
Process Calculi
A Brief, Gentle Introduction

Jorge A. Pérez

University of Brasilia
July 20, 2015

Introduction CCS The π-calculus

Acknowledgment

A part of this set of slides was originally produced by Jiri Srba, and
makes part of the course material for the book

Reactive Systems: Modelling, Specification and Verification
by L. Aceto, A. Ingolfsdottir, K. G. Larsen and J. Srba

URL: http://rsbook.cs.aau.dk

I have adapted them for the purposes of this talk.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 2 / 80

http://rsbook.cs.aau.dk

Introduction CCS The π-calculus

Outline

Introduction

CCS
Introduction to CCS
Syntax of CCS
Semantics of CCS
Value Passing CCS
Semantic Equivalences
Strong Bisimilarity
Weak Bisimilarity

The π-calculus
Informal Introduction
The π-calculus, formally

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 3 / 80

Introduction CCS The π-calculus

Classical View

Characterization of a Classical Program

Program transforms an input into an output.

• Denotational semantics:
a meaning of a program is a partial function

states ↪→ states

• Nontermination is bad!

• In case of termination, the result is unique.

Is this all we need?

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 4 / 80

Introduction CCS The π-calculus

Reactive systems

What about:

• Operating systems?

• Communication protocols?

• Control programs?

• Mobile phones?

• Vending machines?

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 5 / 80

Introduction CCS The π-calculus

Reactive systems

Characterization of a Reactive System

Reactive System is a system that computes by reacting to stimuli
from its environment.

Key Issues:

• communication and interaction

• parallelism

Nontermination is good!

The result (if any) does not have to be unique.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 6 / 80

Introduction CCS The π-calculus

Reactive systems

Characterization of a Reactive System

Reactive System is a system that computes by reacting to stimuli
from its environment.

Key Issues:

• communication and interaction

• parallelism

Nontermination is good!

The result (if any) does not have to be unique.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 6 / 80

Introduction CCS The π-calculus

Analysis of Reactive Systems

Questions

• How can we develop (design) a system that “works”?

• How do we analyze (verify) such a system?

Fact of Life

Even short parallel programs may be hard to analyze.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 7 / 80

Introduction CCS The π-calculus

The Need for a Theory

Conclusion

We need formal/systematic methods (tools), otherwise ...

• Intel’s Pentium-II bug in floating-point division unit

• Ariane-5 crash due to a conversion of 64-bit real to 16-bit
integer

• Mars Pathfinder

• ...

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 8 / 80

Introduction CCS The π-calculus

Classical vs. Reactive Computing

Classical Reactive/Parallel

interaction no yes
nontermination undesirable often desirable

unique result yes no
semantics states ↪→ states ?

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 9 / 80

Introduction CCS The π-calculus

How to Model Reactive Systems

Question

What is the most abstract view of a reactive system (process)?

Answer

A process performs an action and becomes another process.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 10 / 80

Introduction CCS The π-calculus

How to Model Reactive Systems

Question

What is the most abstract view of a reactive system (process)?

Answer

A process performs an action and becomes another process.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 10 / 80

Introduction CCS The π-calculus

Labelled Transition System

Definition

A labelled transition system (LTS) is a triple
(Proc,Act , { a−→| a ∈ Act}) where

• Proc is a set of states (or processes),

• Act is a set of labels (or actions), and

• for every a ∈ Act ,
a−→ ⊆ Proc × Proc is a binary relation on

states called the transition relation.

We will use the infix notation s
a−→ s′ meaning that (s, s′) ∈ a−→.

Sometimes we distinguish the initial (or start) state.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 11 / 80

Introduction CCS The π-calculus

Sequencing, Nondeterminism, Parallelism

LTS explicitly focuses on interaction.

LTS can also describe:

• sequencing (a; b)

• choice (nondeterminism) (a+ b)

• limited notion of parallelism (by using interleaving) (a || b)

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 12 / 80

Introduction CCS The π-calculus

Binary Relations

Definition

A binary relation R on a set A is a subset of A× A.

R ⊆ A× A

Sometimes we write xR y instead of (x, y) ∈ R.

Properties

• R is reflexive if (x, x) ∈ R for all x ∈ A
• R is symmetric if (x, y) ∈ R implies (y, x) ∈ R for all x, y ∈ A
• R is transitive if (x, y) ∈ R and (y, z) ∈ R implies that
(x, z) ∈ R for all x, y, z ∈ A

We assume usual definitions of closures (reflexive, symmetric,
transitive).

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 13 / 80

Introduction CCS The π-calculus

Labelled Transition Systems – Notation

Let (Proc,Act , { a−→| a ∈ Act}) be an LTS.

• we extend
a−→ to the elements of Act∗

• −→=
⋃
a∈Act

a−→
• −→∗ is the reflexive and transitive closure of −→
• s a−→ and s 6 a−→
• reachable states

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 14 / 80

Introduction CCS The π-calculus

Outline

Introduction

CCS
Introduction to CCS
Syntax of CCS
Semantics of CCS
Value Passing CCS
Semantic Equivalences
Strong Bisimilarity
Weak Bisimilarity

The π-calculus
Informal Introduction
The π-calculus, formally

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 15 / 80

Introduction CCS The π-calculus

How to Describe LTS?

Syntax

unknown entity
−→ Semantics

known entity

programming language
−→ what (denotational) or

how (operational) it computes

???
−→

Labelled Transition Systems

CCS

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 16 / 80

Introduction CCS The π-calculus

How to Describe LTS?

Syntax

unknown entity
−→ Semantics

known entity

programming language
−→ what (denotational) or

how (operational) it computes

???
−→

Labelled Transition Systems

CCS

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 16 / 80

Introduction CCS The π-calculus

How to Describe LTS?

Syntax

unknown entity
−→ Semantics

known entity

programming language
−→ what (denotational) or

how (operational) it computes

???
−→

Labelled Transition Systems

CCS

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 16 / 80

Introduction CCS The π-calculus

How to Describe LTS?

Syntax

unknown entity
−→ Semantics

known entity

programming language
−→ what (denotational) or

how (operational) it computes

???
−→

Labelled Transition Systems

CCS

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 16 / 80

Introduction CCS The π-calculus

Calculus of Communicating Systems

CCS

Process calculus called “Calculus of Communicating Systems”.

Insight of Robin Milner (1989)

Concurrent (parallel) processes have an algebraic structure.

P1 op P2 ⇒ P1 op P2

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 17 / 80

Introduction CCS The π-calculus

Process Calculus

Basic Principle

1 Define a few atomic processes (modeling the simplest process
behavior).

2 Define compositionally new operations (building more complex
process behavior from simple ones).

Example

1 atomic instruction: assignment (e.g. x:=2 and x:=x+2)

2 new operators:
• sequential composition (P1; P2)
• parallel composition (P1 || P2)

E.g. (x:=1 || x:=2); x:=x+2; (x:=x-1 || x:=x+5) is a
process.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 18 / 80

Introduction CCS The π-calculus

Process Calculus

Basic Principle

1 Define a few atomic processes (modeling the simplest process
behavior).

2 Define compositionally new operations (building more complex
process behavior from simple ones).

Example

1 atomic instruction: assignment (e.g. x:=2 and x:=x+2)

2 new operators:
• sequential composition (P1; P2)
• parallel composition (P1 || P2)

E.g. (x:=1 || x:=2); x:=x+2; (x:=x-1 || x:=x+5) is a
process.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 18 / 80

Introduction CCS The π-calculus

CCS Basics (Sequential Fragment)

• Nil (or 0) process (the only atomic process)

• action prefixing (a.P)

• names and recursive definitions (
def
=)

• nondeterministic choice (+)

This is Enough to Describe Sequential Processes

Any finite LTS can be (up to isomorphism) described by using the
operations above.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 19 / 80

Introduction CCS The π-calculus

CCS Basics (Sequential Fragment)

• Nil (or 0) process (the only atomic process)

• action prefixing (a.P)

• names and recursive definitions (
def
=)

• nondeterministic choice (+)

This is Enough to Describe Sequential Processes

Any finite LTS can be (up to isomorphism) described by using the
operations above.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 19 / 80

Introduction CCS The π-calculus

CCS Basics (Parallelism and Renaming)

• parallel composition (||)
(synchronous communication between two components =
handshake synchronization)

• restriction ((νa1, . . . , an)P)
Alternative notation: P r L, with L = {a1, . . . , an}

• relabelling (P [f])

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 20 / 80

Introduction CCS The π-calculus

CCS Basics (Parallelism and Renaming)

• parallel composition (||)
(synchronous communication between two components =
handshake synchronization)

• restriction ((νa1, . . . , an)P)
Alternative notation: P r L, with L = {a1, . . . , an}

• relabelling (P [f])

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 20 / 80

Introduction CCS The π-calculus

CCS Basics (Parallelism and Renaming)

• parallel composition (||)
(synchronous communication between two components =
handshake synchronization)

• restriction ((νa1, . . . , an)P)
Alternative notation: P r L, with L = {a1, . . . , an}

• relabelling (P [f])

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 20 / 80

Introduction CCS The π-calculus

Some Examples

Assigning names to processes (as in procedures) allows us to give
recursive definitions of process behaviors.

Some examples:

• Clock def
= tick.Clock

• CM def
= coin.coffee.CM

• VM def
= coin.item.VM

• CTM def
= coin.(coffee.CTM + tea.CTM)

• CS def
= pub.coin.coffee.CS

• SmUni def
= (νcoin, coffee)(CM ||CS)

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 21 / 80

Introduction CCS The π-calculus

Definition of CCS

Let

• A be a set of channel names (e.g. tea, coffee)

• L = A ∪A be a set of labels where
• A = {a | a ∈ A}

(A are called names and A are called co-names)
• by convention a = a

• Act = L ∪ {τ} is the set of actions where
• τ is the internal or silent action

(e.g. τ , tea, coffee are actions)

• K is a set of process names (constants) (e.g. CM).

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 22 / 80

Introduction CCS The π-calculus

Definition of CCS

Let

• A be a set of channel names (e.g. tea, coffee)

• L = A ∪A be a set of labels where
• A = {a | a ∈ A}

(A are called names and A are called co-names)
• by convention a = a

• Act = L ∪ {τ} is the set of actions where
• τ is the internal or silent action

(e.g. τ , tea, coffee are actions)

• K is a set of process names (constants) (e.g. CM).

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 22 / 80

Introduction CCS The π-calculus

Definition of CCS

Let

• A be a set of channel names (e.g. tea, coffee)

• L = A ∪A be a set of labels where
• A = {a | a ∈ A}

(A are called names and A are called co-names)
• by convention a = a

• Act = L ∪ {τ} is the set of actions where
• τ is the internal or silent action

(e.g. τ , tea, coffee are actions)

• K is a set of process names (constants) (e.g. CM).

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 22 / 80

Introduction CCS The π-calculus

Definition of CCS

Let

• A be a set of channel names (e.g. tea, coffee)

• L = A ∪A be a set of labels where
• A = {a | a ∈ A}

(A are called names and A are called co-names)
• by convention a = a

• Act = L ∪ {τ} is the set of actions where
• τ is the internal or silent action

(e.g. τ , tea, coffee are actions)

• K is a set of process names (constants) (e.g. CM).

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 22 / 80

Introduction CCS The π-calculus

Definition of CCS (expressions)

P := K | process constants (K ∈ K)
α.P | prefixing (α ∈ Act)∑

i∈I Pi | summation (I is an arbitrary index set)
P1 ||P2 | parallel composition
(νa1, . . . , an)P | restriction ({a1, . . . , an} ⊆ A)
P [f] | relabelling (f : Act → Act) such that

• f(τ) = τ

• f(a) = f(a)

The set of all terms generated by the abstract syntax is called
CCS process expressions (and denoted by P).

Notation

P1 + P2 =
∑

i∈{1,2} Pi Nil = 0 =
∑

i∈∅ Pi

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 23 / 80

Introduction CCS The π-calculus

Precedence

Precedence

1 restriction and relabelling (tightest binding)

2 action prefixing

3 parallel composition

4 summation

Example: R + a.P || b.Qr L means R +
(
(a.P) || (b.(Qr L))

)
.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 24 / 80

Introduction CCS The π-calculus

Precedence

Precedence

1 restriction and relabelling (tightest binding)

2 action prefixing

3 parallel composition

4 summation

Example: R + a.P || b.Qr L means R +
(
(a.P) || (b.(Qr L))

)
.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 24 / 80

Introduction CCS The π-calculus

Definition of CCS (defining equations)

CCS program

A collection of defining equations of the form

K
def
= P

where K ∈ K is a process constant and P ∈ P is a CCS process
expression.

• Only one defining equation per process constant.

• Recursion is allowed: e.g. A
def
= a.A || A.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 25 / 80

Introduction CCS The π-calculus

Semantics of CCS

Syntax

CCS
(collection of defining equations)

−→
Semantics

LTS
(labelled transition systems)

HOW?

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 26 / 80

Introduction CCS The π-calculus

Semantics of CCS

Syntax

CCS
(collection of defining equations)

−→
Semantics

LTS
(labelled transition systems)

HOW?

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 26 / 80

Introduction CCS The π-calculus

Semantics of CCS

Syntax

CCS
(collection of defining equations)

−→
Semantics

LTS
(labelled transition systems)

HOW?

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 26 / 80

Introduction CCS The π-calculus

Structural Operational Semantics for CCS

Structural Operational Semantics (SOS) – G. Plotkin 1981

Small-step operational semantics where the behaviour of a system
is inferred using syntax driven rules.

Given a collection of CCS defining equations, we define the
following LTS (Proc,Act , { a−→| a ∈ Act}):
• Proc = P (the set of all CCS process expressions)
• Act = L ∪ {τ} (the set of all CCS actions including τ)
• transition relation is given by SOS rules of the form:

RULE
premises

conclusion
conditions

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 27 / 80

Introduction CCS The π-calculus

Structural Operational Semantics for CCS

Structural Operational Semantics (SOS) – G. Plotkin 1981

Small-step operational semantics where the behaviour of a system
is inferred using syntax driven rules.

Given a collection of CCS defining equations, we define the
following LTS (Proc,Act , { a−→| a ∈ Act}):
• Proc = P (the set of all CCS process expressions)
• Act = L ∪ {τ} (the set of all CCS actions including τ)
• transition relation is given by SOS rules of the form:

RULE
premises

conclusion
conditions

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 27 / 80

Introduction CCS The π-calculus

SOS rules for CCS (α ∈ Act , a ∈ L)

ACT
α.P

α−→ P
SUMj

Pj
α−→ P ′j∑

i∈I Pi
α−→ P ′j

j ∈ I

COM1 P
α−→ P ′

P ||Q α−→ P ′ ||Q
COM2

Q
α−→ Q′

P ||Q α−→ P ||Q′

COM3
P

a−→ P ′ Q
a−→ Q′

P ||Q τ−→ P ′ ||Q′

RES P
α−→ P ′

P r L
α−→ P ′ r L

α, α 6∈ L REL P
α−→ P ′

P [f]
f(α)−→ P ′[f]

CON P
α−→ P ′

K
α−→ P ′

K
def
= P

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 28 / 80

Introduction CCS The π-calculus

Deriving Transitions in CCS

Let A
def
= a.A. Then(
(A || a.Nil) || b.Nil

)
[c/a]

c−→
(
(A || a.Nil) || b.Nil

)
[c/a].

REL

COM1

COM1

CON

ACT
a.A

a−→ A

A
a−→ A

A
def
= a.A

A || a.Nil
a−→ A || a.Nil

(A || a.Nil) || b.Nil
a−→ (A || a.Nil) || b.Nil

(
(A || a.Nil) || b.Nil

)
[c/a]

c−→
(
(A || a.Nil) || b.Nil

)
[c/a]

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 29 / 80

Introduction CCS The π-calculus

Deriving Transitions in CCS

Let A
def
= a.A. Then(
(A || a.Nil) || b.Nil

)
[c/a]

c−→
(
(A || a.Nil) || b.Nil

)
[c/a].

REL

COM1

COM1

CON

ACT
a.A

a−→ A

A
a−→ A

A
def
= a.A

A || a.Nil
a−→ A || a.Nil

(A || a.Nil) || b.Nil
a−→ (A || a.Nil) || b.Nil

(
(A || a.Nil) || b.Nil

)
[c/a]

c−→
(
(A || a.Nil) || b.Nil

)
[c/a]

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 29 / 80

Introduction CCS The π-calculus

Deriving Transitions in CCS

Let A
def
= a.A. Then(
(A || a.Nil) || b.Nil

)
[c/a]

c−→
(
(A || a.Nil) || b.Nil

)
[c/a].

REL

COM1

COM1

CON

ACT
a.A

a−→ A

A
a−→ A

A
def
= a.A

A || a.Nil
a−→ A || a.Nil

(A || a.Nil) || b.Nil
a−→ (A || a.Nil) || b.Nil(

(A || a.Nil) || b.Nil
)
[c/a]

c−→
(
(A || a.Nil) || b.Nil

)
[c/a]

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 29 / 80

Introduction CCS The π-calculus

Deriving Transitions in CCS

Let A
def
= a.A. Then(
(A || a.Nil) || b.Nil

)
[c/a]

c−→
(
(A || a.Nil) || b.Nil

)
[c/a].

REL

COM1

COM1

CON

ACT
a.A

a−→ A

A
a−→ A

A
def
= a.A

A || a.Nil
a−→ A || a.Nil

(A || a.Nil) || b.Nil
a−→ (A || a.Nil) || b.Nil(

(A || a.Nil) || b.Nil
)
[c/a]

c−→
(
(A || a.Nil) || b.Nil

)
[c/a]

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 29 / 80

Introduction CCS The π-calculus

Deriving Transitions in CCS

Let A
def
= a.A. Then(
(A || a.Nil) || b.Nil

)
[c/a]

c−→
(
(A || a.Nil) || b.Nil

)
[c/a].

REL

COM1

COM1

CON

ACT
a.A

a−→ A

A
a−→ A

A
def
= a.A

A || a.Nil
a−→ A || a.Nil

(A || a.Nil) || b.Nil
a−→ (A || a.Nil) || b.Nil(

(A || a.Nil) || b.Nil
)
[c/a]

c−→
(
(A || a.Nil) || b.Nil

)
[c/a]

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 29 / 80

Introduction CCS The π-calculus

Deriving Transitions in CCS

Let A
def
= a.A. Then(
(A || a.Nil) || b.Nil

)
[c/a]

c−→
(
(A || a.Nil) || b.Nil

)
[c/a].

REL

COM1

COM1

CON

ACT
a.A

a−→ A

A
a−→ A

A
def
= a.A

A || a.Nil
a−→ A || a.Nil

(A || a.Nil) || b.Nil
a−→ (A || a.Nil) || b.Nil(

(A || a.Nil) || b.Nil
)
[c/a]

c−→
(
(A || a.Nil) || b.Nil

)
[c/a]

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 29 / 80

Introduction CCS The π-calculus

LTS of the Process a.Nil || a.Nil

a.Nil || a.Nil

a

yy

a

%%
τ

��

Nil || a.Nil

a

%%

a.Nil || Nil

a

yy
Nil || Nil

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 30 / 80

Introduction CCS The π-calculus

Value Passing CCS

Main Idea

Handshake synchronization is extended with the possibility to
exchange integer values.

pay(6).Nil || pay(x).save(x/2).Nil

|| Bank(100)

↓ τ
Nil || save(3).Nil

|| Bank(100)

↓ τ
Nil || Nil || Bank(103)

Parametrized Process Constants

For example: Bank(total)
def
= save(x).Bank(total + x).

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 31 / 80

Introduction CCS The π-calculus

Value Passing CCS

Main Idea

Handshake synchronization is extended with the possibility to
exchange integer values.

pay(6).Nil || pay(x).save(x/2).Nil

|| Bank(100)

↓ τ
Nil || save(3).Nil

|| Bank(100)

↓ τ
Nil || Nil || Bank(103)

Parametrized Process Constants

For example: Bank(total)
def
= save(x).Bank(total + x).

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 31 / 80

Introduction CCS The π-calculus

Value Passing CCS

Main Idea

Handshake synchronization is extended with the possibility to
exchange integer values.

pay(6).Nil || pay(x).save(x/2).Nil

|| Bank(100)

↓ τ
Nil || save(3).Nil

|| Bank(100)

↓ τ
Nil || Nil || Bank(103)

Parametrized Process Constants

For example: Bank(total)
def
= save(x).Bank(total + x).

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 31 / 80

Introduction CCS The π-calculus

Value Passing CCS

Main Idea

Handshake synchronization is extended with the possibility to
exchange integer values.

pay(6).Nil || pay(x).save(x/2).Nil || Bank(100)

↓ τ
Nil || save(3).Nil || Bank(100)

↓ τ
Nil || Nil || Bank(103)

Parametrized Process Constants

For example: Bank(total)
def
= save(x).Bank(total + x).

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 31 / 80

Introduction CCS The π-calculus

Value Passing CCS

Main Idea

Handshake synchronization is extended with the possibility to
exchange integer values.

pay(6).Nil || pay(x).save(x/2).Nil || Bank(100)

↓ τ
Nil || save(3).Nil || Bank(100)

↓ τ
Nil || Nil || Bank(103)

Parametrized Process Constants

For example: Bank(total)
def
= save(x).Bank(total + x).

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 31 / 80

Introduction CCS The π-calculus

From Value Passing CCS to Standard CCS

Value Passing CCS

C
def
= in(x).C ′(x)

C ′(x)
def
= out(x).C

−→

Standard CCS

C
def
=
∑
i∈N

in(i).C ′i

C ′i
def
= out(i).C

· · ·
C

in(x)

��
C ′(x)

out(x)

JJ C ′i

out(i)
** C

in(1)

in(2)
++

in(i)

jj C ′2
out(2)

jj

C ′1

out(1)

JJ

symbolic LTS infinite LTS

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 32 / 80

Introduction CCS The π-calculus

CCS Has Full Turing Power

Fact

CCS can simulate a computation of any Turing machine.

Remark

Hence CCS is as expressive as any other programming language but
its use is to rather describe the behaviour of reactive systems than
to perform specific calculations.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 33 / 80

Introduction CCS The π-calculus

CCS Has Full Turing Power

Fact

CCS can simulate a computation of any Turing machine.

Remark

Hence CCS is as expressive as any other programming language but
its use is to rather describe the behaviour of reactive systems than
to perform specific calculations.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 33 / 80

Introduction CCS The π-calculus

Behavioural Equivalence

Implementation

CM
def
= coin.coffee.CM

CS
def
= pub.coin.coffee.CS

Uni
def
= (νcoin, coffee)(CM || CS)

Specification

Spec
def
= pub.Spec

Question

Are the processes Uni and Spec behaviorally equivalent?

Uni ≡ Spec

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 34 / 80

Introduction CCS The π-calculus

Behavioural Equivalence

Implementation

CM
def
= coin.coffee.CM

CS
def
= pub.coin.coffee.CS

Uni
def
= (νcoin, coffee)(CM || CS)

Specification

Spec
def
= pub.Spec

Question

Are the processes Uni and Spec behaviorally equivalent?

Uni ≡ Spec

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 34 / 80

Introduction CCS The π-calculus

Goals

What should a reasonable behavioral equivalence satisfy?

• abstract from states (consider only the behavior – actions)

• abstract from nondeterminism

• abstract from internal behavior

What else should a reasonable behavioural equivalence satisfy?

• reflexivity P ≡ P for any process P

• transitivity Spec0 ≡ Spec1 ≡ Spec2 ≡ · · · ≡ Impl gives that
Spec0 ≡ Impl

• symmetry P ≡ Q iff Q ≡ P

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 35 / 80

Introduction CCS The π-calculus

Goals

What should a reasonable behavioral equivalence satisfy?

• abstract from states (consider only the behavior – actions)

• abstract from nondeterminism

• abstract from internal behavior

What else should a reasonable behavioural equivalence satisfy?

• reflexivity P ≡ P for any process P

• transitivity Spec0 ≡ Spec1 ≡ Spec2 ≡ · · · ≡ Impl gives that
Spec0 ≡ Impl

• symmetry P ≡ Q iff Q ≡ P

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 35 / 80

Introduction CCS The π-calculus

Congruence

P

C

Q

C

C(P) C(Q)

• We would like “equal” processes P and Q to “behave the same”
under any context C(·).
• A context is a process with a hole.

When the hole is filled in with a process P , we obtain another
process (usually noted C(P) or C[P]).

Congruence Property

P ≡ Q implies that C(P) ≡ C(Q)
Jorge A. Pérez (Groningen) An Introduction to Process Calculi 36 / 80

Introduction CCS The π-calculus

Congruence

P

C

Q

C

C(P) C(Q)

• We would like “equal” processes P and Q to “behave the same”
under any context C(·).
• A context is a process with a hole.

When the hole is filled in with a process P , we obtain another
process (usually noted C(P) or C[P]).

Congruence Property

P ≡ Q implies that C(P) ≡ C(Q)
Jorge A. Pérez (Groningen) An Introduction to Process Calculi 36 / 80

Introduction CCS The π-calculus

Congruence

P

C

Q

C

C(P) C(Q)

• We would like “equal” processes P and Q to “behave the same”
under any context C(·).
• A context is a process with a hole.

When the hole is filled in with a process P , we obtain another
process (usually noted C(P) or C[P]).

Congruence Property

P ≡ Q implies that C(P) ≡ C(Q)
Jorge A. Pérez (Groningen) An Introduction to Process Calculi 36 / 80

Introduction CCS The π-calculus

Trace Equivalence

Let (Proc,Act , { a−→| a ∈ Act}) be an LTS.

Trace Set for s ∈ Proc

Traces(s) = {w ∈ Act∗ | ∃s′ ∈ Proc. s
w−→ s′}

Let s ∈ Proc and t ∈ Proc.

Trace Equivalence

We say that s and t are trace equivalent (s ≡t t) if and only if
Traces(s) = Traces(t)

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 37 / 80

Introduction CCS The π-calculus

Trace Equivalence

Let (Proc,Act , { a−→| a ∈ Act}) be an LTS.

Trace Set for s ∈ Proc

Traces(s) = {w ∈ Act∗ | ∃s′ ∈ Proc. s
w−→ s′}

Let s ∈ Proc and t ∈ Proc.

Trace Equivalence

We say that s and t are trace equivalent (s ≡t t) if and only if
Traces(s) = Traces(t)

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 37 / 80

Introduction CCS The π-calculus

Black-Box Experiments

Main Idea

Two processes are behaviorally equivalent if and only if an external
observer cannot tell them apart.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 38 / 80

Introduction CCS The π-calculus

Strong Bisimilarity

Let (Proc,Act , { a−→| a ∈ Act}) be an LTS.

Strong Bisimulation

A binary relation R ⊆ Proc × Proc is a strong bisimulation iff
whenever (s, t) ∈ R then for each a ∈ Act :

• if s
a−→ s′ then t

a−→ t′ for some t′ such that (s′, t′) ∈ R
• if t

a−→ t′ then s
a−→ s′ for some s′ such that (s′, t′) ∈ R.

Strong Bisimilarity

Processes p1, p2 ∈ Proc are strongly bisimilar (p1 ∼ p2) if and only
if there exists a strong bisimulation R such that (p1, p2) ∈ R.

∼ =
⋃
{R | R is a strong bisimulation}

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 39 / 80

Introduction CCS The π-calculus

Strong Bisimilarity

Let (Proc,Act , { a−→| a ∈ Act}) be an LTS.

Strong Bisimulation

A binary relation R ⊆ Proc × Proc is a strong bisimulation iff
whenever (s, t) ∈ R then for each a ∈ Act :

• if s
a−→ s′ then t

a−→ t′ for some t′ such that (s′, t′) ∈ R
• if t

a−→ t′ then s
a−→ s′ for some s′ such that (s′, t′) ∈ R.

Strong Bisimilarity

Processes p1, p2 ∈ Proc are strongly bisimilar (p1 ∼ p2) if and only
if there exists a strong bisimulation R such that (p1, p2) ∈ R.

∼ =
⋃
{R | R is a strong bisimulation}

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 39 / 80

Introduction CCS The π-calculus

Basic Properties of Strong Bisimilarity

Theorem

∼ is an equivalence (reflexive, symmetric and transitive)

Theorem

∼ is the largest strong bisimulation

Theorem

s ∼ t if and only if for each a ∈ Act :

• if s
a−→ s′ then t

a−→ t′ for some t′ such that s′ ∼ t′

• if t
a−→ t′ then s

a−→ s′ for some s′ such that s′ ∼ t′.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 40 / 80

Introduction CCS The π-calculus

Basic Properties of Strong Bisimilarity

Theorem

∼ is an equivalence (reflexive, symmetric and transitive)

Theorem

∼ is the largest strong bisimulation

Theorem

s ∼ t if and only if for each a ∈ Act :

• if s
a−→ s′ then t

a−→ t′ for some t′ such that s′ ∼ t′

• if t
a−→ t′ then s

a−→ s′ for some s′ such that s′ ∼ t′.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 40 / 80

Introduction CCS The π-calculus

Basic Properties of Strong Bisimilarity

Theorem

∼ is an equivalence (reflexive, symmetric and transitive)

Theorem

∼ is the largest strong bisimulation

Theorem

s ∼ t if and only if for each a ∈ Act :

• if s
a−→ s′ then t

a−→ t′ for some t′ such that s′ ∼ t′

• if t
a−→ t′ then s

a−→ s′ for some s′ such that s′ ∼ t′.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 40 / 80

Introduction CCS The π-calculus

How to Show Nonbisimilarity?

s
a
��

t
a

{{
a

##
s1

b

{{
c

##

t1
b ��

t2
c��

s2 s3 t3 t4

To prove that s 6∼ t:

• Enumerate all binary relations and show that none of them at the
same time contains (s, t) and is a strong bisimulation.
(Expensive: 2|Proc|

2
relations.)

• Make certain observations which will enable to disqualify many
bisimulation candidates in one step.

• Use game characterization of strong bisimilarity.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 41 / 80

Introduction CCS The π-calculus

How to Show Nonbisimilarity?

s
a
��

t
a

{{
a

##
s1

b

{{
c

##

t1
b ��

t2
c��

s2 s3 t3 t4

To prove that s 6∼ t:

• Enumerate all binary relations and show that none of them at the
same time contains (s, t) and is a strong bisimulation.
(Expensive: 2|Proc|

2
relations.)

• Make certain observations which will enable to disqualify many
bisimulation candidates in one step.

• Use game characterization of strong bisimilarity.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 41 / 80

Introduction CCS The π-calculus

How to Show Nonbisimilarity?

s
a
��

t
a

{{
a

##
s1

b

{{
c

##

t1
b ��

t2
c��

s2 s3 t3 t4

To prove that s 6∼ t:

• Enumerate all binary relations and show that none of them at the
same time contains (s, t) and is a strong bisimulation.
(Expensive: 2|Proc|

2
relations.)

• Make certain observations which will enable to disqualify many
bisimulation candidates in one step.

• Use game characterization of strong bisimilarity.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 41 / 80

Introduction CCS The π-calculus

How to Show Nonbisimilarity?

s
a
��

t
a

{{
a

##
s1

b

{{
c

##

t1
b ��

t2
c��

s2 s3 t3 t4

To prove that s 6∼ t:

• Enumerate all binary relations and show that none of them at the
same time contains (s, t) and is a strong bisimulation.
(Expensive: 2|Proc|

2
relations.)

• Make certain observations which will enable to disqualify many
bisimulation candidates in one step.

• Use game characterization of strong bisimilarity.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 41 / 80

Introduction CCS The π-calculus

Bisimilarity is a Congruence for CCS

Theorem

Let P and Q be CCS processes such that P ∼ Q. Then

• α.P ∼ α.Q for each action α ∈ Act

• P +R ∼ Q+R and R+ P ∼ R+Q for each CCS process R

• P |R ∼ Q |R and R | P ∼ R |Q for each CCS process R

• (νa)P ∼ (νa)Q for any a.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 42 / 80

Introduction CCS The π-calculus

Other Properties of Strong Bisimilarity

Following Properties Hold for any CCS Processes P , Q and R

• P +Q ∼ Q+ P

• P || Q ∼ Q || P
• P + Nil ∼ P

• P || Nil ∼ P

• (P +Q) +R ∼ P + (Q+R)

• (P || Q) || R ∼ P || (Q || R)

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 43 / 80

Introduction CCS The π-calculus

Example – Buffer

Buffer of Capacity 1

B1
0

def
= in.B1

1

B1
1

def
= out .B1

0

Buffer of Capacity n

Bn
0

def
= in.Bn

1

Bn
i

def
= in.Bn

i+1 + out .Bn
i−1 for 0 < i < n

Bn
n

def
= out .Bn

n−1

Example: B2
0 ∼ B1

0 ||B1
0

B2
0

in
��

B1
0 ||B1

0in

�� in
++B2

1

in
��

out

ZZ

B1
1 ||B1

0

in ++

out

DD

B1
0 ||B1

1

in

��

outkk

B2
2

out

ZZ

B1
1 ||B1

1

out

kk

out

DD

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 44 / 80

Introduction CCS The π-calculus

Example – Buffer

Buffer of Capacity 1

B1
0

def
= in.B1

1

B1
1

def
= out .B1

0

Buffer of Capacity n

Bn
0

def
= in.Bn

1

Bn
i

def
= in.Bn

i+1 + out .Bn
i−1 for 0 < i < n

Bn
n

def
= out .Bn

n−1

Example: B2
0 ∼ B1

0 ||B1
0

B2
0

in
��

B1
0 ||B1

0in

�� in
++B2

1

in
��

out

ZZ

B1
1 ||B1

0

in ++

out

DD

B1
0 ||B1

1

in

��

outkk

B2
2

out

ZZ

B1
1 ||B1

1

out

kk

out

DD

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 44 / 80

Introduction CCS The π-calculus

Example – Buffer

Buffer of Capacity 1

B1
0

def
= in.B1

1

B1
1

def
= out .B1

0

Buffer of Capacity n

Bn
0

def
= in.Bn

1

Bn
i

def
= in.Bn

i+1 + out .Bn
i−1 for 0 < i < n

Bn
n

def
= out .Bn

n−1

Example: B2
0 ∼ B1

0 ||B1
0

B2
0

in
��

B1
0 ||B1

0in

�� in
++B2

1

in
��

out

ZZ

B1
1 ||B1

0

in ++

out

DD

B1
0 ||B1

1

in

��

outkk

B2
2

out

ZZ

B1
1 ||B1

1

out

kk

out

DD

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 44 / 80

Introduction CCS The π-calculus

Example – Buffer

Theorem

For all natural numbers n: Bn
0 ∼ B1

0 ||B1
0 || · · · ||B1

0︸ ︷︷ ︸
n times

Proof.

The co-inductive proof method: to show bisimilarity, show an
appropriate strong bisimulation.
Construct the following binary relation where i1, i2, . . . , in ∈ {0, 1}.

R = {
(
Bn
i , B

1
i1
||B1

i2
|| · · · ||B1

in

)
|

n∑
j=1

ij = i}

•
(
Bn

0 , B
1
0 ||B1

0 || · · · ||B1
0

)
∈ R

• R is strong bisimulation

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 45 / 80

Introduction CCS The π-calculus

Example – Buffer

Theorem

For all natural numbers n: Bn
0 ∼ B1

0 ||B1
0 || · · · ||B1

0︸ ︷︷ ︸
n times

Proof.

The co-inductive proof method: to show bisimilarity, show an
appropriate strong bisimulation.
Construct the following binary relation where i1, i2, . . . , in ∈ {0, 1}.

R = {
(
Bn
i , B

1
i1
||B1

i2
|| · · · ||B1

in

)
|

n∑
j=1

ij = i}

•
(
Bn

0 , B
1
0 ||B1

0 || · · · ||B1
0

)
∈ R

• R is strong bisimulation

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 45 / 80

Introduction CCS The π-calculus

Strong Bisimilarity – Summary

Properties of ∼
• an equivalence relation

• the largest strong bisimulation

• a congruence

• enough to prove some natural rules like
• P ||Q ∼ Q ||P
• P ||Nil ∼ P
• (P ||Q) ||R ∼ Q || (P ||R)
• · · ·

Question

Should we look any further???

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 46 / 80

Introduction CCS The π-calculus

Strong Bisimilarity – Summary

Properties of ∼
• an equivalence relation

• the largest strong bisimulation

• a congruence

• enough to prove some natural rules like
• P ||Q ∼ Q ||P
• P ||Nil ∼ P
• (P ||Q) ||R ∼ Q || (P ||R)
• · · ·

Question

Should we look any further???

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 46 / 80

Introduction CCS The π-calculus

Problems with Internal Actions

Question

Does a.τ.Nil ∼ a.Nil hold? NO!

Problem

Strong bisimilarity does not abstract away from τ actions.

Example: SmUni 6∼ Spec
SmUni

pub��

6∼ Spec

pub

WW

(νcoin, coffee)(CM || CS1)
τ��

(νcoin, coffee)(CM1 || CS2)
τ��

(νcoin, coffee)(CM || CS)

pub

kk

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 47 / 80

Introduction CCS The π-calculus

Problems with Internal Actions

Question

Does a.τ.Nil ∼ a.Nil hold? NO!

Problem

Strong bisimilarity does not abstract away from τ actions.

Example: SmUni 6∼ Spec
SmUni

pub��

6∼ Spec

pub

WW

(νcoin, coffee)(CM || CS1)
τ��

(νcoin, coffee)(CM1 || CS2)
τ��

(νcoin, coffee)(CM || CS)

pub

kk

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 47 / 80

Introduction CCS The π-calculus

Problems with Internal Actions

Question

Does a.τ.Nil ∼ a.Nil hold? NO!

Problem

Strong bisimilarity does not abstract away from τ actions.

Example: SmUni 6∼ Spec
SmUni

pub��

6∼ Spec

pub

WW

(νcoin, coffee)(CM || CS1)
τ��

(νcoin, coffee)(CM1 || CS2)
τ��

(νcoin, coffee)(CM || CS)

pub

kk

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 47 / 80

Introduction CCS The π-calculus

Problems with Internal Actions

Question

Does a.τ.Nil ∼ a.Nil hold? NO!

Problem

Strong bisimilarity does not abstract away from τ actions.

Example: SmUni 6∼ Spec
SmUni

pub��

6∼ Spec

pub

WW

(νcoin, coffee)(CM || CS1)
τ��

(νcoin, coffee)(CM1 || CS2)
τ��

(νcoin, coffee)(CM || CS)

pub

kk

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 47 / 80

Introduction CCS The π-calculus

Weak Transition Relation

Let (Proc,Act , { a−→| a ∈ Act}) be an LTS such that τ ∈ Act .

Definition of Weak Transition Relation

Below, ◦ stands for function composition.

a
=⇒ =

{
(

τ−→)∗◦ a−→ ◦(τ−→)∗ if a 6= τ

(
τ−→)∗ if a = τ

What does s
a

=⇒ t informally mean?

• If a 6= τ then s
a

=⇒ t means that
from s we can get to t by doing zero or more τ actions,
followed by the action a, followed by zero or more τ actions.

• If a = τ then s
τ

=⇒ t means that
from s we can get to t by doing zero or more τ actions.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 48 / 80

Introduction CCS The π-calculus

Weak Transition Relation

Let (Proc,Act , { a−→| a ∈ Act}) be an LTS such that τ ∈ Act .

Definition of Weak Transition Relation

Below, ◦ stands for function composition.

a
=⇒ =

{
(

τ−→)∗◦ a−→ ◦(τ−→)∗ if a 6= τ

(
τ−→)∗ if a = τ

What does s
a

=⇒ t informally mean?

• If a 6= τ then s
a

=⇒ t means that
from s we can get to t by doing zero or more τ actions,
followed by the action a, followed by zero or more τ actions.

• If a = τ then s
τ

=⇒ t means that
from s we can get to t by doing zero or more τ actions.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 48 / 80

Introduction CCS The π-calculus

Weak Bisimilarity

Let (Proc,Act , { a−→| a ∈ Act}) be an LTS such that τ ∈ Act .

Weak Bisimulation

A binary relation R ⊆ Proc × Proc is a weak bisimulation iff
whenever (s, t) ∈ R then for each a ∈ Act (including τ):

• if s
a−→ s′ then t

a
=⇒ t′ for some t′ such that (s′, t′) ∈ R

• if t
a−→ t′ then s

a
=⇒ s′ for some s′ such that (s′, t′) ∈ R.

Weak Bisimilarity

Two processes p1, p2 ∈ Proc are weakly bisimilar (p1 ≈ p2) if and
only if there exists a weak bisimulation R such that (p1, p2) ∈ R.

≈ =
⋃
{R | R is a weak bisimulation}

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 49 / 80

Introduction CCS The π-calculus

Weak Bisimilarity

Let (Proc,Act , { a−→| a ∈ Act}) be an LTS such that τ ∈ Act .

Weak Bisimulation

A binary relation R ⊆ Proc × Proc is a weak bisimulation iff
whenever (s, t) ∈ R then for each a ∈ Act (including τ):

• if s
a−→ s′ then t

a
=⇒ t′ for some t′ such that (s′, t′) ∈ R

• if t
a−→ t′ then s

a
=⇒ s′ for some s′ such that (s′, t′) ∈ R.

Weak Bisimilarity

Two processes p1, p2 ∈ Proc are weakly bisimilar (p1 ≈ p2) if and
only if there exists a weak bisimulation R such that (p1, p2) ∈ R.

≈ =
⋃
{R | R is a weak bisimulation}

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 49 / 80

Introduction CCS The π-calculus

Weak Bisimilarity – Properties

Properties of ≈
• an equivalence relation

• the largest weak bisimulation

• validates lots of natural laws, e.g.
• a.τ.P ≈ a.P
• P + τ.P ≈ τ.P
• a.(P + τ.Q) ≈ a.(P + τ.Q) + a.Q
• P +Q ≈ Q+ P P ||Q ≈ Q ||P P +Nil ≈ P . . .

• strong bisimilarity is included in weak bisimilarity (∼⊆≈)

• abstracts from τ loops

�� ��
• a

&&

τ
%% ≈ • a

&&• •
Jorge A. Pérez (Groningen) An Introduction to Process Calculi 50 / 80

Introduction CCS The π-calculus

Is Weak Bisimilarity a Congruence?

Theorem

Let P and Q be CCS processes such that P ≈ Q. Then

• α.P ≈ α.Q for each action α ∈ Act

• P |R ≈ Q |R and R | P ≈ R |Q for each CCS process R

• (νa)P ≈ (νa)Q for each set of labels L.

What about choice?

τ.a.Nil ≈ a.Nil but τ.a.Nil + b.Nil 6≈ a.Nil + b.Nil

Conclusion

Weak bisimilarity is not a congruence for CCS.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 51 / 80

Introduction CCS The π-calculus

Is Weak Bisimilarity a Congruence?

Theorem

Let P and Q be CCS processes such that P ≈ Q. Then

• α.P ≈ α.Q for each action α ∈ Act

• P |R ≈ Q |R and R | P ≈ R |Q for each CCS process R

• (νa)P ≈ (νa)Q for each set of labels L.

What about choice?

τ.a.Nil ≈ a.Nil but τ.a.Nil + b.Nil 6≈ a.Nil + b.Nil

Conclusion

Weak bisimilarity is not a congruence for CCS.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 51 / 80

Introduction CCS The π-calculus

Is Weak Bisimilarity a Congruence?

Theorem

Let P and Q be CCS processes such that P ≈ Q. Then

• α.P ≈ α.Q for each action α ∈ Act

• P |R ≈ Q |R and R | P ≈ R |Q for each CCS process R

• (νa)P ≈ (νa)Q for each set of labels L.

What about choice?

τ.a.Nil ≈ a.Nil but τ.a.Nil + b.Nil 6≈ a.Nil + b.Nil

Conclusion

Weak bisimilarity is not a congruence for CCS.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 51 / 80

Introduction CCS The π-calculus

Outline

Introduction

CCS
Introduction to CCS
Syntax of CCS
Semantics of CCS
Value Passing CCS
Semantic Equivalences
Strong Bisimilarity
Weak Bisimilarity

The π-calculus
Informal Introduction
The π-calculus, formally

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 52 / 80

Introduction CCS The π-calculus

A Calculus of Mobile Processes

Arguably, the π-calculus is the paradigmatic concurrent calculus

• Proposed by Milner, Parrow, and Walker in 1992.
Developed significantly by Sangiorgi.

Interactive systems with dynamic connectivity (topology).
A dual role:

• A model of networked computation:
Exchanged messages which contain links referring to
communication channels themselves

• A basic model of computation:
Interaction as the primitive notion of concurrent computing
(Just as the λ-calculus for functional computing)

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 53 / 80

Introduction CCS The π-calculus

The π-calculus, in This Talk

• The theory of the π-calculus is richer than that of CCS.
In some aspects, however, it is also more involved.

• We will overview this theory, contrasting it with CCS

• Hence, we present the π-calculus without going too much into
technical details

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 54 / 80

Introduction CCS The π-calculus

Mobility as dynamic connectivity (1)

Towards the meaning of ‘mobility’:

• What kind of entity moves? In what space does it move?

Many possibilities—the two most relevant are:

1 Processes move, in the virtual space of linked processes

2 Links move, in the virtual space of linked processes

Observe that

• A process’ location is given by the links it has to other processes
(think of your contacts in your mobile phone)

• Hence, the movement of a process can be represented by the
movement of its links

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 55 / 80

Introduction CCS The π-calculus

Mobility as dynamic connectivity (1)

Towards the meaning of ‘mobility’:

• What kind of entity moves? In what space does it move?

Many possibilities—the two most relevant are:

1 Processes move, in the virtual space of linked processes

2 Links move, in the virtual space of linked processes

Observe that

• A process’ location is given by the links it has to other processes
(think of your contacts in your mobile phone)

• Hence, the movement of a process can be represented by the
movement of its links

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 55 / 80

Introduction CCS The π-calculus

Mobility as dynamic connectivity (2)

1 Processes move, in the virtual space of linked processes

2 Links move, in the virtual space of linked processes

The π-calculus commits to mobility in the sense of (2)...

• Economy, flexibility, and simplicity (at least wrt CCS)

...while models of higher-order concurrency stick to (1):

• Inspired in the λ-calculus

• It might be difficult/inconvenient to “normalize” all concurrency
phenomena in the sense of (2)

We will argue that (1) and (2) need not be mutually exclusive

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 56 / 80

Introduction CCS The π-calculus

Mobility as dynamic connectivity (2)

1 Processes move, in the virtual space of linked processes

2 Links move, in the virtual space of linked processes

The π-calculus commits to mobility in the sense of (2)...

• Economy, flexibility, and simplicity (at least wrt CCS)

...while models of higher-order concurrency stick to (1):

• Inspired in the λ-calculus

• It might be difficult/inconvenient to “normalize” all concurrency
phenomena in the sense of (2)

We will argue that (1) and (2) need not be mutually exclusive

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 56 / 80

Introduction CCS The π-calculus

Mobility as dynamic connectivity (2)

1 Processes move, in the virtual space of linked processes

2 Links move, in the virtual space of linked processes

The π-calculus commits to mobility in the sense of (2)...

• Economy, flexibility, and simplicity (at least wrt CCS)

...while models of higher-order concurrency stick to (1):

• Inspired in the λ-calculus

• It might be difficult/inconvenient to “normalize” all concurrency
phenomena in the sense of (2)

We will argue that (1) and (2) need not be mutually exclusive

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 56 / 80

Introduction CCS The π-calculus

Dynamic connectivity in CCS is limited (1)

What’s the main difference of the π-calculus wrt CCS?
Dynamic connectivity.

Suppose a CCS process S
def
= (νc)(A || C) || B.

Name a is free in A, while b is free in B. Graphically:

(1)

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 57 / 80

Introduction CCS The π-calculus

Dynamic connectivity in CCS is limited (1)

What’s the main difference of the π-calculus wrt CCS?
Dynamic connectivity.

Suppose a CCS process S
def
= (νc)(A || C) || B.

Name a is free in A, while b is free in B. Graphically:

(1)

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 57 / 80

Introduction CCS The π-calculus

Dynamic connectivity in CCS is limited (2)

Suppose a CCS process S
def
= (νc)(A || C) || B.

Name a is free in A, while b is free in B.

Suppose now that A
def
= a.(νd)(A || A′) + c.A′′. Graphically:

(2)

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 58 / 80

Introduction CCS The π-calculus

Dynamic connectivity in CCS is limited (3)

Suppose a CCS process S
def
= (νx)(A || C) || B.

Name a is free in A, while b is free in B.

Suppose now that A
def
= a.(νd)(A || A′) + c.A′′.

Finally, suppose that A′ = c.0. Process A′ then dies. Graphically:

(3)

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 59 / 80

Introduction CCS The π-calculus

Dynamic connectivity in CCS is limited (4)

In CCS, links can proliferate and die:

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 60 / 80

Introduction CCS The π-calculus

Dynamic connectivity in CCS is limited (5)

However, new links between existing processes cannot be created.
A transition such as

→

is not possible in CCS.

Dynamic connectivity refers precisely to this kind of transitions.
The π-calculus goes beyond CCS by allowing dynamic
communication topologies.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 61 / 80

Introduction CCS The π-calculus

Dynamic connectivity in CCS is limited (5)

However, new links between existing processes cannot be created.
A transition such as

→

is not possible in CCS.

Dynamic connectivity refers precisely to this kind of transitions.
The π-calculus goes beyond CCS by allowing dynamic
communication topologies.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 61 / 80

Introduction CCS The π-calculus

Mobile phones and cars (1)

A simple (yet probably outdated) application of mobility.

• Vehicles on the move; each connected to a transmitter T
• Transmitters have fixed connections to a central control
• A vehicle can be switched to another transmitter
• Virtual movement of links between cars and transmitters

Before:

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 62 / 80

Introduction CCS The π-calculus

Mobile phones and cars (1)

A simple (yet probably outdated) application of mobility.

• Vehicles on the move; each connected to a transmitter T
• Transmitters have fixed connections to a central control
• A vehicle can be switched to another transmitter
• Virtual movement of links between cars and transmitters

Before:

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 62 / 80

Introduction CCS The π-calculus

Mobile phones and cars (2)

A simple (yet probably outdated) application of mobility.

• Vehicles on the move; each connected to a transmitter T
• Transmitters have fixed connections to a central control
• A vehicle can be switched to another transmitter
• Virtual movement of links between cars and transmitters

After:

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 63 / 80

Introduction CCS The π-calculus

Mobile phones and cars (3)

The handover protocol in the π-calculus, schematically:

→

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 64 / 80

Introduction CCS The π-calculus

Mobile phones and cars (4)

Main novelty: Communications may transmit names as messages

Trans〈t, s, g, l〉 def
= t.T rans〈t, s, g, l〉 + l(t, s).s〈t, s〉.Idtrans〈g, l〉

Idtrans〈g, l〉 def
= g(t, s).T rans〈t, s, g, l〉

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 65 / 80

Introduction CCS The π-calculus

Mobile phones and cars (5)

Control issues a new pair of links to be communicated to Car:

Control1
def
= l1〈t2, s2〉.g2〈t2, s2〉.Control2

Control2
def
= l2〈t1, s1〉.g1〈t1, s1〉.Control1

Car can either talk or switch to another transmitter (if requested):

Car〈t, s〉 def
= t.Car〈t, s〉+ s(t, s).Car〈t, s〉

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 66 / 80

Introduction CCS The π-calculus

Mobile phones and cars (6)

The system is the restricted composition of the previous processes:

System1
def
= (νt1, s1, g1, l1, t2, s2, g2, l2)

(Car〈t1, s1〉 || Trans1 || Idtrans2 || Control1)
where we have use the abbreviations (i = 1, 2)

Transi
def
= Trans〈ti, si, gi, li〉 Idtransi

def
= Idtrans〈gi, li〉

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 67 / 80

Introduction CCS The π-calculus

Mobile phones and cars (7)

The semantics of the π-calculus will allows to infer that System1

evolves to System2 where

System2
def
= (νt1, s1, g1, l1, t2, s2, g2, l2)

(Car〈t2, s2〉 || Trans2 || Idtrans1 || Control2)

(The process obtained from System1 by exchanging the indexes.)

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 68 / 80

Introduction CCS The π-calculus

The π-calculus, more formally

We now formally introduce the π-calculus. Some highlights:

• The major novelty is name communication

• Dynamic connectivity formalized as scope extrusion

• A structural congruence relation

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 69 / 80

Introduction CCS The π-calculus

The π-calculus, more formally

We use x, y, z, . . . to range over N , an infinite set of names.

The action prefixes of the π-calculus generalize the actions of CCS:

α ::= x〈y〉 send name y along x
x(y) receive a name along x
τ unobservable action

Brackets in x〈y〉 represent a tuple of values.

• Above, monadic communication: exactly one name is sent.

• In polyadic communication more than one value may be sent.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 70 / 80

Introduction CCS The π-calculus

Process expressions of the π-calculus

P,Q ::= 0 Inactive process

| α.P Prefix

| P + P Sum

| P ||Q Parallel composition

| (νy)P Name Restriction

| A〈y1, . . . , yn〉 Identifier

We assume each identifier A is equipped with a recursive definition

A(x1, . . . , xn)
def
= P , where i 6= j implies xi 6= xj.

• Restriction and input actions are name binders:
In (νy)P and x(y).P name y is bound with scope P .

• In contrast, in x〈y〉 name y is free.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 71 / 80

Introduction CCS The π-calculus

Structural Congruence

A few intuitions:

• The syntax of processes is too concrete: syntactically different
things that represent the same behavior. Examples:

a(x).b〈x〉 and a(y).b〈y〉
P ||Q and Q ||P

[We often omit trailing 0s, and write b〈y〉 instead of b〈y〉.0.]

• Structural congruence identifies processes which are “obviously
the same” based on their structure

• In this sense, structural congruence will be stronger (that is, will
equate less process) than any behavioral equivalence.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 72 / 80

Introduction CCS The π-calculus

Structural Congruence, ≡

P and Q structurally congruent, written P ≡ Q, if we can
transform one into the other by using the following equations:

1 α-conversion: change of bound names
2 Laws for parallel composition:

P || 0 ≡ P

P || Q ≡ Q || P
P || (Q || R) ≡ (P || Q) || R

3 Law for recursive definitions: A〈ỹ〉 ≡ P{ỹ/x̃} if A(x̃)
def
= P

4 Laws for restriction:
(νx)(P || Q) ≡ P || (νx)Q if x 6∈ fn(P)

(νx)0 ≡ 0

(νx)(P +Q) ≡ P + (νx)Q if x 6∈ fn(P)

(νx)(νy)P ≡ (νy)(νx)P
Jorge A. Pérez (Groningen) An Introduction to Process Calculi 73 / 80

Introduction CCS The π-calculus

Scope Extrusion (1)

A process P || Q || R.
Name x is free in P and Q, while z is free in Q and R:

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 74 / 80

Introduction CCS The π-calculus

Scope Extrusion (2)

Suppose that z is restricted to P and R, while x is free in P and Q.
That is, we have the process (νz)(P || R) || Q:

What happens if P wishes to send z to Q?

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 75 / 80

Introduction CCS The π-calculus

Scope Extrusion (3)

Suppose P = x〈z〉.P ′, with z 6∈ fn(P ′).
Suppose also Q = x(y).Q′, with z 6∈ fn(Q′).

where Q′′ = Q′{z/y}. We have graphically described the reduction

(νz)(P || R) || Q −→ P ′ || (νz)(R || Q′′)

The above describes a movement of a way of accessing R (rather
than a movement of R).

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 76 / 80

Introduction CCS The π-calculus

Some Simple Examples

We present some simple examples of scope extrusion.
We exploit three (informal) postulates for this:

1 A law for inferring interactions:

a(x).P || a〈b〉.Q τ−→ P{b/x} ||Q

2 Restrictions respect silent transitions:

P
τ−→ Q implies (νx)P

τ−→ (νx)Q

3 Structurally congruent processes should have the same
behavior.

Jorge A. Pérez (Groningen) An Introduction to Process Calculi 77 / 80

Introduction CCS The π-calculus

A Simple Example

We use str. congruence to infer an interaction for the process

a(x).c〈x〉 || (νb)a〈b〉

Since b /∈ fn(a(x).c〈x〉), we have

a(x).c〈x〉 || (νb)a〈b〉 ≡ (νb)(a(x).c〈x〉 || a〈b〉)
We can infer that

(νb)(a(x).c〈x〉 || a〈b〉) τ−→ (νb)(c〈b〉 ||0)
because a(x).c〈x〉 || a〈b〉 τ−→ c〈b〉 ||0 is a valid interaction.

Removing 0, in general we have, for any b /∈ fn(P):
a(x).P || (νb)a〈b〉.Q τ−→ (νb)(P ||Q{b/x})

and the scope of b has moved from the right to the left.
Jorge A. Pérez (Groningen) An Introduction to Process Calculi 78 / 80

Introduction CCS The π-calculus

A Simple Example

We use str. congruence to infer an interaction for the process

a(x).c〈x〉 || (νb)a〈b〉

Since b /∈ fn(a(x).c〈x〉), we have

a(x).c〈x〉 || (νb)a〈b〉 ≡ (νb)(a(x).c〈x〉 || a〈b〉)
We can infer that

(νb)(a(x).c〈x〉 || a〈b〉) τ−→ (νb)(c〈b〉 ||0)
because a(x).c〈x〉 || a〈b〉 τ−→ c〈b〉 ||0 is a valid interaction.

Removing 0, in general we have, for any b /∈ fn(P):
a(x).P || (νb)a〈b〉.Q τ−→ (νb)(P ||Q{b/x})

and the scope of b has moved from the right to the left.
Jorge A. Pérez (Groningen) An Introduction to Process Calculi 78 / 80

Introduction CCS The π-calculus

A Simple Example

We use str. congruence to infer an interaction for the process

a(x).c〈x〉 || (νb)a〈b〉

Since b /∈ fn(a(x).c〈x〉), we have

a(x).c〈x〉 || (νb)a〈b〉 ≡ (νb)(a(x).c〈x〉 || a〈b〉)
We can infer that

(νb)(a(x).c〈x〉 || a〈b〉) τ−→ (νb)(c〈b〉 ||0)
because a(x).c〈x〉 || a〈b〉 τ−→ c〈b〉 ||0 is a valid interaction.

Removing 0, in general we have, for any b /∈ fn(P):
a(x).P || (νb)a〈b〉.Q τ−→ (νb)(P ||Q{b/x})

and the scope of b has moved from the right to the left.
Jorge A. Pérez (Groningen) An Introduction to Process Calculi 78 / 80

Introduction CCS The π-calculus

Another Example

Consider the process:

P = (νz)((x〈y〉+ z(w).w〈y〉) || x(u).u〈v〉 || x〈z〉)
Observe: fn(P) = {x, v, y}, bn(P) = {z, w, u}. Two possibilities:

1 Interaction among the first and second components:

P
τ−→ (νz)(0 || u〈v〉{y/u} || x〈z〉)
= (νz)(0 || y〈v〉 || x〈z〉) = P1

P{y/u} is the process P in which the free occurrences of
name u have been substituted with y.

2 Interaction among the second and third components:

P
τ−→ (νz)((x〈y〉+ z(w).w〈y〉) || u〈v〉{z/u} || 0)
= (νz)((x〈y〉+ z(w).w〈y〉) || z〈v〉 || 0) = P2

While P1 6
τ−→, we do have P2

τ−→ (νz)(z〈y〉 || 0 || 0) ≡ (νz)z〈y〉
Jorge A. Pérez (Groningen) An Introduction to Process Calculi 79 / 80

Introduction CCS The π-calculus

Another Example

Consider the process:

P = (νz)((x〈y〉+ z(w).w〈y〉) || x(u).u〈v〉 || x〈z〉)
Observe: fn(P) = {x, v, y}, bn(P) = {z, w, u}. Two possibilities:

1 Interaction among the first and second components:

P
τ−→ (νz)(0 || u〈v〉{y/u} || x〈z〉)
= (νz)(0 || y〈v〉 || x〈z〉) = P1

P{y/u} is the process P in which the free occurrences of
name u have been substituted with y.

2 Interaction among the second and third components:

P
τ−→ (νz)((x〈y〉+ z(w).w〈y〉) || u〈v〉{z/u} || 0)
= (νz)((x〈y〉+ z(w).w〈y〉) || z〈v〉 || 0) = P2

While P1 6
τ−→, we do have P2

τ−→ (νz)(z〈y〉 || 0 || 0) ≡ (νz)z〈y〉
Jorge A. Pérez (Groningen) An Introduction to Process Calculi 79 / 80

Introduction CCS The π-calculus

Another Example

Consider the process:

P = (νz)((x〈y〉+ z(w).w〈y〉) || x(u).u〈v〉 || x〈z〉)
Observe: fn(P) = {x, v, y}, bn(P) = {z, w, u}. Two possibilities:

1 Interaction among the first and second components:

P
τ−→ (νz)(0 || u〈v〉{y/u} || x〈z〉)
= (νz)(0 || y〈v〉 || x〈z〉) = P1

P{y/u} is the process P in which the free occurrences of
name u have been substituted with y.

2 Interaction among the second and third components:

P
τ−→ (νz)((x〈y〉+ z(w).w〈y〉) || u〈v〉{z/u} || 0)
= (νz)((x〈y〉+ z(w).w〈y〉) || z〈v〉 || 0) = P2

While P1 6
τ−→, we do have P2

τ−→ (νz)(z〈y〉 || 0 || 0) ≡ (νz)z〈y〉
Jorge A. Pérez (Groningen) An Introduction to Process Calculi 79 / 80

Introduction CCS The π-calculus

Another Example

Consider the process:

P = (νz)((x〈y〉+ z(w).w〈y〉) || x(u).u〈v〉 || x〈z〉)
Observe: fn(P) = {x, v, y}, bn(P) = {z, w, u}. Two possibilities:

1 Interaction among the first and second components:

P
τ−→ (νz)(0 || u〈v〉{y/u} || x〈z〉)
= (νz)(0 || y〈v〉 || x〈z〉) = P1

P{y/u} is the process P in which the free occurrences of
name u have been substituted with y.

2 Interaction among the second and third components:

P
τ−→ (νz)((x〈y〉+ z(w).w〈y〉) || u〈v〉{z/u} || 0)
= (νz)((x〈y〉+ z(w).w〈y〉) || z〈v〉 || 0) = P2

While P1 6
τ−→, we do have P2

τ−→ (νz)(z〈y〉 || 0 || 0) ≡ (νz)z〈y〉
Jorge A. Pérez (Groningen) An Introduction to Process Calculi 79 / 80

Process Calculi
A Brief, Gentle Introduction

Jorge A. Pérez

University of Brasilia
July 20, 2015

	Introduction
	CCS
	Introduction to CCS
	Syntax of CCS
	Semantics of CCS
	Value Passing CCS
	Semantic Equivalences
	Strong Bisimilarity
	Weak Bisimilarity

	The -calculus
	Informal Introduction
	The -calculus, formally

