B → C)] ≡ [(∅;A → B → C)].

Does the intersection ∩ has also an adjoint (→′)?

If the answer is yes, there exists a function f , of two

arguments: f : A ∩ B →′ C that can take one at a time,

independently: f : A →′ B →′ C

UnB 2007 – p. 28/29

The intersection∩

The implication (→) is the adjoint of the conjunction (&):

[(∅;A&B → C)] ≡ [(∅;A → B → C)].

Does the intersection ∩ has also an adjoint (→′)?

If the answer is yes, there exists a function f , of two

arguments: f : A ∩ B →′ C that can take one at a time,

independently: f : A →′ B →′ C

Impossible since A and B are not at all independent: they

are labelled by the same variable x.

UnB 2007 – p. 28/29

The intersection∩

The implication (→) is the adjoint of the conjunction (&):

[(∅;A&B → C)] ≡ [(∅;A → B → C)].

Does the intersection ∩ has also an adjoint (→′)?

If the answer is yes, there exists a function f , of two

arguments: f : A ∩ B →′ C that can take one at a time,

independently: f : A →′ B →′ C

Impossible since A and B are not at all independent: they

are labelled by the same variable x.

Hence the system ISL gives a nice way of describing

conjunction: it is a connective that has an “asynchronous”

behavior.
UnB 2007 – p. 28/29

Future work

Operational semantics.

UnB 2007 – p. 29/29

Future work

Operational semantics.

Sequent calculus.

UnB 2007 – p. 29/29

Future work

Operational semantics.

Sequent calculus.

Proof nets.

UnB 2007 – p. 29/29

Future work

Operational semantics.

Sequent calculus.

Proof nets.

ISL λ-calculus
IT Strongly Normalizing λ-terms

UnB 2007 – p. 29/29

	Outline
	Outline
	Outline
	Outline
	Outline
	Outline
	Outline

	Motivation
	Motivation
	Motivation
	Motivation
	Motivation

	Motivation
	Motivation
	Motivation

	Motivation
	Motivation
	Motivation
	Motivation

	Logic and Programming
	Logic and Programming
	Logic and Programming

	Logic and Programming
	Logic and Programming

	Proofs decoration
	Proofs decoration

	An unusual case study
	An unusual case study

	${conj a }$-fragment of NJ
	${conj a }$-fragment of NJ
	${conj a }$-fragment of NJ

	${conj a }$-fragment of NJ
	Decorating NJ
	Decorating NJ
	Decorating NJ
	Decorating NJ

	IT
	IT
	IT
	IT
	IT

	Properties of IT
	Properties of IT
	Properties of IT

	The problem
	The problem
	The problem

	Refining NJ
	Refining NJ
	Refining NJ
	Refining NJ
	Refining NJ

	NJR
	NJR
	NJR
	NJR
	NJR

	The logical system ISL
	The logical system ISL
	The logical system ISL

	ISL
	ISL
	Example
	Example
	Example

	...and back
	ISL and NJ
	ISL and NJ

	ISL and IT
	ISL and IT
	ISL and IT

	The intersection $inters $
	The intersection $inters $
	The intersection $inters $
	The intersection $inters $
	The intersection $inters $

	Future work
	Future work
	Future work
	Future work

